期刊文献+
共找到255,000篇文章
< 1 2 250 >
每页显示 20 50 100
An Integrated and Layered Architecture for Location-Aware Computing 被引量:1
1
作者 MALinbing ZHANGXinchang TAOHaiyan 《Geo-Spatial Information Science》 2005年第2期144-147,共4页
This paper gives an overall introduction to the basic concept of LAC(location-aware computing) and its development status, puts forward an integrated location-aware computing architecture which is useful for designing... This paper gives an overall introduction to the basic concept of LAC(location-aware computing) and its development status, puts forward an integrated location-aware computing architecture which is useful for designing the reasonable logical model of LBS(location-based service). Finally, a brief introduction is conducted on a LAC experimental prototype, which acts as a mobile urban tourism assistant. 展开更多
关键词 spatial information service location-aware computing location-based service
在线阅读 下载PDF
Back-gate-tuned organic electrochemical transistor with temporal dynamic modulation for reservoir computing
2
作者 Qian Xu Jie Qiu +6 位作者 Mengyang Liu Dongzi Yang Tingpan Lan Jie Cao Yingfen Wei Hao Jiang Ming Wang 《Journal of Semiconductors》 2026年第1期118-123,共6页
Organic electrochemical transistor(OECT)devices demonstrate great promising potential for reservoir computing(RC)systems,but their lack of tunable dynamic characteristics limits their application in multi-temporal sca... Organic electrochemical transistor(OECT)devices demonstrate great promising potential for reservoir computing(RC)systems,but their lack of tunable dynamic characteristics limits their application in multi-temporal scale tasks.In this study,we report an OECT-based neuromorphic device with tunable relaxation time(τ)by introducing an additional vertical back-gate electrode into a planar structure.The dual-gate design enablesτreconfiguration from 93 to 541 ms.The tunable relaxation behaviors can be attributed to the combined effects of planar-gate induced electrochemical doping and back-gateinduced electrostatic coupling,as verified by electrochemical impedance spectroscopy analysis.Furthermore,we used theτ-tunable OECT devices as physical reservoirs in the RC system for intelligent driving trajectory prediction,achieving a significant improvement in prediction accuracy from below 69%to 99%.The results demonstrate that theτ-tunable OECT shows a promising candidate for multi-temporal scale neuromorphic computing applications. 展开更多
关键词 neuromorphic computing reservoir computing OECT tunable dynamics trajectory prediction
在线阅读 下载PDF
Highly stable self-rectifying memristor integrated arrays for simulated annealing neuromorphic computing
3
作者 Jiang Bian Yingfang Zhu +13 位作者 Shaoan Yan Yin Tang Jiayue Guo Gang Li Jiang Zhao Qing Zhong Qingjiang Li Sen Liu Rui Liu Qilai Chen Yongguang Xiao Xiaojian Zhu Qinghua Li Minghua Tang 《Nano Research》 2026年第1期1089-1101,共13页
This work presents a high-stability self-rectifying memristor(SRM)array based on the Pt/TaO_(x)/Ti structure,with an indepth investigation of the performance and potential applications of the device.The device demonst... This work presents a high-stability self-rectifying memristor(SRM)array based on the Pt/TaO_(x)/Ti structure,with an indepth investigation of the performance and potential applications of the device.The device demonstrates excellent rectification and on/off ratios,along with low-power readout,multi-state storage,and multi-level switching capabilities,highlighting its practicality and adaptability.Notably,the device exhibits outstanding fluctuation suppression and exceptional uniformity.The coefficient of variation(CV)of the rectification ratio,calculated as 0.11497 at 3 V,indicates its high stability under multiple cycles and low-voltage operation,making it well-suited for large-scale integration and operational applications.Moreover,the stability of the rectification ratio further reinforces its potential as a hardware foundation for large-scale inmemory computing systems.By combining the neuromorphic characteristics of the device with a simulated annealing algorithm and optimizing the annealing temperature function,the system emulates biological neuron behavior,enabling fast and efficient image restoration tasks.Experimental results demonstrate that this approach significantly outperforms traditional algorithms in both optimization speed and repair accuracy.The present study offers a novel perspective for the design of in-memory computing hardware and showcases promising applications in neuromorphic computing and image processing. 展开更多
关键词 self-rectifying memristor in-memory computing simulated annealing algorithm neuromorphic computing
原文传递
Two-Dimensional MXene-Based Advanced Sensors for Neuromorphic Computing Intelligent Application
4
作者 Lin Lu Bo Sun +2 位作者 Zheng Wang Jialin Meng Tianyu Wang 《Nano-Micro Letters》 2026年第2期664-691,共28页
