The original idea and shaping principle of locus shaping method for processing the aspheric optical parts are introduced, and the partial structure of the machine tool designed is described. The method has the advanta...The original idea and shaping principle of locus shaping method for processing the aspheric optical parts are introduced, and the partial structure of the machine tool designed is described. The method has the advantage of high efficiency and low cost compared to the numerical control method. And it is proven that the method is feasible.展开更多
Since the plasticity of soil and the irregular shape of the excavation,the efficiency and stability of the traditional local radial basis function(RBF)collocation method(LRBFCM)are inadequate for analyzing three-dimen...Since the plasticity of soil and the irregular shape of the excavation,the efficiency and stability of the traditional local radial basis function(RBF)collocation method(LRBFCM)are inadequate for analyzing three-dimensional(3D)deformation of deep excavation.In this work,the technique known as the direct method,where the local influence nodes are collocated on a straight line,is introduced to optimize the LRBFCM.The direct method can improve the accuracy of the partial derivative,reduce the size effect caused by the large length-width ratio,and weaken the influence of the shape parameters on the LRBFCM.The mapping technique is adopted to transform the physical coordinates of a quadratic-type block to normalized coordinates,in which the deformation problem can easily be solved using the direct method.The stability of the LRBFCM is further modified by considering the irregular shape of 3D excavation,which is divided into several quadratic-type blocks.The soil’s plasticity is described by the Drucker-Prager(D-P)model.The improved LRBFCM is integrated with the incremental method to analyze the plasticity.Five different examples,including strip excavations and circular excavations,are presented to validate the proposed approach’s efficiency.展开更多
In counter-rotating electrochemical machining (CRECM), a revolving cathode tool with hollow windows of various shapes is used to fabricate convex structures on a revolving part. During this process, the anode workpi...In counter-rotating electrochemical machining (CRECM), a revolving cathode tool with hollow windows of various shapes is used to fabricate convex structures on a revolving part. During this process, the anode workpiece and the cathode tool rotate relative to each other at the same rotation speed. In contrast to the conventional schemes of ECM machining with linear motion of a block tool electrode, this scheme of ECM is unique, and has not been adequately studied yet. In this paper, the finite element method (FEM) is used to simulate the anode shaping process during CRECM, and the simulation process which involves a meshing model, a moving boundary, and a simulation algorithm is described. The simulated anode profiles of the convex structure at different processing times show that the CRECM process can be used to fabricate convex structures of various shapes with different heights. Besides, the variation of the inter-electrode gap indicates that this process can also reach a relative equilibrium state like that in conventional ECM. A rectangular convex and a circular convex are successfully fabricated on revolving parts. The experimental results indicate relatively good agreement with the simulation results. The proposed simulation process is valid for convex shaping prediction and feasibility studies as well.展开更多
Trapezoidal pulse shaping algorithm is widely applied to improve signal-to-noise ratio(SNR), throughput and energy resolution with the properties of noise suppression, pile-up pulse separation and ballistic deficit co...Trapezoidal pulse shaping algorithm is widely applied to improve signal-to-noise ratio(SNR), throughput and energy resolution with the properties of noise suppression, pile-up pulse separation and ballistic deficit correction. The algorithm can be acquired by z transform method which is easier for derivation. However, the baseline drift of trapezoidal pulse appears because the noise superimposes on the input signal. In this paper,two new methods based on convergence analysis and noise suppression are proposed to remove the baseline drift resulting from trapezoidal pulse shaping. Simulations and experimental tests are carried out to verify the methods. The results demonstrate that the proposed methods can remove baseline drift in trapezoidal pulse shaping.展开更多
Photoacoustic(PA) imaging has drawn tremendous research interest for various applications in biomedicine and experienced exponential growth over the past decade. Since the scattering effect of biological tissue on ult...Photoacoustic(PA) imaging has drawn tremendous research interest for various applications in biomedicine and experienced exponential growth over the past decade. Since the scattering effect of biological tissue on ultrasound is two-to three-orders magnitude weaker than that of light, photoacoustic imaging can effectively improve the imaging depth.However, as the depth of imaging further increases, the incident light is seriously affected by scattering that the generated photoacoustic signal is very weak and the signal-to-noise ratio(SNR) is quite low. Low SNR signals can reduce imaging quality and even cause imaging failure. In this paper, we proposed a new wavefront shaping and imaging method of low SNR photoacoustic signal using digital micromirror device(DMD) based superpixel method. We combined the superpixel method with DMD to modulate the phase and amplitude of the incident light, and the genetic algorithm(GA) was used as the wavefront shaping algorithm. The enhancement of the photoacoustic signal reached 10.46. Then we performed scanning imaging by moving the absorber with the translation stage. A clear image with contrast of 8.57 was obtained while imaging with original photoacoustic signals could not be achieved. The proposed method opens new perspectives for imaging with weak photoacoustic signals.展开更多
