By anchoring Tb^(3+)ions on its free carboxyl groups of the nanocaged NiMOF,a dual-emission self-calibrating sensor of Tb^(3+)@NiMOF was fabricated through coordination post-synthetic modification(PSM)strategy.With Tb...By anchoring Tb^(3+)ions on its free carboxyl groups of the nanocaged NiMOF,a dual-emission self-calibrating sensor of Tb^(3+)@NiMOF was fabricated through coordination post-synthetic modification(PSM)strategy.With Tb^(3+)ions as the secondary fluorescent signal and sensing active sites,Tb^(3+)@NiMOF presents great potentials in visually and efficiently monitoring EPI in serum,with high sensitivity and selectivity,fast response,excellent recyclable,and the low detection limit(LOD,3.06 ng/mL).Furthermore,a tandem combinational logic gate based intelligent detection system was constructed to improve the practicability and convenience of epinephrine(EPI)detection in serum by comparing the light emitted colour with the series standard colour cards preset in the smartphone.This work provides a promising approach of developing metal-organic frameworks(MOFs)based self-calibrating sensors for intelligent detection of bioactive molecules.展开更多
Inspired by biological ion channels,numerous artificial asymmetric ion channels have been synthesized to facilitate the fabrication of ionic circuits.Nevertheless,the creation of biomimetic asymmetric ion channels nec...Inspired by biological ion channels,numerous artificial asymmetric ion channels have been synthesized to facilitate the fabrication of ionic circuits.Nevertheless,the creation of biomimetic asymmetric ion channels necessitates expensive scientific apparatus and intricate material processing procedures,which constrains its advancement within the realm of ionic devices.In this study,we have devised dynamic asymmetric ion channels with mechanical responsiveness by combining polymers of varying elastic modulus along the longitudinal axis of carbon nanotube fiber(CNTF).The ion rectification can be modulated via the disparate response of CNTF-based ion channels to mechanical stress.We have effectively employed these asymmetric ion channels with mechanical sensitivity in the design of a logic gate device,achieving logic operations such as“AND”and“OR”.The conception of these dynamic asymmetric ion channels with mechanical sensitivity offers a straightforward,cost-effective,and versatile approach for generating ion channels,highlighting their potential application in intricate,highly integrated ionic circuits.展开更多
Stimuli-responsive DNA-based logic gates have emerged as a promising field at the intersection of synthetic biology and nanotechnology.These gates exploit the unique properties of DNA molecules to perform programmable...Stimuli-responsive DNA-based logic gates have emerged as a promising field at the intersection of synthetic biology and nanotechnology.These gates exploit the unique properties of DNA molecules to perform programmable computational operations in response to specific stimuli.This review provides a comprehensive overview of recent advancements in the design,working principles,and applications of stimuli-responsive DNA-based logic gates.The progress made in developing various types of logic gates triggered by metal ions,pH,oligonucleotides,small molecules,proteins,and light is highlighted.The applications of these logic gates in imaging and biosensing,drug delivery,synthetic biology and molecular computing are discussed.This review underscores the significant contributions and future prospects of stimuli-responsive DNA-based logic gates in advancing the field of nanotechnology.展开更多
The cascade of reversible logic gate network with n inputs and n outputs forms a group isomorphic to the symmetric group S2^n. Characteristics of a number of gates from the set of all generalized Toffoli gates are stu...The cascade of reversible logic gate network with n inputs and n outputs forms a group isomorphic to the symmetric group S2^n. Characteristics of a number of gates from the set of all generalized Toffoli gates are studied. Any permutation Sn is proved to be generated by a n-cycle 9 and a permutation τ= (ij,ik) together. It shows that any neighboring 2-cycle permutation can be generated by at most two NOT gates without ancilla bit. Based on the above theory, a cascade algorithm for reversible logic gate networks is proposed. A reversible example of logic gate network cascade is given to show the correctness of the algorithm.展开更多
Optical logic gates play important roles in all-optical logic circuits,which lie at the heart of the next-generation optical computing technology.However,the intrinsic contradiction between compactness and robustness ...Optical logic gates play important roles in all-optical logic circuits,which lie at the heart of the next-generation optical computing technology.However,the intrinsic contradiction between compactness and robustness hinders the development in this field.Here,we propose a simple design principle that can possess multiple-input-output states according to the incident circular polarization and direction based on the metasurface doublet,which enables controlled-NOT logic gates in infrared region.Therefore,the directional asymmetric electromagnetic transmission can be achieved.As a proof of concept,a spin-dependent Janus metasurface is designed and experimentally verified that four distinct images corresponding to four input states can be captured in the far-field.In addition,since the design method is derived from geometric optics,it can be easily applied to other spectra.We believe that the proposed metasurface doublet may empower many potential applications in chiral imaging,chiroptical spectroscopy and optical computing.展开更多