As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and el... As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and electrochemical characteristics,MXenes have shown great potential in brain-inspired neuromorphic computing electronics,including neuromorphic gas sensors,pressure sensors and photodetectors.This paper provides a forward-looking review of the research progress regarding MXenes in the neuromorphic sensing domain and discussed the critical challenges that need to be resolved.Key bottlenecks such as insufficient long-term stability under environmental exposure,high costs,scalability limitations in large-scale production,and mechanical mismatch in wearable integration hinder their practical deployment.Furthermore,unresolved issues like interfacial compatibility in heterostructures and energy inefficiency in neu-romorphic signal conversion demand urgent attention.The review offers insights into future research directions enhance the fundamental understanding of MXene properties and promote further integration into neuromorphic computing applications through the convergence with various emerging technologies. 展开更多
关键词 TWO-DIMENSIONAL MXenes SENSOR Neuromorphic computing Multimodal intelligent system Wearable electronics
在线阅读 下载PDF
Mechanical Properties Analysis of Flexible Memristors for Neuromorphic Computing
5
作者 Zhenqian Zhu Jiheng Shui +1 位作者 Tianyu Wang Jialin Meng 《Nano-Micro Letters》 2026年第1期53-79,共27页
The advancement of flexible memristors has significantly promoted the development of wearable electronic for emerging neuromorphic computing applications.Inspired by in-memory computing architecture of human brain,fle... The advancement of flexible memristors has significantly promoted the development of wearable electronic for emerging neuromorphic computing applications.Inspired by in-memory computing architecture of human brain,flexible memristors exhibit great application potential in emulating artificial synapses for highefficiency and low power consumption neuromorphic computing.This paper provides comprehensive overview of flexible memristors from perspectives of development history,material system,device structure,mechanical deformation method,device performance analysis,stress simulation during deformation,and neuromorphic computing applications.The recent advances in flexible electronics are summarized,including single device,device array and integration.The challenges and future perspectives of flexible memristor for neuromorphic computing are discussed deeply,paving the way for constructing wearable smart electronics and applications in large-scale neuromorphic computing and high-order intelligent robotics. 展开更多
关键词 Flexible memristor Neuromorphic computing Mechanical property Wearable electronics
在线阅读 下载PDF
High-Entropy Oxide Memristors for Neuromorphic Computing:From Material Engineering to Functional Integration
6
作者 Jia‑Li Yang Xin‑Gui Tang +4 位作者 Xuan Gu Qi‑Jun Sun Zhen‑Hua Tang Wen‑Hua Li Yan-Ping Jiang 《Nano-Micro Letters》 2026年第2期138-169,共32页
High-entropy oxides(HEOs)have emerged as a promising class of memristive materials,characterized by entropy-stabilized crystal structures,multivalent cation coordination,and tunable defect landscapes.These intrinsic f... High-entropy oxides(HEOs)have emerged as a promising class of memristive materials,characterized by entropy-stabilized crystal structures,multivalent cation coordination,and tunable defect landscapes.These intrinsic features enable forming-free resistive switching,multilevel conductance modulation,and synaptic plasticity,making HEOs attractive for neuromorphic computing.This review outlines recent progress in HEO-based memristors across materials engineering,switching mechanisms,and synaptic emulation.Particular attention is given to vacancy migration,phase transitions,and valence-state dynamics—mechanisms that underlie the switching behaviors observed in both amorphous and crystalline systems.Their relevance to neuromorphic functions such as short-term plasticity and spike-timing-dependent learning is also examined.While encouraging results have been achieved at the device level,challenges remain in conductance precision,variability control,and scalable integration.Addressing these demands a concerted effort across materials design,interface optimization,and task-aware modeling.With such integration,HEO memristors offer a compelling pathway toward energy-efficient and adaptable brain-inspired electronics. 展开更多
关键词 High-entropy oxides MEMRISTORS Neuromorphic computing Configurational entropy Resistive switching
在线阅读 下载PDF
A low-thermal-budget MOSFET-based reservoir computing for temporal data classification
7
作者 Yanqing Li Feixiong Wang +5 位作者 Heyi Huang Yadong Zhang Xiangpeng Liang Shuang Liu Jianshi Tang Huaxiang Yin 《Journal of Semiconductors》 2026年第1期42-48,共7页
