To support ubiquitous communication and enhance other 6G applications,the Space-Air-Ground Integrated Network(SAGIN)has become a research hotspot.Traditionally,satellite-ground fusion technologies integrate network en...To support ubiquitous communication and enhance other 6G applications,the Space-Air-Ground Integrated Network(SAGIN)has become a research hotspot.Traditionally,satellite-ground fusion technologies integrate network entities from space,aerial,and terrestrial domains.However,they face challenges such as spectrum scarcity and inefficient satellite handover.This paper explores the Channel-Aware Handover Management(CAHM)strategy in SAGIN for data allocation.Specifically,CAHM utilizes the data receiving capability of Low Earth Orbit(LEO)satellites,considering satellite-ground distance,free-space path loss,and channel gain.Furthermore,CAHM assesses LEO satellite data forwarding capability using signal-to-noise ratio,link duration and buffer queue length.Then,CAHM applies historical data on LEO satellite transmission successes and failures to effectively reduce overall interruption ratio.Simulation results show that CAHM outperforms baseline algorithms in terms of delivery ratio,latency,and interruption ratio.展开更多
The rapid development of mega low earth orbit(LEO)satellite networks is expected to have a significant impact on 6G networks.Unlike terrestrial networks,due to the high-speed movement of satellites,users will frequent...The rapid development of mega low earth orbit(LEO)satellite networks is expected to have a significant impact on 6G networks.Unlike terrestrial networks,due to the high-speed movement of satellites,users will frequently hand over between satellites even if their positions remain unchanged.Furthermore,the extensive coverage characteristic of satellites leads to massive users executing handovers simultaneously.To address these challenges,we propose a novel double grouping-based group handover scheme(DGGH)specifically tailored for mega LEO satellite networks.First,we develop a user grouping strategy based on beam-limited hierarchical clustering to divide users into distinct groups.Next,we reframe the challenge of managing multiple users’simultaneous handovers as a single-objective optimization problem,solving it with a satellite grouping strategy that leverages the accuracy of greedy algorithms and the simplicity of dynamic programming.Additionally,we develop a group handover algorithm based on minimal handover waiting time to improve the satellite grouping process further.The detailed steps of the DGGH scheme’s handover procedure are meticulously outlined.Comprehensive simulations show that the proposed DGGH scheme outperforms single-user handover schemes in terms of handover signaling over-head and handover success rate.展开更多
Low Earth Orbit(LEO)mega-constellation networks,exemplified by Starlink,are poised to play a pivotal role in future mobile communication networks,due to their low latency and high capacity.With the massively deployed ...Low Earth Orbit(LEO)mega-constellation networks,exemplified by Starlink,are poised to play a pivotal role in future mobile communication networks,due to their low latency and high capacity.With the massively deployed satellites,ground users now can be covered by multiple visible satellites,but also face complex handover issues with such massive high-mobility satellites in multi-layer.The end-to-end routing is also affected by the handover behavior.In this paper,we propose an intelligent handover strategy dedicated to multi-layer LEO mega-constellation networks.Firstly,an analytic model is utilized to rapidly estimate the end-to-end propagation latency as a key handover factor to construct a multi-objective optimization model.Subsequently,an intelligent handover strategy is proposed by employing the Dueling Double Deep Q Network(D3QN)-based deep reinforcement learning algorithm for single-layer constellations.Moreover,an optimal crosslayer handover scheme is proposed by predicting the latency-jitter and minimizing the cross-layer overhead.Simulation results demonstrate the superior performance of the proposed method in the multi-layer LEO mega-constellation,showcasing reductions of up to 8.2%and 59.5%in end-to-end latency and jitter respectively,when compared to the existing handover strategies.展开更多
The increase in user mobility and density in modern cellular networks increases the risk of overloading certain base stations in popular locations such as shopping malls or stadiums,which can result in connection loss...The increase in user mobility and density in modern cellular networks increases the risk of overloading certain base stations in popular locations such as shopping malls or stadiums,which can result in connection loss for some users.To combat this,the traffic load of base stations should be kept as balanced as possible.In this paper,we propose an efficient load balancing-aware handover algorithm for highly dynamic beyond 5G heterogeneous networks by assigning mobile users to base stations with lighter loads when a handover is performed.The proposed algorithm is evaluated in a scenario with users having different levels of mobility,such as pedestrians and vehicles,and is shown to outperform the conventional handover mechanism,as well as another algorithm from the literature.As a secondary benefit,the overall energy consumption in the network is shown to be reduced with the proposed algorithm.展开更多