We present a scheme to realize the basic two-qubit logic gates such as the quantum phase gate and SWAP gate using a detuned microwave cavity interacting with three-level superconducting-quantum-interference-device (S...We present a scheme to realize the basic two-qubit logic gates such as the quantum phase gate and SWAP gate using a detuned microwave cavity interacting with three-level superconducting-quantum-interference-device (SQUID) qubit(s), by placing SQUID(s) in a two-mode microwave cavity and using adiabatic passage methods. In this scheme, the two logical states of the qubit are represented by the two lowest levels of the SQUID, and the cavity fields are treated as quantized. Compared with the previous method, the complex procedures of adjusting tile level spacing of the SQUID and applying the resonant microwave pulse to the SQUID to create transformation are not required. Based on superconducting device with relatively long decoherence time and simplified operation procedure, the gates operate at a high speed, which is important in view of decoherence.展开更多
We report supramolecular AND logic gates based on host-vip complexation between acid-labile acyclic cucurbit[n]uril(CB[n]) molecular container and Na Cl O-responsive dye. Supramolecular AND logic gate is turned on d...We report supramolecular AND logic gates based on host-vip complexation between acid-labile acyclic cucurbit[n]uril(CB[n]) molecular container and Na Cl O-responsive dye. Supramolecular AND logic gate is turned on due to acid-triggered degradation of molecular container and the release of the dye, followed by Na Cl O-induced fluorescence “switch on” effect of the dye. The reason for AND molecular logic gate is discovered to be the combination of oxidation inhibition and fluorescence “switch off” effect. Supramolecular AND logic gate is confirmed to be operational in live MCF-7 and He La cancer cells.展开更多
Solid-stated smart polymers responsive to external stimuli have attracted much attention for potential application in the field of photoelectron devices,logic gates,sensor,data storage and security.However,it is a big...Solid-stated smart polymers responsive to external stimuli have attracted much attention for potential application in the field of photoelectron devices,logic gates,sensor,data storage and security.However,it is a bigger challenge for polymers than that for small molecules in solid state to acquire stimuli-responsive properties,because polymers with high molecular weight are not as easy to change the packing structure as small molecules under external stimulation.Here,a D-A type alternating copolymer PTMF-o containing 3,4-bisthienylmaleimide(A unit)and fluorene(D unit)is designed and synthesized.Upon irradiation of sunlight,PTMF-o film exhibits a photo-response with the color altering from purple to colorless.It is attributed to the structure of copolymer transformed from ring-opening form(PTMF-o)to ring-closure form(PTMF-c),resulting from the oxidative photocyclization of 3,4-bisthienylmaleimide unit.Consequently,the ability of charge transfer(CT)from fluorene to 3,4-bisthienylmaleimide unit in PTMF-o can be easily weakened by light stimuli.PTMF-o film displays a WORM-type resistive storage performance for the strong CT.Interestingly,after exposure,the electrical memory behavior in situ transfers into FLASH type,due to weak CT in PTMF-c.PTMF-o film can also be employed as smart material to construct NAND and NOR logic gates by using light as input condition.The work provides a simple way to modify the electronic properties of polymers and realize stimuli-response in solid states.展开更多
Using the dynamical properties of the polarization bistability that depends on the detuning of the injected light,we propose a novel approach to implement reliable all-optical stochastic logic gates in the cascaded ve...Using the dynamical properties of the polarization bistability that depends on the detuning of the injected light,we propose a novel approach to implement reliable all-optical stochastic logic gates in the cascaded vertical cavity surface emitting lasers(VCSELs) with optical-injection.Here,two logic inputs are encoded in the detuning of the injected light from a tunable CW laser.The logic outputs are decoded from the two orthogonal polarization lights emitted from the optically injected VCSELs.For the same logic inputs,under electro-optic modulation,we perform various digital signal processing(NOT,AND,NAND,XOR,XNOR,OR,NOR) in the all-optical domain by controlling the logic operation of the applied electric field.Also we explore their delay storages by using the mechanism of the generalized chaotic synchronization.To quantify the reliabilities of these logic gates,we further demonstrate their success probabilities.展开更多
Optical computing and optical neural network have gained increasing attention in recent years because of their potential advantages of parallel processing at the speed of light and low power consumption by comparison ...Optical computing and optical neural network have gained increasing attention in recent years because of their potential advantages of parallel processing at the speed of light and low power consumption by comparison with electronic computing.The optical implementation of the fundamental building blocks of a digital computer,i.e.logic gates,has been investigated extensively in the past few decades.Optical logic gate computing is an alternative approach to various analogue optical computing architectures.In this paper,the latest development of optical logic gate computing with different kinds of implementations is reviewed.Firstly,the basic concepts of analogue and digital computing with logic gates in the electronic and optical domains are introduced.And then a comprehensive summary of various optical logic gate schemes including spatial encoding of light field,semiconductor optical amplifiers(SOA),highly nonlinear fiber(HNLF),microscale and nanoscale waveguides,and photonic crystal structures is presented.To conclude,the formidable challenges in developing practical all-optical logic gates are analyzed and the prospects of the future are discussed.展开更多
