A distributed turbo codes( DTC) scheme with log likelihood ratio( LLR)-based threshold at the relay for a two-hop relay networks is proposed. Different from traditional DTC schemes,the retransmission scheme at the...A distributed turbo codes( DTC) scheme with log likelihood ratio( LLR)-based threshold at the relay for a two-hop relay networks is proposed. Different from traditional DTC schemes,the retransmission scheme at the relay,where imperfect decoding occurs,is considered in the proposed scheme. By employing a LLR-based threshold at the relay in the proposed scheme,the reliability of decoder-LLRs can be measured. As a result,only reliable symbols will be forwarded to the destination and a maximum ratio combiner( MRC) is used to combine signals received from both the source and the relay. In order to obtain the optimal threshold at the relay,an equivalent model of decoderLLRs is investigated,so as to derive the expression of the bit error probability( BEP) of the proposed scheme under binary phase shift keying( BPSK) modulation. Simulation results demonstrate that the proposed scheme can effectively mitigate error propagation at the relay and also outperforms other existing methods.展开更多
Due to differences in the distribution of scores for different trials, the performance of a speaker verification system will be seriously diminished if raw scores are directly used for detection with a unified thresho...Due to differences in the distribution of scores for different trials, the performance of a speaker verification system will be seriously diminished if raw scores are directly used for detection with a unified threshold value. As such, the scores must be normalized. To tackle the shortcomings of score normalization methods, we propose a speaker verification system based on log-likelihood normalization (LLN). Without a priori knowledge, LLN increases the separation between scores of target and non-target speaker models, so as to improve score aliasing of “same-speaker” and “different-speaker” trials corresponding to the same test speech, enabling better discrimination and decision capability. The experiment shows that LLN is an effective method of scoring normalization.展开更多
Medical research data are often skewed and heteroscedastic. It has therefore become practice to log-transform data in regression analysis, in order to stabilize the variance. Regression analysis on log-transformed dat...Medical research data are often skewed and heteroscedastic. It has therefore become practice to log-transform data in regression analysis, in order to stabilize the variance. Regression analysis on log-transformed data estimates the relative effect, whereas it is often the absolute effect of a predictor that is of interest. We propose a maximum likelihood (ML)-based approach to estimate a linear regression model on log-normal, heteroscedastic data. The new method was evaluated with a large simulation study. Log-normal observations were generated according to the simulation models and parameters were estimated using the new ML method, ordinary least-squares regression (LS) and weighed least-squares regression (WLS). All three methods produced unbiased estimates of parameters and expected response, and ML and WLS yielded smaller standard errors than LS. The approximate normality of the Wald statistic, used for tests of the ML estimates, in most situations produced correct type I error risk. Only ML and WLS produced correct confidence intervals for the estimated expected value. ML had the highest power for tests regarding β1.展开更多
Fisher [1] proposed a simple method to combine p-values from independent investigations without using detailed information of the original data. In recent years, likelihood-based asymptotic methods have been developed...Fisher [1] proposed a simple method to combine p-values from independent investigations without using detailed information of the original data. In recent years, likelihood-based asymptotic methods have been developed to produce highly accurate p-values. These likelihood-based methods generally required the likelihood function and the standardized maximum likelihood estimates departure calculated in the canonical parameter scale. In this paper, a method is proposed to obtain a p-value by combining the likelihood functions and the standardized maximum likelihood estimates departure of independent investigations for testing a scalar parameter of interest. Examples are presented to illustrate the application of the proposed method and simulation studies are performed to compare the accuracy of the proposed method with Fisher’s method.展开更多