The millimeter-Wave(mmWave)communication with the advantages of abundant bandwidth and immunity to interference has been deemed a promising technology to greatly improve network capacity.However,due to such characteri...The millimeter-Wave(mmWave)communication with the advantages of abundant bandwidth and immunity to interference has been deemed a promising technology to greatly improve network capacity.However,due to such characteristics of mmWave,as short transmission distance,high sensitivity to the blockage,and large propagation path loss,handover issues(including trigger condition and target beam selection)become much complicated.In this paper,we design a novel handover scheme to optimize the overall system throughput as well as the total system delay while guaranteeing the Quality of Service(QoS)of each User Equipment(UE).Specifically,the proposed handover scheme called O-MAPPO integrates the Reinforcement Learning(RL)algorithm and optimization theory.The RL algorithm known as Multi-Agent Proximal Policy Optimization(MAPPO)plays a role in determining handover trigger conditions.Further,we propose an optimization problem in conjunction with MAPPO to select the target base station.The aim is to evaluate and optimize the system performance of total throughput and delay while guaranteeing the QoS of each UE after the handover decision is made.The numerical results show the overall system throughput and delay with our method are slightly worse than that with the exhaustive search method but much better than that using another typical RL algorithm Deep Deterministic Policy Gradient(DDPG).展开更多
For mobile satellite networks, an appropriate handover scheme should be devised to shorten handover delay with optimized application of network resources. By introducing the handover cost model of service, this articl...For mobile satellite networks, an appropriate handover scheme should be devised to shorten handover delay with optimized application of network resources. By introducing the handover cost model of service, this article proposes a rerouting triggering scheme for path optimization after handover and a new minimum cost handover algorithm for mobile satellite networks. This algorithm ensures the quality of service (QoS) parameters, such as delay, during the handover and minimizes the handover costs. Simulation indicates that this algorithm is superior to other current algorithms in guaranteeing the QoS and decreasing handover costs.展开更多
Two position-assisted fast handover schemes, scheme A and scheme B, for LTE-A system under very high mobility scenarios, are proposed, together with their performance evaluation. Scheme A is designed to reduce handove...Two position-assisted fast handover schemes, scheme A and scheme B, for LTE-A system under very high mobility scenarios, are proposed, together with their performance evaluation. Scheme A is designed to reduce handover delay by making handover preparation before handover starts. Scheme B aims at reducing unnecessary handovers and improving handover success rate, by calculating the geographically best target handover cell, which makes it easier for mobile terminals to access the target cell. A system level simulation is conducted to evaluate the performance of these two schemes. It is shown that, scheme A could reduce inter-site handover delay by about 50 ms, while scheme B could cut down nearly 50% of all handovers when time-to-trigger (TTT) is 0 ms. Besides, as TTT gets larger, Scheme B has much better success rate.展开更多
The airborne base station(ABS) can provide wireless coverage to the ground in unmanned aerial vehicle(UAV) cellular networks.When mobile users move among adjacent ABSs,the measurement information reported by a single ...The airborne base station(ABS) can provide wireless coverage to the ground in unmanned aerial vehicle(UAV) cellular networks.When mobile users move among adjacent ABSs,the measurement information reported by a single mobile user is used to trigger the handover mechanism.This handover mechanism lacks the consideration of movement state of mobile users and the location relationship between mobile users,which may lead to handover misjudgments and even communication interrupts.In this paper,we propose an intelligent handover control method in UAV cellular networks.Firstly,we introduce a deep learning model to predict the user trajectories.This prediction model learns the movement behavior of mobile users from the measurement information and analyzes the positional relations between mobile users such as avoiding collision and accommodating fellow pedestrians.Secondly,we propose a handover decision method,which can calculate the users' corresponding receiving power based on the predicted location and the characteristic of air-to-ground channel,to make handover decisions accurately.Finally,we use realistic data sets with thousands of non-linear trajectories to verify the basic functions and performance of our proposed intelligent handover controlmethod.The simulation results show that the handover success rate of the proposed method is 8% higher than existing methods.展开更多
For the dense macro-femto coexistence networks scenario, a long-term-based handover(LTBH) algorithm is proposed. The handover decision algorithm is jointly determined by the angle of handover(AHO) and the time-tos...For the dense macro-femto coexistence networks scenario, a long-term-based handover(LTBH) algorithm is proposed. The handover decision algorithm is jointly determined by the angle of handover(AHO) and the time-tostay(TTS) to reduce the unnecessary handover numbers.First, the proposed AHO parameter is used to decrease the computation complexity in multiple candidate base stations(CBSs) scenario. Then, two types of TTS parameters are given for the fixed base stations and mobile base stations to make handover decisions among multiple CBSs. The simulation results show that the proposed LTBH algorithm can not only maintain the required transmission rate of users, but also effectively reduce the unnecessary numbers of handover in the dense macro-femto networks with the coexisting mobile BSs.展开更多