In this paper, the response time of all-optical AND logic gate using the triangular photonic crystal lattice is investigated. The proposed logic gate consists of a photonic crystal nano-resonator formed by changing th...In this paper, the response time of all-optical AND logic gate using the triangular photonic crystal lattice is investigated. The proposed logic gate consists of a photonic crystal nano-resonator formed by changing the size of the dielectric rods. The structure benefits the interference effect mechanism. The contrast ratio of the photonic crystal AND logic gate is obtained as 6 d B. In addition to simplicity, the designed nano-resonator increases the bit rate of logic gate. The delay time and footprint of logic gate are respectively 0.32 ps and 146 μm2. The proposed photonic crystal AND logic gate can operate at a bit rate of 3.12 Tbit/s。展开更多
We propose a scheme for generating Bell states involving two SQUID-based charge qubits by coupling themto a nanomechanical resonator.We also show that it is possible to implement a two-qubit logic gate between the two...We propose a scheme for generating Bell states involving two SQUID-based charge qubits by coupling themto a nanomechanical resonator.We also show that it is possible to implement a two-qubit logic gate between the twocharge qubits by choosing carefully the interaction time.展开更多
A scheme is presented for realizing quantum logic gates for two atoms localized in two distant optical cavities. Our scheme works in a regime in which the atom-cavity coupling strength is smaller than the cavity decay...A scheme is presented for realizing quantum logic gates for two atoms localized in two distant optical cavities. Our scheme works in a regime in which the atom-cavity coupling strength is smaller than the cavity decay rate. Thus the requirement on the quality factor of the cavities is greatly relaxed. Furthermore, the fidelity of our scheme is not affected by detection inefficiency and atomic decay. These advantages are important in view of experiment.展开更多
Skyrmions in synthetic antiferromagnetic(SAF) systems have attracted much attention in recent years due to their superior stability, high-speed mobility, and completely compensated skyrmion Hall effect. They are promi...Skyrmions in synthetic antiferromagnetic(SAF) systems have attracted much attention in recent years due to their superior stability, high-speed mobility, and completely compensated skyrmion Hall effect. They are promising building blocks for the next generation of magnetic storage and computing devices with ultra-low energy and ultra-high density.Here, we theoretically investigate the motion of a skyrmion in an SAF bilayer racetrack and find the velocity of a skyrmion can be controlled jointly by the edge effect and the driving force induced by the spin current. Furthermore, we propose a logic gate that can realize different logic functions of logic AND, OR, NOT, NAND, NOR, and XOR gates. Several effects including the spin–orbit torque, the skyrmion Hall effect, skyrmion–skyrmion repulsion, and skyrmion–edge interaction are considered in this design. Our work may provide a way to utilize the SAF skyrmion as a versatile information carrier for future energy-efficient logic gates.展开更多
For all-optical communication and information processing,it is necessary to develop all-optical logic gates based on photonic structures that can directly perform logic operations.All-optical logic gates have been dem...For all-optical communication and information processing,it is necessary to develop all-optical logic gates based on photonic structures that can directly perform logic operations.All-optical logic gates have been demonstrated based on conventional waveguides and interferometry,as well as photonic crystal structures.Nonetheless,any defects in those structures will introduce high scattering loss,which compromises the fidelity and contrast ratio of the information process.Based on the spin-valley locking effect that can achieve defect-immune unidirectional transmission of topological edge states in valley photonic crystals(VPCs),we propose a high-performance all-optical logic OR gate based on a VPC structure.By tuning the working bandwidth of the two input channels,we prevent interference between the two channels to achieve a stable and high-fidelity output.The transmittance of both channels is higher than 0.8,and a high contrast ratio of 28.8 dB is achieved.Moreover,the chirality of the logic gate originated from the spin-valley locking effect allows using different circularly polarized light as inputs,representing“1”or“0”,which is highly desired in quantum computing.The device’s footprint is 18μm×12μm,allowing high-density on-chip integration.In addition,this design can be experimentally fabricated using current nanofabrication techniques and will have potential applications in optical communication,information processing,and quantum computing.展开更多