A crowdsourcing experiment in which viewers (the “crowd”) of a British Broadcasting Corporation (BBC) television show submitted estimates of the number of coins in a tumbler was shown in an antecedent paper (Part 1)...A crowdsourcing experiment in which viewers (the “crowd”) of a British Broadcasting Corporation (BBC) television show submitted estimates of the number of coins in a tumbler was shown in an antecedent paper (Part 1) to follow a log-normal distribution ∧(m,s2). The coin-estimation experiment is an archetype of a broad class of image analysis and object counting problems suitable for solution by crowdsourcing. The objective of the current paper (Part 2) is to determine the location and scale parameters (m,s) of ∧(m,s2) by both Bayesian and maximum likelihood (ML) methods and to compare the results. One outcome of the analysis is the resolution, by means of Jeffreys’ rule, of questions regarding the appropriate Bayesian prior. It is shown that Bayesian and ML analyses lead to the same expression for the location parameter, but different expressions for the scale parameter, which become identical in the limit of an infinite sample size. A second outcome of the analysis concerns use of the sample mean as the measure of information of the crowd in applications where the distribution of responses is not sought or known. In the coin-estimation experiment, the sample mean was found to differ widely from the mean number of coins calculated from ∧(m,s2). This discordance raises critical questions concerning whether, and under what conditions, the sample mean provides a reliable measure of the information of the crowd. This paper resolves that problem by use of the principle of maximum entropy (PME). The PME yields a set of equations for finding the most probable distribution consistent with given prior information and only that information. If there is no solution to the PME equations for a specified sample mean and sample variance, then the sample mean is an unreliable statistic, since no measure can be assigned to its uncertainty. Parts 1 and 2 together demonstrate that the information content of crowdsourcing resides in the distribution of responses (very often log-normal in form), which can be obtained empirically or by appropriate modeling.展开更多
In this paper, we propose a log-normal linear model whose errors are first-order correlated, and suggest a two-stage method for the efficient estimation of the conditional mean of the response variable at the original...In this paper, we propose a log-normal linear model whose errors are first-order correlated, and suggest a two-stage method for the efficient estimation of the conditional mean of the response variable at the original scale. We obtain two estimators which minimize the asymptotic mean squared error (MM) and the asymptotic bias (MB), respectively. Both the estimators are very easy to implement, and simulation studies show that they are perform better.展开更多
The aim of this paper is to present generalized log-Lindely (GLL) distribution, as a new model, and find doubly truncated generalized log-Lindely (DTGLL) distribution, truncation in probability distributions may occur...The aim of this paper is to present generalized log-Lindely (GLL) distribution, as a new model, and find doubly truncated generalized log-Lindely (DTGLL) distribution, truncation in probability distributions may occur in many studies such as life testing, and reliability. We illustrate the applicability of GLL and DTGLL distributions by Real data application. The GLL distribution can handle the risk rate functions in the form of panich and increase. This property makes GLL useful in survival analysis. Various statistical and reliability measures are obtained for the model, including hazard rate function, moments, moment generating function, mean and variance, quantiles function, Skewness and kurtosis, mean deviations, mean inactivity time and strong mean inactivity time. The estimation of model parameters is justified by the maximum Likelihood method. An application to real data shows that DTGLL distribution can provide better suitability than GLL and some other known distributions.展开更多
The adjacent-categories, continuation-ratio and proportional odds logit-link regression models provide useful extensions of the multinomial logistic model to ordinal response data. We propose fitting these models with...The adjacent-categories, continuation-ratio and proportional odds logit-link regression models provide useful extensions of the multinomial logistic model to ordinal response data. We propose fitting these models with a logarithmic link to allow estimation of different forms of the risk ratio. Each of the resulting ordinal response log-link models is a constrained version of the log multinomial model, the log-link counterpart of the multinomial logistic model. These models can be estimated using software that allows the user to specify the log likelihood as the objective function to be maximized and to impose constraints on the parameter estimates. In example data with a dichotomous covariate, the unconstrained models produced valid coefficient estimates and standard errors, and the constrained models produced plausible results. Models with a single continuous covariate performed well in data simulations, with low bias and mean squared error on average and appropriate confidence interval coverage in admissible solutions. In an application to real data, practical aspects of the fitting of the models are investigated. We conclude that it is feasible to obtain adjusted estimates of the risk ratio for ordinal outcome data.展开更多