To achieve high performance and reliability in video streaming over wireless local area networks (WLANs), one must jointly consider both optimized association to access points (APs) and handover management based o...To achieve high performance and reliability in video streaming over wireless local area networks (WLANs), one must jointly consider both optimized association to access points (APs) and handover management based on dynamic scanning of alternate APs. In this article, we propose a new architecture within the software-defined networking (SDN) framework, which allows stations to be connected to several APs simultaneously and to switch fast between them. We evaluate our system in a real-time testbed and demonstrate that our SDN-based handover mechanism significantly reduces the number and duration of video freeze events and allows for smaller playout buffers.展开更多
In this paper, we propose a Packet Cache-Forward(PCF) method based on improved Bayesian outlier detection to eliminate out-of-order packets caused by transmission path drastically degradation during handover events in...In this paper, we propose a Packet Cache-Forward(PCF) method based on improved Bayesian outlier detection to eliminate out-of-order packets caused by transmission path drastically degradation during handover events in the moving satellite networks, for improving the performance of TCP. The proposed method uses an access node satellite to cache all received packets in a short time when handover occurs and forward them out in order. To calculate the cache time accurately, this paper establishes the Bayesian based mixture model for detecting delay outliers of the entire handover scheme. In view of the outliers' misjudgment, an updated classification threshold and the sliding window has been suggested to correct category collections and model parameters for the purpose of quickly identifying exact compensation delay in the varied network load statuses. Simulation shows that, comparing to average processing delay detection method, the average accuracy rate was scaled up by about 4.0%, and there is about 5.5% cut in error rate in the meantime. It also behaves well even though testing with big dataset. Benefiting from the advantage of the proposed scheme in terms of performance, comparing to conventional independent handover and network controlled synchronizedhandover in simulated LEO satellite networks, the proposed independent handover with PCF eliminates packet out-of-order issue to get better improvement on congestion window. Eventually the average delay decreases more than 70% and TCP performance has improved more than 300%.展开更多
A novel Cooperative Directional inter-cell Handover Scheme(CDHS) for High Altitude Platform(HAP) communications systems is proposed,in which the handover target cell and the two cells adjacent to this handover target ...A novel Cooperative Directional inter-cell Handover Scheme(CDHS) for High Altitude Platform(HAP) communications systems is proposed,in which the handover target cell and the two cells adjacent to this handover target cell work cooperatively to exploit the traffic fluctuation to improve handover performance.Users in the overlap area of the overloaded handover target cell will be forced to handover directionally before their optimal handover boundary in order to free up resources for the handover calls which would otherwise be dropped due to the shortage of resources and queue time out.Simulation results show that the handover call dropping probability is greatly reduced(at least 60%) compared with the general queue handover scheme,with little performance reduction to the call blocking probability,and the Not in the Best Cell(NBC) average time is only increased moderately.Moreover,an optimal cell radius can be achieved for a specific platform speed by minimizing the unified system performance,which is the linear combination of the handover call dropping probability and the NBC average time.展开更多
With the rapid development of the Internet of Things(IoT),Location-Based Services(LBS)are becoming more and more popular.However,for the users being served,how to protect their location privacy has become a growing co...With the rapid development of the Internet of Things(IoT),Location-Based Services(LBS)are becoming more and more popular.However,for the users being served,how to protect their location privacy has become a growing concern.This has led to great difficulty in establishing trust between the users and the service providers,hindering the development of LBS for more comprehensive functions.In this paper,we first establish a strong identity verification mechanism to ensure the authentication security of the system and then design a new location privacy protection mechanism based on the privacy proximity test problem.This mechanism not only guarantees the confidentiality of the user s information during the subsequent information interaction and dynamic data transmission,but also meets the service provider's requirements for related data.展开更多
Mobile WiMAX is a wireless networking system based on the IEEE 802.16e standard. In order to support mobile, some kinds of handover schemes must be adopted, and the hard handover is defined as mandatory. Since the dat...Mobile WiMAX is a wireless networking system based on the IEEE 802.16e standard. In order to support mobile, some kinds of handover schemes must be adopted, and the hard handover is defined as mandatory. Since the data transmission should be paused during the hard handover process, it causes handover delay in mobile communication. The handover delay makes severe degradation in system performance when implemented in real-time applications such as IPTV and VoIP. The existing draft standard considers only the received signal strength when deciding handover initiation. However, the velocity factor also has an important influence on handover initiation and can not be neglected. To deal with these problems, this article proposes a velocity-adaptive handover scheme. This scheme adopts dynamic handover threshold according to different velocity to skip some unnecessary handover stages, reduces handover delay and enhances the network resource utilization. The simulation result and performance analysis validate the efficiency of the proposed scheme.展开更多