Neuromorphic devices have garnered significant attention as potential building blocks for energy-efficient hardware systems owing to their capacity to emulate the computational efficiency of the brain.In this regard,r... Neuromorphic devices have garnered significant attention as potential building blocks for energy-efficient hardware systems owing to their capacity to emulate the computational efficiency of the brain.In this regard,reservoir computing(RC)framework,which leverages straightforward training methods and efficient temporal signal processing,has emerged as a promising scheme.While various physical reservoir devices,including ferroelectric,optoelectronic,and memristor-based systems,have been demonstrated,many still face challenges related to compatibility with mainstream complementary metal oxide semiconductor(CMOS)integration processes.This study introduced a silicon-based schottky barrier metal-oxide-semiconductor field effect transistor(SB-MOSFET),which was fabricated under low thermal budget and compatible with back-end-of-line(BEOL).The device demonstrated short-term memory characteristics,facilitated by the modulation of schottky barriers and charge trapping.Utilizing these characteristics,a RC system for temporal data processing was constructed,and its performance was validated in a 5×4 digital classification task,achieving an accuracy exceeding 98%after 50 training epochs.Furthermore,the system successfully processed temporal signal in waveform classification and prediction tasks using time-division multiplexing.Overall,the SB-MOSFET's high compatibility with CMOS technology provides substantial advantages for large-scale integration,enabling the development of energy-efficient reservoir computing hardware. 展开更多
关键词 schottky barrier MOSFET back-end-of-line integration reservoir computing
在线阅读 下载PDF
Lightweight YOLOv5 with ShuffleNetV2 for Rice Disease Detection in Edge Computing
8
作者 Qingtao Meng Sang-Hyun Lee 《Computers, Materials & Continua》 2026年第1期1395-1409,共15页
This study proposes a lightweight rice disease detection model optimized for edge computing environments.The goal is to enhance the You Only Look Once(YOLO)v5 architecture to achieve a balance between real-time diagno... This study proposes a lightweight rice disease detection model optimized for edge computing environments.The goal is to enhance the You Only Look Once(YOLO)v5 architecture to achieve a balance between real-time diagnostic performance and computational efficiency.To this end,a total of 3234 high-resolution images(2400×1080)were collected from three major rice diseases Rice Blast,Bacterial Blight,and Brown Spot—frequently found in actual rice cultivation fields.These images served as the training dataset.The proposed YOLOv5-V2 model removes the Focus layer from the original YOLOv5s and integrates ShuffleNet V2 into the backbone,thereby resulting in both model compression and improved inference speed.Additionally,YOLOv5-P,based on PP-PicoDet,was configured as a comparative model to quantitatively evaluate performance.Experimental results demonstrated that YOLOv5-V2 achieved excellent detection performance,with an mAP 0.5 of 89.6%,mAP 0.5–0.95 of 66.7%,precision of 91.3%,and recall of 85.6%,while maintaining a lightweight model size of 6.45 MB.In contrast,YOLOv5-P exhibited a smaller model size of 4.03 MB,but showed lower performance with an mAP 0.5 of 70.3%,mAP 0.5–0.95 of 35.2%,precision of 62.3%,and recall of 74.1%.This study lays a technical foundation for the implementation of smart agriculture and real-time disease diagnosis systems by proposing a model that satisfies both accuracy and lightweight requirements. 展开更多
关键词 Lightweight object detection YOLOv5-V2 ShuffleNet V2 edge computing rice disease detection
在线阅读 下载PDF
An Indoor Ubiquitous Computing Environment Based on Location-awareness 被引量:1
9
作者 蒲芳 孙道清 +2 位作者 曹奇英 蔡海滨 李永宁 《Journal of Donghua University(English Edition)》 EI CAS 2006年第4期76-79,共4页
To provide the right services or information to the right users, at the right time and in the right place in ubiquitous computing environment, an Indoor Ubiquitous Computing Environment based on Location-Awareness, IU... To provide the right services or information to the right users, at the right time and in the right place in ubiquitous computing environment, an Indoor Ubiquitous Computing Environment based on Location-Awareness, IUCELA, is presented in this paper. A general architecture of IUCELA is designed to connect multiple sensing devices with locationaware applications. Then the function of location-aware middleware which is the core componnet of the proposed architecture is elaborated. Finally an indoor forum is taken as an example scenario to demonstrate the security, usefulness, flexibiltity and robustness of IUCELA. 展开更多
关键词 ubiquitous computing location awareness middleware.