We propose a simple and fast scheme to realize a controlled-NOT gate between two trapped ions using a resonant laser pulse. Our scheme allows the Rabi frequency of the laser field to be of the order of the vibrational...We propose a simple and fast scheme to realize a controlled-NOT gate between two trapped ions using a resonant laser pulse. Our scheme allows the Rabi frequency of the laser field to be of the order of the vibrational frequency and thus the time required to complete the operation is greatly shortened, which is of importance in view of decoherence.展开更多
Based on the density functional theory combined with the nonequilibrium Green function methodology,we have studied the thermally-driven spin-dependent transport properties of a combinational molecular junction consist...Based on the density functional theory combined with the nonequilibrium Green function methodology,we have studied the thermally-driven spin-dependent transport properties of a combinational molecular junction consisting of a planar four-coordinate Fe molecule and a 15,16-dinitrile dihydropyrene/cyclophanediene molecule,with single-walled carbon nanotube bridge and electrode.Our results show that the magnetic field and light can effectively regulate the thermallydriven spin-dependent currents.Perfect thermal spin-filtering effect and good thermal switching effect are realized.The results are explained by the Fermi-Dirac distribution function,the spin-resolved transmission spectra,the spatial distribution of molecular projected self-consistent Hamiltonian orbitals,and the spin-resolved current spectra.On the basis of these thermally-driven spin-dependent transport properties,we have further designed three basic thermal spin molecular AND,OR,and NOT gates.展开更多
The idea of replacing traditional silicon-based electronic components with the ones assembled by organic molecules to further scale down the electric circuits has been attracting extensive research focuses.Among the m...The idea of replacing traditional silicon-based electronic components with the ones assembled by organic molecules to further scale down the electric circuits has been attracting extensive research focuses.Among the molecularly assembled components,the design of molecular logic gates with simple structure and high Boolean computing speed remains a great challenge.Here,by using the state-of-the-art nonequilibrium Green’s function theory in conjugation with first-principles method,the spin transport properties of single-molecule junctions comprised of two serially connected transition metal dibenzotetraaza[14]annulenes(TM(DBTAA),TM=Fe,Co)sandwiched between two single-walled carbon nanotube electrodes are theoretically investigated.The numerical results show a close dependence of the spin-resolved current-voltage characteristics on spin configurations between the left and right molecular kernels and the kind of TM atom in TM(DBTAA)molecule.By taking advantage of spin degree of freedom of electrons,NOR or XNOR Boolean logic gates can be realized in Fe(DBTAA)and Co(DBTAA)junctions depending on the definitions of input and output signals.This work proposes a new kind of molecular logic gates and hence is helpful for further miniaturization of the electric circuits.展开更多
Logic gates are fundamental structural components in all modern digital electronic devices. Here, nonequilibrium Green's functions are incorporated with the density functional theory to verify the thermal spin tra...Logic gates are fundamental structural components in all modern digital electronic devices. Here, nonequilibrium Green's functions are incorporated with the density functional theory to verify the thermal spin transport features of the single-molecule spintronic devices constructed by a single molecule in series or parallel connected with graphene nanoribbons electrodes. Our calculations demonstrate that the electric field can manipulate the spin-polarized current. Then, a complete set of thermal spin molecular logic gates are proposed, including AND, OR, and NOT gates. The mentioned logic gates enable different designs of complex thermal spin molecular logic functions and facilitate the electric field control of thermal spin molecular devices.展开更多
This paper briefly introduces the five types of the surgical operations in knot theory and obtains the expression of single qubit quantum logic gate in terms of these surgical operations.
基金Project supported by the National Natural Science Foundation of China(21801230,21905255)Natural Science Foundation of Shanxi Province(202203021211090)+2 种基金Young Academic Leader Supported Program of North University of China(QX201904)Shanxi Key Laboratory of Advanced Carbon Electrode Materials(202104010910019)The Key Laboratory Research Foundation of North University of China。
文摘By anchoring Tb^(3+)ions on its free carboxyl groups of the nanocaged NiMOF,a dual-emission self-calibrating sensor of Tb^(3+)@NiMOF was fabricated through coordination post-synthetic modification(PSM)strategy.With Tb^(3+)ions as the secondary fluorescent signal and sensing active sites,Tb^(3+)@NiMOF presents great potentials in visually and efficiently monitoring EPI in serum,with high sensitivity and selectivity,fast response,excellent recyclable,and the low detection limit(LOD,3.06 ng/mL).Furthermore,a tandem combinational logic gate based intelligent detection system was constructed to improve the practicability and convenience of epinephrine(EPI)detection in serum by comparing the light emitted colour with the series standard colour cards preset in the smartphone.This work provides a promising approach of developing metal-organic frameworks(MOFs)based self-calibrating sensors for intelligent detection of bioactive molecules.