In order to improve the shaping design ability of students in mechanical drawing, it is necessary to introduce and analyze the shaping design of parts and some typical shaping method. Firstly, shaping designs of diffe...In order to improve the shaping design ability of students in mechanical drawing, it is necessary to introduce and analyze the shaping design of parts and some typical shaping method. Firstly, shaping designs of different structures of some parts such as installation part, connection part and so on are introduced, and then the shaping design procedure of the base of reducer is analyzed. Secondly, some typical shaping design methods such as shaping design based on the deformation of the basic body, profile design shaping design, complementary shaping design, equal volume shaping design, variation shaping design and combinatorial shaping design are introduced and analyzed. Finally, the design model of various pipe joints used in the exhibition hall is given as a design question. It will be helpful to improve the spatial imagination and shaping ability of students.展开更多
High-performance compressor design is best achieved with a good trade-off between aerodynamic and structural considerations,which requires efficient and accurate multidisciplinary design and optimization tools.As adva...High-performance compressor design is best achieved with a good trade-off between aerodynamic and structural considerations,which requires efficient and accurate multidisciplinary design and optimization tools.As advanced compressors are defined with a large design space,their optimization is most efficiently achieved using a gradient-based approach,where the gradient can be computed using an adjoint method,at a cost nearly independent of the dimension of the design space.While the adjoint method has been widely used for aerodynamic shape optimization,its use for structural shape optimizations of compressor blades has not been as well studied.This paper discussed a discrete adjoint solver for structural sensitivity analysis developed within the opensource Computational Structural Mechanics(CSM)software CalculiX,and proposed an efficient stress sensitivity analysis method based on the Finite Element Method(FEM)using adjoint.The proposed method is applied to compute the stress sensitivity of a wide-chord fan blade in a highbypass-ratio engine.The accuracy of the adjoint-based stress sensitivity is verified against central finite differences.In terms of computational efficiency,the adjoint approach is about 4.5 times more efficient than the conventional approach using finite differences.This works marks an important step towards fluid-structural coupled adjoint optimization of wide-chord fan blades.展开更多
A new approach for flexoelectricmaterial shape optimization is proposed in this study.In this work,a proxymodel based on artificial neural network(ANN)is used to solve the parameter optimization and shape optimization...A new approach for flexoelectricmaterial shape optimization is proposed in this study.In this work,a proxymodel based on artificial neural network(ANN)is used to solve the parameter optimization and shape optimization problems.To improve the fitting ability of the neural network,we use the idea of pre-training to determine the structure of the neural network and combine different optimizers for training.The isogeometric analysis-finite element method(IGA-FEM)is used to discretize the flexural theoretical formulas and obtain samples,which helps ANN to build a proxy model from the model shape to the target value.The effectiveness of the proposed method is verified through two numerical examples of parameter optimization and one numerical example of shape optimization.展开更多
This paper aims to seek expedited fatigue analysis methods using the infrared self-heating technique.The fatigue analysis of NiTi shape memory alloys is obtained through a hybrid approach:fatigue tests to failure yiel...This paper aims to seek expedited fatigue analysis methods using the infrared self-heating technique.The fatigue analysis of NiTi shape memory alloys is obtained through a hybrid approach:fatigue tests to failure yield relatively shorter fatigue lives,while determining the fatigue limit,normally involving extremely high cycles approaching 107 cycles,is directly achieved via self-heating tests.This methodology significantly reduces testing cycles,costing only a fraction of the several-thousand-cycle tests typically required.The validity of this approach is successfully demonstrated through fatigue testing of 18Ni steel:the entire S–N curve is examined using the traditional fatigue test until a life of up to 10^(7) cycles,and the indicated fatigue limit agrees well with the one directly determined through the self-heating method.Subsequently,this developed approach is applied to the fatigue analysis of shape memory alloys under complex loading,enabling the concurrent estimation of the limits of phase transformation-dominated low-cycle fatigue and high-cycle fatigue in the elastic regime on a single specimen.The results obtained align well with other supporting evidence.展开更多
Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with...Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with Radial Basis Function methods. The method is used to solve fourth order boundary value problems. The use and location of ghost points are examined in order to enforce the extra boundary conditions that are necessary to make a fourth-order problem well posed. The use of ghost points versus solving an overdetermined linear system via least squares is studied. For a general fourth-order boundary value problem, the recommended approach is to either use one of two novel sets of ghost centers introduced here or else to use a least squares approach. When using either ghost centers or least squares, the random variable shape parameter strategy results in significantly better accuracy than when a constant shape parameter is used.展开更多
文摘The original idea and shaping principle of locus shaping method for processing the aspheric optical parts are introduced, and the partial structure of the machine tool designed is described. The method has the advantage of high efficiency and low cost compared to the numerical control method. And it is proven that the method is feasible.