An improved vertical handover algorithm for multiple networks based on Bayesian decision is proposed. Firstly, the handover probability distribution is established considering multiple conditions including signal stre...An improved vertical handover algorithm for multiple networks based on Bayesian decision is proposed. Firstly, the handover probability distribution is established considering multiple conditions including signal strength, bit error rate, blocking probability and user demands, and accordingly the prior handover probability is calculated. Secondly, the posterior probability based on Bayesian decision algorithm is got. Finally, the optimal access network is selected according to the decision strategy based on posterior probability. Simulation results indicate that the proposed algorithm not only effectively achieves vertical handover among WLAN, WiMAX and LTE with the least number of handovers, but also keeps high average network load, which can provide the users with good service quality.展开更多
Recently, location-based routings in wireless sensor networks (WSNs) are attracting a lot of interest in the research community, especially because of its scalability. In location-based routing, the network size is sc...Recently, location-based routings in wireless sensor networks (WSNs) are attracting a lot of interest in the research community, especially because of its scalability. In location-based routing, the network size is scalable without increasing the signalling overhead as routing decisions are inherently localized. Here, each node is aware of its position in the network through some positioning device like GPS and uses this information in the routing mechanism. In this paper, we first discuss the basics of WSNs including the architecture of the network, energy consumption for the components of a typical sensor node, and draw a detailed picture of classification of location-based routing protocols. Then, we present a systematic and comprehensive taxonomy of location-based routing protocols, mostly for sensor networks. All the schemes are subsequently discussed in depth. Finally, we conclude the paper with some insights on potential research directions for location-based routing in WSNs.展开更多
A new multi-cell cellular configuration networks is provided for analysis of handover initiation probability, which is based on multi-beam base-station antenna splitting in the elevation-radiating plane. The sum of th...A new multi-cell cellular configuration networks is provided for analysis of handover initiation probability, which is based on multi-beam base-station antenna splitting in the elevation-radiating plane. The sum of the received signal power in the mobile station, including both desired and interference signal power, has been introduced into the handover initiation algorithm. Along with the idea, we present three models of handover initiation algorithm with the shadowing process of Gaussian distribution. The formulation of handover initiation probability of those algorithms is also analyzed. The validity of the presented models has been checked through the comparison with simulation results. The results present the performance characteristics of handover initiation vary with cluster number and base-station antenna elevation angle.展开更多
Based on the characteristics of guaranteed handover (GH) algorithm, the finite capacity in one system makes the blocking probability (PB) of GH algorithm increase rapidly in the case of high traffic losd. So, when...Based on the characteristics of guaranteed handover (GH) algorithm, the finite capacity in one system makes the blocking probability (PB) of GH algorithm increase rapidly in the case of high traffic losd. So, when large amounts of multimedia services are transmitted via a single low earth orbit (LEO) satellite system, the PB of it is much higher. In order to solve the problem, a novel handover scheme defined by multi-tier optimal layer selection is proposed. The scheme sufficiently takes into account the characteristics of double-tier satellite network, which is constituted by LEO satellites combined with medium earth orbit (MEO) satellites, and the multimedia transmitted by such network, so it can augment this systematic capacity and effectively reduces the traffic loed in the LEO which performs GH algorithm. The detailed processes are also presented. The simulation and numerical results show that the approach integrated with GH algorithm achieves a significant improvement in the PB and practicality, as compared to the single LEO layer network.展开更多
Admission control in high-speed train communication system is quite different from admission control in traditional cellular networks. Conventional admission control strategies cannot be directly applied to this speci...Admission control in high-speed train communication system is quite different from admission control in traditional cellular networks. Conventional admission control strategies cannot be directly applied to this special communication scenario. In this paper, the problem of admission control for handover service is investigated in high-speed train communication environment. An admission control scheme considering bit error rate(BER)and bandwidth borrowing strategy is proposed. On the basis of admission control decision rule taking BER into account, a part of bandwidth obtained by compressing variable rate service in the networks is provided for handover services. The admission control scheme can admit handover services as more as possible while it guarantees the lowest data rate of different services in the networks. Simulation results show that the proposed admission control scheme has a better performance than existing admission control schemes.展开更多
基金National Key Research and Development Program of China(2022YFE0139300)Hubei Province Key Research and Development Program(2024BAB051)+1 种基金Guangdong Basic and Applied Basic Research Foundation(2022B1515120067)Wuhan Key Research and Development Program(2024050702030136).
