Three groups of dynamic triaxial tests were performed for saturated Nanjing fine sand subjected to uniform cyclic loading. The tested curves of the excess pore water pressure (EPWP) ratio variation with the ratio of...Three groups of dynamic triaxial tests were performed for saturated Nanjing fine sand subjected to uniform cyclic loading. The tested curves of the excess pore water pressure (EPWP) ratio variation with the ratio of the number of cycles are provided. The concept of the EPWP increment ratio is introduced and two new concepts of the effective dynamic shear stress ratio and the log decrement of effective stress are defined. It is found that the development of the EPWP increment ratio can be divided into three stages: descending, stable and ascending. Furthermore, at the stable and ascending stages, a satisfactory linear relationship is obtained between the accumulative EPWP increment ratio and natural logarithm of the effective dynamic shear stress ratio. Accordingly, the EPWP increment ratio at the number of cycles N has been deduced that is proportional to the log decrement of effective stress at the cycle number N-l, but is independent of the cyclic stress amplitude. Based on the analysis, a new EPWP increment model for saturated Nanjing fine sand is developed from tested data fitting, which provides a better prediction of the curves of EPWP generation, the number of cycles required for initial liquefaction and the liquefaction resistance.展开更多
Vibration behaviors of bogie hunting motion contain key information that dominates the dynamic performance of rail vehicles,in which the eigenvalue of each mode reflects the damping ratio and the natural frequency.Thi...Vibration behaviors of bogie hunting motion contain key information that dominates the dynamic performance of rail vehicles,in which the eigenvalue of each mode reflects the damping ratio and the natural frequency.This paper focuses on the root loci curves of bogie hunting motion,starting from a rigid bogie,then to a bogie with flexible primary suspension.With regard to the rigid bogie,analytical formulas for the eigenvalues,the critical speed as well as the corresponding hunting frequency are derived and verified.While for the flexible bogie,the root loci curves are calculated numerically.The study shows that both free rigid bogie and free wheelset are dynamically unstable at any speed.The critical speed increases with diminished wheel-rail conicity,track gauge,and wheelset and bogie inertia,and with increased wheelbase and wheel radius.The dominating factors such as the stiffness of the primary suspension and the wheel-rail conicity should be optimized for a practical design.The influences of the damping coefficients and the variations of creep coefficients are negligible.The motor suspension affects the root loci curves and the critical speed significantly.Both inappropriate motor suspension design and rigidly suspended motor reduce the critical speed.The increase of critical speed by a motor suspension can only be achieved when the lower natural frequency of the motor-bogie frame-wheelsets system coincides with or is close to the hunting frequency.Special care should be taken for the design of motor suspension,the first is to avoid the decreased damping ratio in a certain speed range below the critical speed and the second is that the variations of parameters should not induce the rapid reduction of the critical speed.The main feature of the present study is that the root loci curves,which are derived as analytical formulas or calculated numerically,are used to study the vibrational behaviors of bogie hunting motion.Both the influencing laws of the dominating parameters and the principles regarding the motor suspension are significant for the stability design of modem railway vehicles which may use innovative structures/materials as well as modem control and monitoring technologies.展开更多
Destructions at Fukushima Daiichi NPP (nuclear power plant) caused by earthquake have shown that design level of seismic influences on the equipment has been exceeded. The accident demonstrated the need for stricter...Destructions at Fukushima Daiichi NPP (nuclear power plant) caused by earthquake have shown that design level of seismic influences on the equipment has been exceeded. The accident demonstrated the need for stricter regulations to ensure the seismic resistance of NPP and the need to develop and implement additional anti-seismic procedures in the course of their operation. To proof seismic reliability of NPP systems and components must be made special studies of logarithmic decrement of systems NPP and components. The correct definition of coolant thermodynamics parameters and acoustic parameters are necessary to evaluate logarithmic decrement of coolant systems NPP and their components and consequently for providing of NPP seismic reliability. The proof of presence of a gas phase in the coolant inside reactor is of great importance for practice because of its influence on coolant acoustical parameters and consequently on range of frequency of seismic-acoustical resonance type interaction. Results are obtained by using of known methods in oscillation theory, general acoustics, thermodynamic, electro-mechanical analogies. As well as using experimental data obtained from the vibration dynamical controls reactor WWER-1000.展开更多