基金supported by grants from the National Natural Science Foundation of China(Nos.12172159 and 12362019).
文摘Since the plasticity of soil and the irregular shape of the excavation,the efficiency and stability of the traditional local radial basis function(RBF)collocation method(LRBFCM)are inadequate for analyzing three-dimensional(3D)deformation of deep excavation.In this work,the technique known as the direct method,where the local influence nodes are collocated on a straight line,is introduced to optimize the LRBFCM.The direct method can improve the accuracy of the partial derivative,reduce the size effect caused by the large length-width ratio,and weaken the influence of the shape parameters on the LRBFCM.The mapping technique is adopted to transform the physical coordinates of a quadratic-type block to normalized coordinates,in which the deformation problem can easily be solved using the direct method.The stability of the LRBFCM is further modified by considering the irregular shape of 3D excavation,which is divided into several quadratic-type blocks.The soil’s plasticity is described by the Drucker-Prager(D-P)model.The improved LRBFCM is integrated with the incremental method to analyze the plasticity.Five different examples,including strip excavations and circular excavations,are presented to validate the proposed approach’s efficiency.
基金supported by the Program for New Century Excellent Talents in University of China(NCET-10-0074)
文摘In counter-rotating electrochemical machining (CRECM), a revolving cathode tool with hollow windows of various shapes is used to fabricate convex structures on a revolving part. During this process, the anode workpiece and the cathode tool rotate relative to each other at the same rotation speed. In contrast to the conventional schemes of ECM machining with linear motion of a block tool electrode, this scheme of ECM is unique, and has not been adequately studied yet. In this paper, the finite element method (FEM) is used to simulate the anode shaping process during CRECM, and the simulation process which involves a meshing model, a moving boundary, and a simulation algorithm is described. The simulated anode profiles of the convex structure at different processing times show that the CRECM process can be used to fabricate convex structures of various shapes with different heights. Besides, the variation of the inter-electrode gap indicates that this process can also reach a relative equilibrium state like that in conventional ECM. A rectangular convex and a circular convex are successfully fabricated on revolving parts. The experimental results indicate relatively good agreement with the simulation results. The proposed simulation process is valid for convex shaping prediction and feasibility studies as well.
基金Supported by National High Technology Research and Development Program of China(863 Program)(No.2012AA061804-03)
文摘Trapezoidal pulse shaping algorithm is widely applied to improve signal-to-noise ratio(SNR), throughput and energy resolution with the properties of noise suppression, pile-up pulse separation and ballistic deficit correction. The algorithm can be acquired by z transform method which is easier for derivation. However, the baseline drift of trapezoidal pulse appears because the noise superimposes on the input signal. In this paper,two new methods based on convergence analysis and noise suppression are proposed to remove the baseline drift resulting from trapezoidal pulse shaping. Simulations and experimental tests are carried out to verify the methods. The results demonstrate that the proposed methods can remove baseline drift in trapezoidal pulse shaping.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFB1104500)the Beijing Natural Science Foundation,China(Grant No.7182091)+1 种基金the National Natural Science Foundation of China(Grant No.21627813)the Research Projects on Biomedical Transformation of China–Japan Friendship Hospital(Grant No.PYBZ1801)。
文摘Photoacoustic(PA) imaging has drawn tremendous research interest for various applications in biomedicine and experienced exponential growth over the past decade. Since the scattering effect of biological tissue on ultrasound is two-to three-orders magnitude weaker than that of light, photoacoustic imaging can effectively improve the imaging depth.However, as the depth of imaging further increases, the incident light is seriously affected by scattering that the generated photoacoustic signal is very weak and the signal-to-noise ratio(SNR) is quite low. Low SNR signals can reduce imaging quality and even cause imaging failure. In this paper, we proposed a new wavefront shaping and imaging method of low SNR photoacoustic signal using digital micromirror device(DMD) based superpixel method. We combined the superpixel method with DMD to modulate the phase and amplitude of the incident light, and the genetic algorithm(GA) was used as the wavefront shaping algorithm. The enhancement of the photoacoustic signal reached 10.46. Then we performed scanning imaging by moving the absorber with the translation stage. A clear image with contrast of 8.57 was obtained while imaging with original photoacoustic signals could not be achieved. The proposed method opens new perspectives for imaging with weak photoacoustic signals.