在线阅读 下载PDF
Pervasive Computing Location-aware Model Based on Ontology
10
作者 蒲芳 蔡海滨 +2 位作者 曹奇英 孙道清 李彤 《Journal of Donghua University(English Edition)》 EI CAS 2008年第3期277-281,共5页
In order to integrate heterogeneous location-aware systems into pervasive computing environment,a novel pervasive computing location-aware model based on ontology is presented.A location-aware model ontology(LMO)is co... In order to integrate heterogeneous location-aware systems into pervasive computing environment,a novel pervasive computing location-aware model based on ontology is presented.A location-aware model ontology(LMO)is constructed.The location-aware model has the capabilities of sharing knowledge,reasoning and adjusting the usage policies of services dynamically through a unified semantic location manner.At last,the work process of our proposed location-aware model is explained by an application scenario. 展开更多
关键词 pervasive computing location-aware model ONTOLOGY
在线阅读 下载PDF
Offload Strategy for Edge Computing in Satellite Networks Based on Software Defined Network 被引量:1
11
作者 Zhiguo Liu Yuqing Gui +1 位作者 Lin Wang Yingru Jiang 《Computers, Materials & Continua》 SCIE EI 2025年第1期863-879,共17页
Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in us... Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency. 展开更多
关键词 Satellite network edge computing task scheduling computing offloading
在线阅读 下载PDF
Optoelectronic memristor based on a-C:Te film for muti-mode reservoir computing 被引量:2
12
作者 Qiaoling Tian Kuo Xun +7 位作者 Zhuangzhuang Li Xiaoning Zhao Ya Lin Ye Tao Zhongqiang Wang Daniele Ielmini Haiyang Xu Yichun Liu 《Journal of Semiconductors》 2025年第2期144-149,共6页
Optoelectronic memristor is generating growing research interest for high efficient computing and sensing-memory applications.In this work,an optoelectronic memristor with Au/a-C:Te/Pt structure is developed.Synaptic ... Optoelectronic memristor is generating growing research interest for high efficient computing and sensing-memory applications.In this work,an optoelectronic memristor with Au/a-C:Te/Pt structure is developed.Synaptic functions,i.e.,excita-tory post-synaptic current and pair-pulse facilitation are successfully mimicked with the memristor under electrical and optical stimulations.More importantly,the device exhibited distinguishable response currents by adjusting 4-bit input electrical/opti-cal signals.A multi-mode reservoir computing(RC)system is constructed with the optoelectronic memristors to emulate human tactile-visual fusion recognition and an accuracy of 98.7%is achieved.The optoelectronic memristor provides potential for developing multi-mode RC system. 展开更多
关键词 optoelectronic memristor volatile switching muti-mode reservoir computing
在线阅读 下载PDF
Dynamic Task Offloading Scheme for Edge Computing via Meta-Reinforcement Learning 被引量:1
13
作者 Jiajia Liu Peng Xie +2 位作者 Wei Li Bo Tang Jianhua Liu 《Computers, Materials & Continua》 2025年第2期2609-2635,共27页
As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the... As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the task offloading strategies by interacting with the entities. In actual application scenarios, users of edge computing are always changing dynamically. However, the existing task offloading strategies cannot be applied to such dynamic scenarios. To solve this problem, we propose a novel dynamic task offloading framework for distributed edge computing, leveraging the potential of meta-reinforcement learning (MRL). Our approach formulates a multi-objective optimization problem aimed at minimizing both delay and energy consumption. We model the task offloading strategy using a directed acyclic graph (DAG). Furthermore, we propose a distributed edge computing adaptive task offloading algorithm rooted in MRL. This algorithm integrates multiple Markov decision processes (MDP) with a sequence-to-sequence (seq2seq) network, enabling it to learn and adapt task offloading strategies responsively across diverse network environments. To achieve joint optimization of delay and energy consumption, we incorporate the non-dominated sorting genetic algorithm II (NSGA-II) into our framework. Simulation results demonstrate the superiority of our proposed solution, achieving a 21% reduction in time delay and a 19% decrease in energy consumption compared to alternative task offloading schemes. Moreover, our scheme exhibits remarkable adaptability, responding swiftly to changes in various network environments. 展开更多