文摘To support ubiquitous communication and enhance other 6G applications,the Space-Air-Ground Integrated Network(SAGIN)has become a research hotspot.Traditionally,satellite-ground fusion technologies integrate network entities from space,aerial,and terrestrial domains.However,they face challenges such as spectrum scarcity and inefficient satellite handover.This paper explores the Channel-Aware Handover Management(CAHM)strategy in SAGIN for data allocation.Specifically,CAHM utilizes the data receiving capability of Low Earth Orbit(LEO)satellites,considering satellite-ground distance,free-space path loss,and channel gain.Furthermore,CAHM assesses LEO satellite data forwarding capability using signal-to-noise ratio,link duration and buffer queue length.Then,CAHM applies historical data on LEO satellite transmission successes and failures to effectively reduce overall interruption ratio.Simulation results show that CAHM outperforms baseline algorithms in terms of delivery ratio,latency,and interruption ratio.
基金supported in part by the State Key Laboratory of Micro-Spacecraft Rapid Design and Intelligent Cluster(No.MS01240103)the National Natural Science Foundation of China(No.62071146,No.62431009)+1 种基金the National 2011 Collaborative Innovation Center of Wireless Communication Technologies(No.2242022k60006)the Research Project Fund of Songjiang Laboratory(No.SL20230104).
文摘The rapid development of mega low earth orbit(LEO)satellite networks is expected to have a significant impact on 6G networks.Unlike terrestrial networks,due to the high-speed movement of satellites,users will frequently hand over between satellites even if their positions remain unchanged.Furthermore,the extensive coverage characteristic of satellites leads to massive users executing handovers simultaneously.To address these challenges,we propose a novel double grouping-based group handover scheme(DGGH)specifically tailored for mega LEO satellite networks.First,we develop a user grouping strategy based on beam-limited hierarchical clustering to divide users into distinct groups.Next,we reframe the challenge of managing multiple users’simultaneous handovers as a single-objective optimization problem,solving it with a satellite grouping strategy that leverages the accuracy of greedy algorithms and the simplicity of dynamic programming.Additionally,we develop a group handover algorithm based on minimal handover waiting time to improve the satellite grouping process further.The detailed steps of the DGGH scheme’s handover procedure are meticulously outlined.Comprehensive simulations show that the proposed DGGH scheme outperforms single-user handover schemes in terms of handover signaling over-head and handover success rate.
基金supported by the National Natural Science Foundation of China(No.62401597)Natural Science Foundation of Hunan Province,China(No.2024JJ6469)the Research Project of National University of Defense Technology,China(No.ZK22-02).
文摘Low Earth Orbit(LEO)mega-constellation networks,exemplified by Starlink,are poised to play a pivotal role in future mobile communication networks,due to their low latency and high capacity.With the massively deployed satellites,ground users now can be covered by multiple visible satellites,but also face complex handover issues with such massive high-mobility satellites in multi-layer.The end-to-end routing is also affected by the handover behavior.In this paper,we propose an intelligent handover strategy dedicated to multi-layer LEO mega-constellation networks.Firstly,an analytic model is utilized to rapidly estimate the end-to-end propagation latency as a key handover factor to construct a multi-objective optimization model.Subsequently,an intelligent handover strategy is proposed by employing the Dueling Double Deep Q Network(D3QN)-based deep reinforcement learning algorithm for single-layer constellations.Moreover,an optimal crosslayer handover scheme is proposed by predicting the latency-jitter and minimizing the cross-layer overhead.Simulation results demonstrate the superior performance of the proposed method in the multi-layer LEO mega-constellation,showcasing reductions of up to 8.2%and 59.5%in end-to-end latency and jitter respectively,when compared to the existing handover strategies.