基金Supported by 2015 Undergraduate Education and Teaching Reform and Research Project of University of Science and Technology Beijing(JG2015M15)2014 Education and Teaching Reform and Research Project of University of Science and Technology Beijing(JG2014M22)
文摘In order to improve the shaping design ability of students in mechanical drawing, it is necessary to introduce and analyze the shaping design of parts and some typical shaping method. Firstly, shaping designs of different structures of some parts such as installation part, connection part and so on are introduced, and then the shaping design procedure of the base of reducer is analyzed. Secondly, some typical shaping design methods such as shaping design based on the deformation of the basic body, profile design shaping design, complementary shaping design, equal volume shaping design, variation shaping design and combinatorial shaping design are introduced and analyzed. Finally, the design model of various pipe joints used in the exhibition hall is given as a design question. It will be helpful to improve the spatial imagination and shaping ability of students.
基金Supported by the Science Center for Gas Turbine Project,China(No.P2022-C-II-001-001).
文摘High-performance compressor design is best achieved with a good trade-off between aerodynamic and structural considerations,which requires efficient and accurate multidisciplinary design and optimization tools.As advanced compressors are defined with a large design space,their optimization is most efficiently achieved using a gradient-based approach,where the gradient can be computed using an adjoint method,at a cost nearly independent of the dimension of the design space.While the adjoint method has been widely used for aerodynamic shape optimization,its use for structural shape optimizations of compressor blades has not been as well studied.This paper discussed a discrete adjoint solver for structural sensitivity analysis developed within the opensource Computational Structural Mechanics(CSM)software CalculiX,and proposed an efficient stress sensitivity analysis method based on the Finite Element Method(FEM)using adjoint.The proposed method is applied to compute the stress sensitivity of a wide-chord fan blade in a highbypass-ratio engine.The accuracy of the adjoint-based stress sensitivity is verified against central finite differences.In terms of computational efficiency,the adjoint approach is about 4.5 times more efficient than the conventional approach using finite differences.This works marks an important step towards fluid-structural coupled adjoint optimization of wide-chord fan blades.
基金supported by a Major Research Project in Higher Education Institutions in Henan Province,with Project Number 23A560015.
文摘A new approach for flexoelectricmaterial shape optimization is proposed in this study.In this work,a proxymodel based on artificial neural network(ANN)is used to solve the parameter optimization and shape optimization problems.To improve the fitting ability of the neural network,we use the idea of pre-training to determine the structure of the neural network and combine different optimizers for training.The isogeometric analysis-finite element method(IGA-FEM)is used to discretize the flexural theoretical formulas and obtain samples,which helps ANN to build a proxy model from the model shape to the target value.The effectiveness of the proposed method is verified through two numerical examples of parameter optimization and one numerical example of shape optimization.
基金National Natural Science Foundation of China,12272305,Yahui Zhang,12372123,Xiaojun GuBasic Research Program,JCKY2022603C016,Xiaojun Gu。
文摘This paper aims to seek expedited fatigue analysis methods using the infrared self-heating technique.The fatigue analysis of NiTi shape memory alloys is obtained through a hybrid approach:fatigue tests to failure yield relatively shorter fatigue lives,while determining the fatigue limit,normally involving extremely high cycles approaching 107 cycles,is directly achieved via self-heating tests.This methodology significantly reduces testing cycles,costing only a fraction of the several-thousand-cycle tests typically required.The validity of this approach is successfully demonstrated through fatigue testing of 18Ni steel:the entire S–N curve is examined using the traditional fatigue test until a life of up to 10^(7) cycles,and the indicated fatigue limit agrees well with the one directly determined through the self-heating method.Subsequently,this developed approach is applied to the fatigue analysis of shape memory alloys under complex loading,enabling the concurrent estimation of the limits of phase transformation-dominated low-cycle fatigue and high-cycle fatigue in the elastic regime on a single specimen.The results obtained align well with other supporting evidence.
文摘Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with Radial Basis Function methods. The method is used to solve fourth order boundary value problems. The use and location of ghost points are examined in order to enforce the extra boundary conditions that are necessary to make a fourth-order problem well posed. The use of ghost points versus solving an overdetermined linear system via least squares is studied. For a general fourth-order boundary value problem, the recommended approach is to either use one of two novel sets of ghost centers introduced here or else to use a least squares approach. When using either ghost centers or least squares, the random variable shape parameter strategy results in significantly better accuracy than when a constant shape parameter is used.