基金supported by the National Natural Science Foundation of China(Nos.52273305,21975209,52025132,T2241022,21621091,22021001,and 22121001)the 111 Project(Nos.B17027,B16029)+4 种基金the Fundamental Research Funds for the Central Universities(No.20720230037)the National Science Foundation of Fujian Province of China(Nos.2022J02059,2023J05012)Natural Science Foundation of XiamenChina(No.3502Z20227010)the New Cornerstone Science Foundation through the XPLORER PRIZE。
文摘Inspired by biological ion channels,numerous artificial asymmetric ion channels have been synthesized to facilitate the fabrication of ionic circuits.Nevertheless,the creation of biomimetic asymmetric ion channels necessitates expensive scientific apparatus and intricate material processing procedures,which constrains its advancement within the realm of ionic devices.In this study,we have devised dynamic asymmetric ion channels with mechanical responsiveness by combining polymers of varying elastic modulus along the longitudinal axis of carbon nanotube fiber(CNTF).The ion rectification can be modulated via the disparate response of CNTF-based ion channels to mechanical stress.We have effectively employed these asymmetric ion channels with mechanical sensitivity in the design of a logic gate device,achieving logic operations such as“AND”and“OR”.The conception of these dynamic asymmetric ion channels with mechanical sensitivity offers a straightforward,cost-effective,and versatile approach for generating ion channels,highlighting their potential application in intricate,highly integrated ionic circuits.
基金supported by Hong Kong Research Grants Council(11307421,11301220,and 11304719)Health and Medical Research Fund(09203576 and 07181396)+2 种基金National Science Foundation of China(21574109 and 217780430)The Science and Technology Innovation Committee of Shenzhen Municipality(JCYJ20190812160203619)City University of Hong Kong 7005832 and 7006006.
文摘Stimuli-responsive DNA-based logic gates have emerged as a promising field at the intersection of synthetic biology and nanotechnology.These gates exploit the unique properties of DNA molecules to perform programmable computational operations in response to specific stimuli.This review provides a comprehensive overview of recent advancements in the design,working principles,and applications of stimuli-responsive DNA-based logic gates.The progress made in developing various types of logic gates triggered by metal ions,pH,oligonucleotides,small molecules,proteins,and light is highlighted.The applications of these logic gates in imaging and biosensing,drug delivery,synthetic biology and molecular computing are discussed.This review underscores the significant contributions and future prospects of stimuli-responsive DNA-based logic gates in advancing the field of nanotechnology.
基金the National Natural Science Foundation of China(60673127)the National High Technology Research and Development Program of China(863Program)(2007AA01Z404)~~
文摘The cascade of reversible logic gate network with n inputs and n outputs forms a group isomorphic to the symmetric group S2^n. Characteristics of a number of gates from the set of all generalized Toffoli gates are studied. Any permutation Sn is proved to be generated by a n-cycle 9 and a permutation τ= (ij,ik) together. It shows that any neighboring 2-cycle permutation can be generated by at most two NOT gates without ancilla bit. Based on the above theory, a cascade algorithm for reversible logic gate networks is proposed. A reversible example of logic gate network cascade is given to show the correctness of the algorithm.
基金supported by the National Natural Science Foundation of China (12104326,12104329 and 62105228)Natural Science Foundation of Sichuan Province (2022NSFSC2000)+3 种基金the Opening Foundation of State Key Laboratory of Optical Technologies on Nano-Fabrication and MicroEngineeringfunding by Deutsche Forschungsgemeinschaft (DFG,German Research Foundation) under Germany’s Excellence Strategy–EXC 2089/1–390776260 (e-conversion)the context of the Bavarian Collaborative Research Project Solar Technologies Go Hybrid (SolTech)the support from the China Scholarship Council (CSC)
文摘Optical logic gates play important roles in all-optical logic circuits,which lie at the heart of the next-generation optical computing technology.However,the intrinsic contradiction between compactness and robustness hinders the development in this field.Here,we propose a simple design principle that can possess multiple-input-output states according to the incident circular polarization and direction based on the metasurface doublet,which enables controlled-NOT logic gates in infrared region.Therefore,the directional asymmetric electromagnetic transmission can be achieved.As a proof of concept,a spin-dependent Janus metasurface is designed and experimentally verified that four distinct images corresponding to four input states can be captured in the far-field.In addition,since the design method is derived from geometric optics,it can be easily applied to other spectra.We believe that the proposed metasurface doublet may empower many potential applications in chiral imaging,chiroptical spectroscopy and optical computing.