基金supported in part by the Istanbul Technical University Scientific Research Projects Coordination Unit under Grant FHD-2024-45764in part by TUBITAK 1515 Frontier R&D Laboratories Support Program for Turkcell 6GEN LAB under Grant 5229902Turkcell Technology R&D Center(Law no.5746)has partially supported this study。
文摘The increase in user mobility and density in modern cellular networks increases the risk of overloading certain base stations in popular locations such as shopping malls or stadiums,which can result in connection loss for some users.To combat this,the traffic load of base stations should be kept as balanced as possible.In this paper,we propose an efficient load balancing-aware handover algorithm for highly dynamic beyond 5G heterogeneous networks by assigning mobile users to base stations with lighter loads when a handover is performed.The proposed algorithm is evaluated in a scenario with users having different levels of mobility,such as pedestrians and vehicles,and is shown to outperform the conventional handover mechanism,as well as another algorithm from the literature.As a secondary benefit,the overall energy consumption in the network is shown to be reduced with the proposed algorithm.
文摘The millimeter-Wave(mmWave)communication with the advantages of abundant bandwidth and immunity to interference has been deemed a promising technology to greatly improve network capacity.However,due to such characteristics of mmWave,as short transmission distance,high sensitivity to the blockage,and large propagation path loss,handover issues(including trigger condition and target beam selection)become much complicated.In this paper,we design a novel handover scheme to optimize the overall system throughput as well as the total system delay while guaranteeing the Quality of Service(QoS)of each User Equipment(UE).Specifically,the proposed handover scheme called O-MAPPO integrates the Reinforcement Learning(RL)algorithm and optimization theory.The RL algorithm known as Multi-Agent Proximal Policy Optimization(MAPPO)plays a role in determining handover trigger conditions.Further,we propose an optimization problem in conjunction with MAPPO to select the target base station.The aim is to evaluate and optimize the system performance of total throughput and delay while guaranteeing the QoS of each UE after the handover decision is made.The numerical results show the overall system throughput and delay with our method are slightly worse than that with the exhaustive search method but much better than that using another typical RL algorithm Deep Deterministic Policy Gradient(DDPG).
基金National Natural Science Foundation of China (60532030)National Natural Science Foundation for Distinguished Young Scholars(60625102)
文摘For mobile satellite networks, an appropriate handover scheme should be devised to shorten handover delay with optimized application of network resources. By introducing the handover cost model of service, this article proposes a rerouting triggering scheme for path optimization after handover and a new minimum cost handover algorithm for mobile satellite networks. This algorithm ensures the quality of service (QoS) parameters, such as delay, during the handover and minimizes the handover costs. Simulation indicates that this algorithm is superior to other current algorithms in guaranteeing the QoS and decreasing handover costs.
基金supported by the National Natural Science Foundation of China(No.61032002)the National Basic Research Program of China(973 Program No.2012CB316100)the 111 project(No.111-2-14)
文摘Two position-assisted fast handover schemes, scheme A and scheme B, for LTE-A system under very high mobility scenarios, are proposed, together with their performance evaluation. Scheme A is designed to reduce handover delay by making handover preparation before handover starts. Scheme B aims at reducing unnecessary handovers and improving handover success rate, by calculating the geographically best target handover cell, which makes it easier for mobile terminals to access the target cell. A system level simulation is conducted to evaluate the performance of these two schemes. It is shown that, scheme A could reduce inter-site handover delay by about 50 ms, while scheme B could cut down nearly 50% of all handovers when time-to-trigger (TTT) is 0 ms. Besides, as TTT gets larger, Scheme B has much better success rate.
基金supported in parts by the National Natural Science Foundation of China for Distinguished Young Scholar under Grant 61425012the National Science and Technology Major Projects for the New Generation of Broadband Wireless Communication Network under Grant 2017ZX03001014
文摘The airborne base station(ABS) can provide wireless coverage to the ground in unmanned aerial vehicle(UAV) cellular networks.When mobile users move among adjacent ABSs,the measurement information reported by a single mobile user is used to trigger the handover mechanism.This handover mechanism lacks the consideration of movement state of mobile users and the location relationship between mobile users,which may lead to handover misjudgments and even communication interrupts.In this paper,we propose an intelligent handover control method in UAV cellular networks.Firstly,we introduce a deep learning model to predict the user trajectories.This prediction model learns the movement behavior of mobile users from the measurement information and analyzes the positional relations between mobile users such as avoiding collision and accommodating fellow pedestrians.Secondly,we propose a handover decision method,which can calculate the users' corresponding receiving power based on the predicted location and the characteristic of air-to-ground channel,to make handover decisions accurately.Finally,we use realistic data sets with thousands of non-linear trajectories to verify the basic functions and performance of our proposed intelligent handover controlmethod.The simulation results show that the handover success rate of the proposed method is 8% higher than existing methods.