基金Key Research Project of National Natural Science Foundation of China Under Grant No.90715018National Basic Research Program of China Under Grant No.2007CB714200the Special Fund for the Commonweal Industry of China Under Grant No.200808022
文摘Three groups of dynamic triaxial tests were performed for saturated Nanjing fine sand subjected to uniform cyclic loading. The tested curves of the excess pore water pressure (EPWP) ratio variation with the ratio of the number of cycles are provided. The concept of the EPWP increment ratio is introduced and two new concepts of the effective dynamic shear stress ratio and the log decrement of effective stress are defined. It is found that the development of the EPWP increment ratio can be divided into three stages: descending, stable and ascending. Furthermore, at the stable and ascending stages, a satisfactory linear relationship is obtained between the accumulative EPWP increment ratio and natural logarithm of the effective dynamic shear stress ratio. Accordingly, the EPWP increment ratio at the number of cycles N has been deduced that is proportional to the log decrement of effective stress at the cycle number N-l, but is independent of the cyclic stress amplitude. Based on the analysis, a new EPWP increment model for saturated Nanjing fine sand is developed from tested data fitting, which provides a better prediction of the curves of EPWP generation, the number of cycles required for initial liquefaction and the liquefaction resistance.
基金supported by the National Natural Science Foundation of China(Grant Nos.51805452,and 51935002)the Independent Research Project of State Key Laboratory of Traction Power(Grant No.2020TPL-T02).
文摘Vibration behaviors of bogie hunting motion contain key information that dominates the dynamic performance of rail vehicles,in which the eigenvalue of each mode reflects the damping ratio and the natural frequency.This paper focuses on the root loci curves of bogie hunting motion,starting from a rigid bogie,then to a bogie with flexible primary suspension.With regard to the rigid bogie,analytical formulas for the eigenvalues,the critical speed as well as the corresponding hunting frequency are derived and verified.While for the flexible bogie,the root loci curves are calculated numerically.The study shows that both free rigid bogie and free wheelset are dynamically unstable at any speed.The critical speed increases with diminished wheel-rail conicity,track gauge,and wheelset and bogie inertia,and with increased wheelbase and wheel radius.The dominating factors such as the stiffness of the primary suspension and the wheel-rail conicity should be optimized for a practical design.The influences of the damping coefficients and the variations of creep coefficients are negligible.The motor suspension affects the root loci curves and the critical speed significantly.Both inappropriate motor suspension design and rigidly suspended motor reduce the critical speed.The increase of critical speed by a motor suspension can only be achieved when the lower natural frequency of the motor-bogie frame-wheelsets system coincides with or is close to the hunting frequency.Special care should be taken for the design of motor suspension,the first is to avoid the decreased damping ratio in a certain speed range below the critical speed and the second is that the variations of parameters should not induce the rapid reduction of the critical speed.The main feature of the present study is that the root loci curves,which are derived as analytical formulas or calculated numerically,are used to study the vibrational behaviors of bogie hunting motion.Both the influencing laws of the dominating parameters and the principles regarding the motor suspension are significant for the stability design of modem railway vehicles which may use innovative structures/materials as well as modem control and monitoring technologies.
文摘Destructions at Fukushima Daiichi NPP (nuclear power plant) caused by earthquake have shown that design level of seismic influences on the equipment has been exceeded. The accident demonstrated the need for stricter regulations to ensure the seismic resistance of NPP and the need to develop and implement additional anti-seismic procedures in the course of their operation. To proof seismic reliability of NPP systems and components must be made special studies of logarithmic decrement of systems NPP and components. The correct definition of coolant thermodynamics parameters and acoustic parameters are necessary to evaluate logarithmic decrement of coolant systems NPP and their components and consequently for providing of NPP seismic reliability. The proof of presence of a gas phase in the coolant inside reactor is of great importance for practice because of its influence on coolant acoustical parameters and consequently on range of frequency of seismic-acoustical resonance type interaction. Results are obtained by using of known methods in oscillation theory, general acoustics, thermodynamic, electro-mechanical analogies. As well as using experimental data obtained from the vibration dynamical controls reactor WWER-1000.