关键词 Edge computing adaptive META task offloading joint optimization
在线阅读 下载PDF
Near‑Sensor Edge Computing System Enabled by a CMOS Compatible Photonic Integrated Circuit Platform Using Bilayer AlN/Si Waveguides 被引量:1
14
作者 Zhihao Ren Zixuan Zhang +4 位作者 Yangyang Zhuge Zian Xiao Siyu Xu Jingkai Zhou Chengkuo Lee 《Nano-Micro Letters》 2025年第11期1-20,共20页
The rise of large-scale artificial intelligence(AI)models,such as ChatGPT,Deep-Seek,and autonomous vehicle systems,has significantly advanced the boundaries of AI,enabling highly complex tasks in natural language proc... The rise of large-scale artificial intelligence(AI)models,such as ChatGPT,Deep-Seek,and autonomous vehicle systems,has significantly advanced the boundaries of AI,enabling highly complex tasks in natural language processing,image recognition,and real-time decisionmaking.However,these models demand immense computational power and are often centralized,relying on cloud-based architectures with inherent limitations in latency,privacy,and energy efficiency.To address these challenges and bring AI closer to real-world applications,such as wearable health monitoring,robotics,and immersive virtual environments,innovative hardware solutions are urgently needed.This work introduces a near-sensor edge computing(NSEC)system,built on a bilayer AlN/Si waveguide platform,to provide real-time,energy-efficient AI capabilities at the edge.Leveraging the electro-optic properties of AlN microring resonators for photonic feature extraction,coupled with Si-based thermo-optic Mach-Zehnder interferometers for neural network computations,the system represents a transformative approach to AI hardware design.Demonstrated through multimodal gesture and gait analysis,the NSEC system achieves high classification accuracies of 96.77%for gestures and 98.31%for gaits,ultra-low latency(<10 ns),and minimal energy consumption(<0.34 pJ).This groundbreaking system bridges the gap between AI models and real-world applications,enabling efficient,privacy-preserving AI solutions for healthcare,robotics,and next-generation human-machine interfaces,marking a pivotal advancement in edge computing and AI deployment. 展开更多
关键词 Photonic integrated circuits Edge computing Aluminum nitride Neural networks Wearable sensors
在线阅读 下载PDF
Exploitation of temporal dynamics and synaptic plasticity in multilayered ITO/ZnO/IGZO/ZnO/ITO memristor for energy-efficient reservoir computing 被引量:1
15
作者 Muhammad Ismail Seungjun Lee +2 位作者 Maria Rasheed Chandreswar Mahata Sungjun Kim 《Journal of Materials Science & Technology》 2025年第32期37-52,共16页
As the demand for advanced computational systems capable of handling large data volumes rises,nano-electronic devices,such as memristors,are being developed for efficient data processing,especially in reservoir comput... As the demand for advanced computational systems capable of handling large data volumes rises,nano-electronic devices,such as memristors,are being developed for efficient data processing,especially in reservoir computing(RC).RC enables the processing of temporal information with minimal training costs,making it a promising approach for neuromorphic computing.However,current memristor devices of-ten suffer from limitations in dynamic conductance and temporal behavior,which affects their perfor-mance in these applications.In this study,we present a multilayered indium-tin-oxide(ITO)/ZnO/indium-gallium-zinc oxide(IGZO)/ZnO/ITO memristor fabricated via radiofrequency sputtering to explore its fil-amentary and nonfilamentary resistive switching(RS)characteristics.High-resolution transmission elec-tron microscopy confirmed the polycrystalline structure of the ZnO/IGZO/ZnO active layer.Dual-switching modes were demonstrated by controlling the current compliance(I_(CC)).In the filamentary mode,the memristor exhibited a large memory window(10^(3)),low-operating voltages(±2 V),excellent cycle-to-cycle stability,and multilevel switching with controlled reset-stop voltages,making it suitable for high-density memory applications.Nonfilamentary switching demonstrated stable on/off ratios above 10,en-durance up to 102 cycles,and retention suited for short-term memory.Key synaptic behaviors,such as paired-pulse facilitation(PPF),post-tetanic