文摘We present a scheme to realize the basic two-qubit logic gates such as the quantum phase gate and SWAP gate using a detuned microwave cavity interacting with three-level superconducting-quantum-interference-device (SQUID) qubit(s), by placing SQUID(s) in a two-mode microwave cavity and using adiabatic passage methods. In this scheme, the two logical states of the qubit are represented by the two lowest levels of the SQUID, and the cavity fields are treated as quantized. Compared with the previous method, the complex procedures of adjusting tile level spacing of the SQUID and applying the resonant microwave pulse to the SQUID to create transformation are not required. Based on superconducting device with relatively long decoherence time and simplified operation procedure, the gates operate at a high speed, which is important in view of decoherence.
基金National Natural Science Foundation of China (Nos.21921003 and 21672042) for financial support。
文摘We report supramolecular AND logic gates based on host-vip complexation between acid-labile acyclic cucurbit[n]uril(CB[n]) molecular container and Na Cl O-responsive dye. Supramolecular AND logic gate is turned on due to acid-triggered degradation of molecular container and the release of the dye, followed by Na Cl O-induced fluorescence “switch on” effect of the dye. The reason for AND molecular logic gate is discovered to be the combination of oxidation inhibition and fluorescence “switch off” effect. Supramolecular AND logic gate is confirmed to be operational in live MCF-7 and He La cancer cells.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.22075044 and 21574021)the Natural Science Foundation of Fujian Provinee(No.2018J01670)+1 种基金Educational Commission of Fujian Province(No.JAT170129)the Scientific Research Starting Foundation for researchers with PhD of Fujian Normal University.
文摘Solid-stated smart polymers responsive to external stimuli have attracted much attention for potential application in the field of photoelectron devices,logic gates,sensor,data storage and security.However,it is a bigger challenge for polymers than that for small molecules in solid state to acquire stimuli-responsive properties,because polymers with high molecular weight are not as easy to change the packing structure as small molecules under external stimulation.Here,a D-A type alternating copolymer PTMF-o containing 3,4-bisthienylmaleimide(A unit)and fluorene(D unit)is designed and synthesized.Upon irradiation of sunlight,PTMF-o film exhibits a photo-response with the color altering from purple to colorless.It is attributed to the structure of copolymer transformed from ring-opening form(PTMF-o)to ring-closure form(PTMF-c),resulting from the oxidative photocyclization of 3,4-bisthienylmaleimide unit.Consequently,the ability of charge transfer(CT)from fluorene to 3,4-bisthienylmaleimide unit in PTMF-o can be easily weakened by light stimuli.PTMF-o film displays a WORM-type resistive storage performance for the strong CT.Interestingly,after exposure,the electrical memory behavior in situ transfers into FLASH type,due to weak CT in PTMF-c.PTMF-o film can also be employed as smart material to construct NAND and NOR logic gates by using light as input condition.The work provides a simple way to modify the electronic properties of polymers and realize stimuli-response in solid states.
基金Project supported by the National Natural Science Foundation of China(Grant No.61475120)the Innovative Projects in Guangdong Colleges and Universities,China(Grant Nos.2014KTSCX134 and 2015KTSCX146)
文摘Using the dynamical properties of the polarization bistability that depends on the detuning of the injected light,we propose a novel approach to implement reliable all-optical stochastic logic gates in the cascaded vertical cavity surface emitting lasers(VCSELs) with optical-injection.Here,two logic inputs are encoded in the detuning of the injected light from a tunable CW laser.The logic outputs are decoded from the two orthogonal polarization lights emitted from the optically injected VCSELs.For the same logic inputs,under electro-optic modulation,we perform various digital signal processing(NOT,AND,NAND,XOR,XNOR,OR,NOR) in the all-optical domain by controlling the logic operation of the applied electric field.Also we explore their delay storages by using the mechanism of the generalized chaotic synchronization.To quantify the reliabilities of these logic gates,we further demonstrate their success probabilities.
基金supported by the National Key Research and Development Program of China(Grants No.2021YFA1401500)the National Natural Science Foundation of China(12022416)+3 种基金the Department of Natural Resources of Guangdong Province(No.GDNRC[2022]22)Department of Science and Technology of Guangdong Province(No.2021A0505080002)Intelligent Laser Basic Research Laboratory(No.PCL2021A14-B1)the Hong Kong Research Grants Council(16306220).