Clustered survival data are widely observed in a variety of setting. Most survival models incorporate clustering and grouping of data accounting for between-cluster variability that creates correlation in order to pre...Clustered survival data are widely observed in a variety of setting. Most survival models incorporate clustering and grouping of data accounting for between-cluster variability that creates correlation in order to prevent underestimate of the standard errors of the parameter estimators but do not include random effects. In this study, we developed a mixed-effect parametric proportional hazard (MEPPH) model with a generalized log-logistic distribution baseline. The parameters of the model were estimated by the application of the maximum likelihood estimation technique with an iterative optimization procedure (quasi-Newton Raphson). The developed MEPPH model’s performance was evaluated using Monte Carlo simulation. The Leukemia dataset with right-censored data was used to demonstrate the model’s applicability. The results revealed that all covariates, except age in PH models, were significant in all considered distributions. Age and Townsend score were significant when the GLL distribution was used in MEPPH, while sex, age and Townsend score were significant in MEPPH model when other distributions were used. Based on information criteria values, the Generalized Log-Logistic Mixed-Effects Parametric Proportional Hazard model (GLL-MEPPH) outperformed other models.展开更多
文摘A distributed turbo codes( DTC) scheme with log likelihood ratio( LLR)-based threshold at the relay for a two-hop relay networks is proposed. Different from traditional DTC schemes,the retransmission scheme at the relay,where imperfect decoding occurs,is considered in the proposed scheme. By employing a LLR-based threshold at the relay in the proposed scheme,the reliability of decoder-LLRs can be measured. As a result,only reliable symbols will be forwarded to the destination and a maximum ratio combiner( MRC) is used to combine signals received from both the source and the relay. In order to obtain the optimal threshold at the relay,an equivalent model of decoderLLRs is investigated,so as to derive the expression of the bit error probability( BEP) of the proposed scheme under binary phase shift keying( BPSK) modulation. Simulation results demonstrate that the proposed scheme can effectively mitigate error propagation at the relay and also outperforms other existing methods.
文摘Due to differences in the distribution of scores for different trials, the performance of a speaker verification system will be seriously diminished if raw scores are directly used for detection with a unified threshold value. As such, the scores must be normalized. To tackle the shortcomings of score normalization methods, we propose a speaker verification system based on log-likelihood normalization (LLN). Without a priori knowledge, LLN increases the separation between scores of target and non-target speaker models, so as to improve score aliasing of “same-speaker” and “different-speaker” trials corresponding to the same test speech, enabling better discrimination and decision capability. The experiment shows that LLN is an effective method of scoring normalization.
文摘Medical research data are often skewed and heteroscedastic. It has therefore become practice to log-transform data in regression analysis, in order to stabilize the variance. Regression analysis on log-transformed data estimates the relative effect, whereas it is often the absolute effect of a predictor that is of interest. We propose a maximum likelihood (ML)-based approach to estimate a linear regression model on log-normal, heteroscedastic data. The new method was evaluated with a large simulation study. Log-normal observations were generated according to the simulation models and parameters were estimated using the new ML method, ordinary least-squares regression (LS) and weighed least-squares regression (WLS). All three methods produced unbiased estimates of parameters and expected response, and ML and WLS yielded smaller standard errors than LS. The approximate normality of the Wald statistic, used for tests of the ML estimates, in most situations produced correct type I error risk. Only ML and WLS produced correct confidence intervals for the estimated expected value. ML had the highest power for tests regarding β1.
文摘Fisher [1] proposed a simple method to combine p-values from independent investigations without using detailed information of the original data. In recent years, likelihood-based asymptotic methods have been developed to produce highly accurate p-values. These likelihood-based methods generally required the likelihood function and the standardized maximum likelihood estimates departure calculated in the canonical parameter scale. In this paper, a method is proposed to obtain a p-value by combining the likelihood functions and the standardized maximum likelihood estimates departure of independent investigations for testing a scalar parameter of interest. Examples are presented to illustrate the application of the proposed method and simulation studies are performed to compare the accuracy of the proposed method with Fisher’s method.