potentiation(PTP),and spike-rate dependent plasticity(SRDP)were successfully emulated by modulating pulse amplitude,width,and interval.Experience-dependent plasticity(EDP)was also demonstrated,further replicating biological synaptic functions.These tempo-ral properties were utilized to develop a 4-bit reservoir computing system with 16 distinct conductance states,enabling efficient information encoding.For image recognition tasks,convolutional neural net-work(CNN)simulations achieved a high accuracy of 98.45%after 25 training epochs,outperforming the accuracy achieved following artificial neural network(ANN)simulations(87.79%).These findings demon-strate that the multilayered memristor exhibits high performance in neuromorphic systems,particularly for complex pattern recognition tasks,such as digit and letter classification. 展开更多
关键词 MEMRISTORS Temporal dynamics Synaptic plasticity Reservoir computing Neuromorphic systems Image recognition
原文传递
Synaptic devices based on silicon carbide for neuromorphic computing 被引量:1
16
作者 Boyu Ye Xiao Liu +2 位作者 Chao Wu Wensheng Yan Xiaodong Pi 《Journal of Semiconductors》 2025年第2期38-51,共14页
To address the increasing demand for massive data storage and processing,brain-inspired neuromorphic comput-ing systems based on artificial synaptic devices have been actively developed in recent years.Among the vario... To address the increasing demand for massive data storage and processing,brain-inspired neuromorphic comput-ing systems based on artificial synaptic devices have been actively developed in recent years.Among the various materials inves-tigated for the fabrication of synaptic devices,silicon carbide(SiC)has emerged as a preferred choices due to its high electron mobility,superior thermal conductivity,and excellent thermal stability,which exhibits promising potential for neuromorphic applications in harsh environments.In this review,the recent progress in SiC-based synaptic devices is summarized.Firstly,an in-depth discussion is conducted regarding the categories,working mechanisms,and structural designs of these devices.Subse-quently,several application scenarios for SiC-based synaptic devices are presented.Finally,a few perspectives and directions for their future development are outlined. 展开更多
关键词 silicon carbide wide bandgap semiconductors synaptic devices neuromorphic computing high temperature
在线阅读 下载PDF
Scaled Up Chip Pushes Quantum Computing a Bit Closer to Reality 被引量:1
17
作者 Chris Palmer 《Engineering》 2025年第7期6-8,共3页
In the 9 December 2024 issue of Nature[1],a team of Google engineers reported breakthrough results using“Willow”,their lat-est quantum computing chip(Fig.1).By meeting a milestone“below threshold”reduction in the ... In the 9 December 2024 issue of Nature[1],a team of Google engineers reported breakthrough results using“Willow”,their lat-est quantum computing chip(Fig.1).By meeting a milestone“below threshold”reduction in the rate of errors that plague super-conducting circuit-based quantum computing systems(Fig.2),the work moves the field another step towards its promised super-charged applications,albeit likely still many years away.Areas expected to benefit from quantum computing include,among others,drug discovery,materials science,finance,cybersecurity,and machine learning. 展开更多
关键词 materials science BREAKTHROUGH drug discovery willow chip quantum computing superconducting circuits error reduction applications
在线阅读 下载PDF
CBBM-WARM:A Workload-Aware Meta-Heuristic for Resource Management in Cloud Computing 被引量:1
18
作者 K Nivitha P Pabitha R Praveen 《China Communications》 2025年第6期255-275,共21页
The rapid advent in artificial intelligence and big data has revolutionized the dynamic requirement in the demands of the computing resource for executing specific tasks in the cloud environment.The process of achievi... The rapid advent in artificial intelligence and big data has revolutionized the dynamic requirement in the demands of the computing resource for executing specific tasks in the cloud environment.The process of achieving autonomic resource management is identified to be a herculean task due to its huge distributed and heterogeneous environment.Moreover,the cloud network needs to provide autonomic resource management and deliver potential services to the clients by complying with the requirements of Quality-of-Service(QoS)without impacting the