文摘Optical computing and optical neural network have gained increasing attention in recent years because of their potential advantages of parallel processing at the speed of light and low power consumption by comparison with electronic computing.The optical implementation of the fundamental building blocks of a digital computer,i.e.logic gates,has been investigated extensively in the past few decades.Optical logic gate computing is an alternative approach to various analogue optical computing architectures.In this paper,the latest development of optical logic gate computing with different kinds of implementations is reviewed.Firstly,the basic concepts of analogue and digital computing with logic gates in the electronic and optical domains are introduced.And then a comprehensive summary of various optical logic gate schemes including spatial encoding of light field,semiconductor optical amplifiers(SOA),highly nonlinear fiber(HNLF),microscale and nanoscale waveguides,and photonic crystal structures is presented.To conclude,the formidable challenges in developing practical all-optical logic gates are analyzed and the prospects of the future are discussed.
文摘In this paper, the response time of all-optical AND logic gate using the triangular photonic crystal lattice is investigated. The proposed logic gate consists of a photonic crystal nano-resonator formed by changing the size of the dielectric rods. The structure benefits the interference effect mechanism. The contrast ratio of the photonic crystal AND logic gate is obtained as 6 d B. In addition to simplicity, the designed nano-resonator increases the bit rate of logic gate. The delay time and footprint of logic gate are respectively 0.32 ps and 146 μm2. The proposed photonic crystal AND logic gate can operate at a bit rate of 3.12 Tbit/s。
基金The project supported by National Natural Science Foundation of China under Grant No. 10325523the National Fundamental Research Program of China under Grant No. 2001CB309310the Scientific Research Fund of the Education Department of Hunan Province under Grant No. 06C354
文摘We propose a scheme for generating Bell states involving two SQUID-based charge qubits by coupling themto a nanomechanical resonator.We also show that it is possible to implement a two-qubit logic gate between the twocharge qubits by choosing carefully the interaction time.
基金supported by the Doctoral Foundation of the Ministry of Education of China(Grant No 20070386002)
文摘A scheme is presented for realizing quantum logic gates for two atoms localized in two distant optical cavities. Our scheme works in a regime in which the atom-cavity coupling strength is smaller than the cavity decay rate. Thus the requirement on the quality factor of the cavities is greatly relaxed. Furthermore, the fidelity of our scheme is not affected by detection inefficiency and atomic decay. These advantages are important in view of experiment.
基金support from the National Natural Science Foundation of China (Grant Nos.51771127,52171188,and 52111530143)the Central Government Funds of Guiding Local Scientific and Technological Development for Sichuan Province,China (Grant No.2021ZYD0025)+7 种基金supported by JSPS KAKENHI (Grant No.JP22F22061)support from Guangdong Basic and Applied Basic Research Foundation (Grant No.2021B1515120047)Guangdong Special Support Project (Grant No.2019BT02X030)Shenzhen Fundamental Research Fund (Grant No.JCYJ20210324120213037)Shenzhen Peacock Group Plan (No.KQTD20180413181702403)Pearl River Recruitment Program of Talents (Grant No.2017GC010293)the National Natural Science Foundation of China (Grant Nos.11974298 and 61961136006)support from the Grantsin-Aid Scientific Research from JSPS KAKENHI (Grant Nos.JP20F20363,JP21H01364,and JP21K18872)。
文摘Skyrmions in synthetic antiferromagnetic(SAF) systems have attracted much attention in recent years due to their superior stability, high-speed mobility, and completely compensated skyrmion Hall effect. They are promising building blocks for the next generation of magnetic storage and computing devices with ultra-low energy and ultra-high density.Here, we theoretically investigate the motion of a skyrmion in an SAF bilayer racetrack and find the velocity of a skyrmion can be controlled jointly by the edge effect and the driving force induced by the spin current. Furthermore, we propose a logic gate that can realize different logic functions of logic AND, OR, NOT, NAND, NOR, and XOR gates. Several effects including the spin–orbit torque, the skyrmion Hall effect, skyrmion–skyrmion repulsion, and skyrmion–edge interaction are considered in this design. Our work may provide a way to utilize the SAF skyrmion as a versatile information carrier for future energy-efficient logic gates.
基金Project supported by the National Key Research and Development Program of the Ministry of Science and Technology of China(Grant No.2022YFA1404201)the National Natural Science Foundation of China(Grant No.11904255)the Key Research and Development Program of Shanxi Province(International Cooperation)(Grant No.201903D421052).