基金The National Natural Science Foundation of China(No.61471164)the Fundamental Research Funds for the Central Universitiesthe Scientific Innovation Research of College Graduates in Jiangsu Province(No.KYLX-0133)
文摘For the dense macro-femto coexistence networks scenario, a long-term-based handover(LTBH) algorithm is proposed. The handover decision algorithm is jointly determined by the angle of handover(AHO) and the time-tostay(TTS) to reduce the unnecessary handover numbers.First, the proposed AHO parameter is used to decrease the computation complexity in multiple candidate base stations(CBSs) scenario. Then, two types of TTS parameters are given for the fixed base stations and mobile base stations to make handover decisions among multiple CBSs. The simulation results show that the proposed LTBH algorithm can not only maintain the required transmission rate of users, but also effectively reduce the unnecessary numbers of handover in the dense macro-femto networks with the coexisting mobile BSs.
文摘To achieve high performance and reliability in video streaming over wireless local area networks (WLANs), one must jointly consider both optimized association to access points (APs) and handover management based on dynamic scanning of alternate APs. In this article, we propose a new architecture within the software-defined networking (SDN) framework, which allows stations to be connected to several APs simultaneously and to switch fast between them. We evaluate our system in a real-time testbed and demonstrate that our SDN-based handover mechanism significantly reduces the number and duration of video freeze events and allows for smaller playout buffers.
基金supported by National High Technology Research and Development Program of China(863 Program,No.2014AA7011005)National Nature Science Foundation of China(No.91438120)
文摘In this paper, we propose a Packet Cache-Forward(PCF) method based on improved Bayesian outlier detection to eliminate out-of-order packets caused by transmission path drastically degradation during handover events in the moving satellite networks, for improving the performance of TCP. The proposed method uses an access node satellite to cache all received packets in a short time when handover occurs and forward them out in order. To calculate the cache time accurately, this paper establishes the Bayesian based mixture model for detecting delay outliers of the entire handover scheme. In view of the outliers' misjudgment, an updated classification threshold and the sliding window has been suggested to correct category collections and model parameters for the purpose of quickly identifying exact compensation delay in the varied network load statuses. Simulation shows that, comparing to average processing delay detection method, the average accuracy rate was scaled up by about 4.0%, and there is about 5.5% cut in error rate in the meantime. It also behaves well even though testing with big dataset. Benefiting from the advantage of the proposed scheme in terms of performance, comparing to conventional independent handover and network controlled synchronizedhandover in simulated LEO satellite networks, the proposed independent handover with PCF eliminates packet out-of-order issue to get better improvement on congestion window. Eventually the average delay decreases more than 70% and TCP performance has improved more than 300%.
基金Supported by the China Scholarship Council (2008611011)Doctoral Fund of Ministry of Education of China(20094307110004)
文摘A novel Cooperative Directional inter-cell Handover Scheme(CDHS) for High Altitude Platform(HAP) communications systems is proposed,in which the handover target cell and the two cells adjacent to this handover target cell work cooperatively to exploit the traffic fluctuation to improve handover performance.Users in the overlap area of the overloaded handover target cell will be forced to handover directionally before their optimal handover boundary in order to free up resources for the handover calls which would otherwise be dropped due to the shortage of resources and queue time out.Simulation results show that the handover call dropping probability is greatly reduced(at least 60%) compared with the general queue handover scheme,with little performance reduction to the call blocking probability,and the Not in the Best Cell(NBC) average time is only increased moderately.Moreover,an optimal cell radius can be achieved for a specific platform speed by minimizing the unified system performance,which is the linear combination of the handover call dropping probability and the NBC average time.
基金This work has been partly supported by the National Natural Science Foundation of China under Grant No.61702212the Fundamental Research Funds for the Central Universities under Grand NO.CCNU19TS017.
文摘With the rapid development of the Internet of Things(IoT),Location-Based Services(LBS)are becoming more and more popular.However,for the users being served,how to protect their location privacy has become a growing concern.This has led to great difficulty in establishing trust between the users and the service providers,hindering the development of LBS for more comprehensive functions.In this paper,we first establish a strong identity verification mechanism to ensure the authentication security of the system and then design a new location privacy protection mechanism based on the privacy proximity test problem.This mechanism not only guarantees the confidentiality of the user s information during the subsequent information interaction and dynamic data transmission,but also meets the service provider's requirements for related data.