Service Level Agreements(SLAs).However,the existing autonomic cloud resource managing frameworks are not capable in handling the resources of the cloud with its dynamic requirements.In this paper,Coot Bird Behavior Model-based Workload Aware Autonomic Resource Management Scheme(CBBM-WARMS)is proposed for handling the dynamic requirements of cloud resources through the estimation of workload that need to be policed by the cloud environment.This CBBM-WARMS initially adopted the algorithm of adaptive density peak clustering for workloads clustering of the cloud.Then,it utilized the fuzzy logic during the process of workload scheduling for achieving the determining the availability of cloud resources.It further used CBBM for potential Virtual Machine(VM)deployment that attributes towards the provision of optimal resources.It is proposed with the capability of achieving optimal QoS with minimized time,energy consumption,SLA cost and SLA violation.The experimental validation of the proposed CBBMWARMS confirms minimized SLA cost of 19.21%and reduced SLA violation rate of 18.74%,better than the compared autonomic cloud resource managing frameworks. 展开更多
关键词 autonomic resource management cloud computing coot bird behavior model SLA violation cost WORKLOAD
在线阅读 下载PDF
Providing Robust and Low-Cost Edge Computing in Smart Grid:An Energy Harvesting Based Task Scheduling and Resource Management Framework 被引量:1
19
作者 Xie Zhigang Song Xin +1 位作者 Xu Siyang Cao Jing 《China Communications》 2025年第2期226-240,共15页
Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power sta... Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power stations).To solve the problem,we propose an energy harvesting based task scheduling and resource management framework to provide robust and low-cost edge computing services for smart grid.First,we formulate an energy consumption minimization problem with regard to task offloading,time switching,and resource allocation for mobile devices,which can be decoupled and transformed into a typical knapsack problem.Then,solutions are derived by two different algorithms.Furthermore,we deploy renewable energy and energy storage units at edge servers to tackle intermittency and instability problems.Finally,we design an energy management algorithm based on sampling average approximation for edge computing servers to derive the optimal charging/discharging strategies,number of energy storage units,and renewable energy utilization.The simulation results show the efficiency and superiority of our proposed framework. 展开更多
关键词 edge computing energy harvesting energy storage unit renewable energy sampling average approximation task scheduling
在线阅读 下载PDF
DeepSeek vs.ChatGPT vs.Claude:A comparative study for scientific computing and scientific machine learning tasks 被引量:1
20
作者 Qile Jiang Zhiwei Gao George Em Karniadakis 《Theoretical & Applied Mechanics Letters》 2025年第3期194-206,共13页
Large language models(LLMs)have emerged as powerful tools for addressing a wide range of problems,including those in scientific computing,particularly in solving partial differential equations(PDEs).However,different ... Large language models(LLMs)have emerged as powerful tools for addressing a wide range of problems,including those in scientific computing,particularly in solving partial differential equations(PDEs).However,different models exhibit distinct strengths and preferences,resulting in varying levels of performance.In this paper,we compare the capabilities of the most advanced LLMs—DeepSeek,ChatGPT,and Claude—along with their reasoning-optimized versions in addressing computational challenges.Specifically,we evaluate their proficiency in solving traditional numerical problems in scientific computing as well as leveraging scientific machine learning techniques for PDE-based problems.We designed all our experiments so that a nontrivial decision is required,e.g,defining the proper space of input functions for neural operator learning.Our findings show that reasoning and hybrid-reasoning models consistently and significantly outperform non-reasoning ones in solving challenging problems,with ChatGPT o3-mini-high generally offering the fastest reasoning speed. 展开更多
关键词 Large language models(LLM) Scientific computing Scientific machine learning Physics-informed neural network
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部