文摘For all-optical communication and information processing,it is necessary to develop all-optical logic gates based on photonic structures that can directly perform logic operations.All-optical logic gates have been demonstrated based on conventional waveguides and interferometry,as well as photonic crystal structures.Nonetheless,any defects in those structures will introduce high scattering loss,which compromises the fidelity and contrast ratio of the information process.Based on the spin-valley locking effect that can achieve defect-immune unidirectional transmission of topological edge states in valley photonic crystals(VPCs),we propose a high-performance all-optical logic OR gate based on a VPC structure.By tuning the working bandwidth of the two input channels,we prevent interference between the two channels to achieve a stable and high-fidelity output.The transmittance of both channels is higher than 0.8,and a high contrast ratio of 28.8 dB is achieved.Moreover,the chirality of the logic gate originated from the spin-valley locking effect allows using different circularly polarized light as inputs,representing“1”or“0”,which is highly desired in quantum computing.The device’s footprint is 18μm×12μm,allowing high-density on-chip integration.In addition,this design can be experimentally fabricated using current nanofabrication techniques and will have potential applications in optical communication,information processing,and quantum computing.
基金The project supported by Fok Ying Tung Education Foundation under Grant No.81008+4 种基金National Natural Science Foundation of China under Grant No.60008003Natural Science Foundation of Fujian Province of China under Grant Nos.K20004 and F0110027the Funds from Fuzhou University
文摘We propose a simple and fast scheme to realize a controlled-NOT gate between two trapped ions using a resonant laser pulse. Our scheme allows the Rabi frequency of the laser field to be of the order of the vibrational frequency and thus the time required to complete the operation is greatly shortened, which is of importance in view of decoherence.
基金Project supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2021MA059)the Major Scientific and Technological Innovation Project(MSTIP)of Shandong Province,China(Grant No.2019JZZY010209)。
文摘Based on the density functional theory combined with the nonequilibrium Green function methodology,we have studied the thermally-driven spin-dependent transport properties of a combinational molecular junction consisting of a planar four-coordinate Fe molecule and a 15,16-dinitrile dihydropyrene/cyclophanediene molecule,with single-walled carbon nanotube bridge and electrode.Our results show that the magnetic field and light can effectively regulate the thermallydriven spin-dependent currents.Perfect thermal spin-filtering effect and good thermal switching effect are realized.The results are explained by the Fermi-Dirac distribution function,the spin-resolved transmission spectra,the spatial distribution of molecular projected self-consistent Hamiltonian orbitals,and the spin-resolved current spectra.On the basis of these thermally-driven spin-dependent transport properties,we have further designed three basic thermal spin molecular AND,OR,and NOT gates.
基金National Natural Science Foundation of China(Grant Nos.11874242,21933002,and 11704230)China Postdoctoral Science Foundation(Grant No.2017M612321)the Taishan Scholar Project of Shandong Province of China.
文摘The idea of replacing traditional silicon-based electronic components with the ones assembled by organic molecules to further scale down the electric circuits has been attracting extensive research focuses.Among the molecularly assembled components,the design of molecular logic gates with simple structure and high Boolean computing speed remains a great challenge.Here,by using the state-of-the-art nonequilibrium Green’s function theory in conjugation with first-principles method,the spin transport properties of single-molecule junctions comprised of two serially connected transition metal dibenzotetraaza[14]annulenes(TM(DBTAA),TM=Fe,Co)sandwiched between two single-walled carbon nanotube electrodes are theoretically investigated.The numerical results show a close dependence of the spin-resolved current-voltage characteristics on spin configurations between the left and right molecular kernels and the kind of TM atom in TM(DBTAA)molecule.By taking advantage of spin degree of freedom of electrons,NOR or XNOR Boolean logic gates can be realized in Fe(DBTAA)and Co(DBTAA)junctions depending on the definitions of input and output signals.This work proposes a new kind of molecular logic gates and hence is helpful for further miniaturization of the electric circuits.
基金the Natioanl Natural Science Foundation of China (Grant No. 11864011)in part by Youth Project of Scientific and technological Research Program of Chongqing Education Commission (Grant No. KJQN202101204)。
文摘Logic gates are fundamental structural components in all modern digital electronic devices. Here, nonequilibrium Green's functions are incorporated with the density functional theory to verify the thermal spin transport features of the single-molecule spintronic devices constructed by a single molecule in series or parallel connected with graphene nanoribbons electrodes. Our calculations demonstrate that the electric field can manipulate the spin-polarized current. Then, a complete set of thermal spin molecular logic gates are proposed, including AND, OR, and NOT gates. The mentioned logic gates enable different designs of complex thermal spin molecular logic functions and facilitate the electric field control of thermal spin molecular devices.
文摘This paper briefly introduces the five types of the surgical operations in knot theory and obtains the expression of single qubit quantum logic gate in terms of these surgical operations.