文摘Mobile WiMAX is a wireless networking system based on the IEEE 802.16e standard. In order to support mobile, some kinds of handover schemes must be adopted, and the hard handover is defined as mandatory. Since the data transmission should be paused during the hard handover process, it causes handover delay in mobile communication. The handover delay makes severe degradation in system performance when implemented in real-time applications such as IPTV and VoIP. The existing draft standard considers only the received signal strength when deciding handover initiation. However, the velocity factor also has an important influence on handover initiation and can not be neglected. To deal with these problems, this article proposes a velocity-adaptive handover scheme. This scheme adopts dynamic handover threshold according to different velocity to skip some unnecessary handover stages, reduces handover delay and enhances the network resource utilization. The simulation result and performance analysis validate the efficiency of the proposed scheme.
基金National 863Project of China(2014AA01A703) Natural Science Foundation of Education Department of Shaanxi Province(2013JK1045) ZTE Forum Foundation of ZTE Corporation
文摘An improved vertical handover algorithm for multiple networks based on Bayesian decision is proposed. Firstly, the handover probability distribution is established considering multiple conditions including signal strength, bit error rate, blocking probability and user demands, and accordingly the prior handover probability is calculated. Secondly, the posterior probability based on Bayesian decision algorithm is got. Finally, the optimal access network is selected according to the decision strategy based on posterior probability. Simulation results indicate that the proposed algorithm not only effectively achieves vertical handover among WLAN, WiMAX and LTE with the least number of handovers, but also keeps high average network load, which can provide the users with good service quality.
文摘Recently, location-based routings in wireless sensor networks (WSNs) are attracting a lot of interest in the research community, especially because of its scalability. In location-based routing, the network size is scalable without increasing the signalling overhead as routing decisions are inherently localized. Here, each node is aware of its position in the network through some positioning device like GPS and uses this information in the routing mechanism. In this paper, we first discuss the basics of WSNs including the architecture of the network, energy consumption for the components of a typical sensor node, and draw a detailed picture of classification of location-based routing protocols. Then, we present a systematic and comprehensive taxonomy of location-based routing protocols, mostly for sensor networks. All the schemes are subsequently discussed in depth. Finally, we conclude the paper with some insights on potential research directions for location-based routing in WSNs.
文摘A new multi-cell cellular configuration networks is provided for analysis of handover initiation probability, which is based on multi-beam base-station antenna splitting in the elevation-radiating plane. The sum of the received signal power in the mobile station, including both desired and interference signal power, has been introduced into the handover initiation algorithm. Along with the idea, we present three models of handover initiation algorithm with the shadowing process of Gaussian distribution. The formulation of handover initiation probability of those algorithms is also analyzed. The validity of the presented models has been checked through the comparison with simulation results. The results present the performance characteristics of handover initiation vary with cluster number and base-station antenna elevation angle.
文摘Based on the characteristics of guaranteed handover (GH) algorithm, the finite capacity in one system makes the blocking probability (PB) of GH algorithm increase rapidly in the case of high traffic losd. So, when large amounts of multimedia services are transmitted via a single low earth orbit (LEO) satellite system, the PB of it is much higher. In order to solve the problem, a novel handover scheme defined by multi-tier optimal layer selection is proposed. The scheme sufficiently takes into account the characteristics of double-tier satellite network, which is constituted by LEO satellites combined with medium earth orbit (MEO) satellites, and the multimedia transmitted by such network, so it can augment this systematic capacity and effectively reduces the traffic loed in the LEO which performs GH algorithm. The detailed processes are also presented. The simulation and numerical results show that the approach integrated with GH algorithm achieves a significant improvement in the PB and practicality, as compared to the single LEO layer network.
基金the National Natural Science Foundation of China(Nos.61302080 and 61271182)the Scientific Research Starting Foundation of Fuzhou University(No.022572)
文摘Admission control in high-speed train communication system is quite different from admission control in traditional cellular networks. Conventional admission control strategies cannot be directly applied to this special communication scenario. In this paper, the problem of admission control for handover service is investigated in high-speed train communication environment. An admission control scheme considering bit error rate(BER)and bandwidth borrowing strategy is proposed. On the basis of admission control decision rule taking BER into account, a part of bandwidth obtained by compressing variable rate service in the networks is provided for handover services. The admission control scheme can admit handover services as more as possible while it guarantees the lowest data rate of different services in the networks. Simulation results show that the proposed admission control scheme has a better performance than existing admission control schemes.