文摘A crowdsourcing experiment in which viewers (the “crowd”) of a British Broadcasting Corporation (BBC) television show submitted estimates of the number of coins in a tumbler was shown in an antecedent paper (Part 1) to follow a log-normal distribution ∧(m,s2). The coin-estimation experiment is an archetype of a broad class of image analysis and object counting problems suitable for solution by crowdsourcing. The objective of the current paper (Part 2) is to determine the location and scale parameters (m,s) of ∧(m,s2) by both Bayesian and maximum likelihood (ML) methods and to compare the results. One outcome of the analysis is the resolution, by means of Jeffreys’ rule, of questions regarding the appropriate Bayesian prior. It is shown that Bayesian and ML analyses lead to the same expression for the location parameter, but different expressions for the scale parameter, which become identical in the limit of an infinite sample size. A second outcome of the analysis concerns use of the sample mean as the measure of information of the crowd in applications where the distribution of responses is not sought or known. In the coin-estimation experiment, the sample mean was found to differ widely from the mean number of coins calculated from ∧(m,s2). This discordance raises critical questions concerning whether, and under what conditions, the sample mean provides a reliable measure of the information of the crowd. This paper resolves that problem by use of the principle of maximum entropy (PME). The PME yields a set of equations for finding the most probable distribution consistent with given prior information and only that information. If there is no solution to the PME equations for a specified sample mean and sample variance, then the sample mean is an unreliable statistic, since no measure can be assigned to its uncertainty. Parts 1 and 2 together demonstrate that the information content of crowdsourcing resides in the distribution of responses (very often log-normal in form), which can be obtained empirically or by appropriate modeling.
基金The NSF(11271155) of ChinaResearch Fund(20070183023) for the Doctoral Program of Higher Education
文摘In this paper, we propose a log-normal linear model whose errors are first-order correlated, and suggest a two-stage method for the efficient estimation of the conditional mean of the response variable at the original scale. We obtain two estimators which minimize the asymptotic mean squared error (MM) and the asymptotic bias (MB), respectively. Both the estimators are very easy to implement, and simulation studies show that they are perform better.
文摘The aim of this paper is to present generalized log-Lindely (GLL) distribution, as a new model, and find doubly truncated generalized log-Lindely (DTGLL) distribution, truncation in probability distributions may occur in many studies such as life testing, and reliability. We illustrate the applicability of GLL and DTGLL distributions by Real data application. The GLL distribution can handle the risk rate functions in the form of panich and increase. This property makes GLL useful in survival analysis. Various statistical and reliability measures are obtained for the model, including hazard rate function, moments, moment generating function, mean and variance, quantiles function, Skewness and kurtosis, mean deviations, mean inactivity time and strong mean inactivity time. The estimation of model parameters is justified by the maximum Likelihood method. An application to real data shows that DTGLL distribution can provide better suitability than GLL and some other known distributions.
文摘The adjacent-categories, continuation-ratio and proportional odds logit-link regression models provide useful extensions of the multinomial logistic model to ordinal response data. We propose fitting these models with a logarithmic link to allow estimation of different forms of the risk ratio. Each of the resulting ordinal response log-link models is a constrained version of the log multinomial model, the log-link counterpart of the multinomial logistic model. These models can be estimated using software that allows the user to specify the log likelihood as the objective function to be maximized and to impose constraints on the parameter estimates. In example data with a dichotomous covariate, the unconstrained models produced valid coefficient estimates and standard errors, and the constrained models produced plausible results. Models with a single continuous covariate performed well in data simulations, with low bias and mean squared error on average and appropriate confidence interval coverage in admissible solutions. In an application to real data, practical aspects of the fitting of the models are investigated. We conclude that it is feasible to obtain adjusted estimates of the risk ratio for ordinal outcome data.
文摘Clustered survival data are widely observed in a variety of setting. Most survival models incorporate clustering and grouping of data accounting for between-cluster variability that creates correlation in order to prevent underestimate of the standard errors of the parameter estimators but do not include random effects. In this study, we developed a mixed-effect parametric proportional hazard (MEPPH) model with a generalized log-logistic distribution baseline. The parameters of the model were estimated by the application of the maximum likelihood estimation technique with an iterative optimization procedure (quasi-Newton Raphson). The developed MEPPH model’s performance was evaluated using Monte Carlo simulation. The Leukemia dataset with right-censored data was used to demonstrate the model’s applicability. The results revealed that all covariates, except age in PH models, were significant in all considered distributions. Age and Townsend score were significant when the GLL distribution was used in MEPPH, while sex, age and Townsend score were significant in MEPPH model when other distributions were used. Based on information criteria values, the Generalized Log-Logistic Mixed-Effects Parametric Proportional Hazard model (GLL-MEPPH) outperformed other models.