This paper gives an overall introduction to the basic concept of LAC(location-aware computing) and its development status, puts forward an integrated location-aware computing architecture which is useful for designing...This paper gives an overall introduction to the basic concept of LAC(location-aware computing) and its development status, puts forward an integrated location-aware computing architecture which is useful for designing the reasonable logical model of LBS(location-based service). Finally, a brief introduction is conducted on a LAC experimental prototype, which acts as a mobile urban tourism assistant.展开更多
Organic electrochemical transistor(OECT)devices demonstrate great promising potential for reservoir computing(RC)systems,but their lack of tunable dynamic characteristics limits their application in multi-temporal sca...Organic electrochemical transistor(OECT)devices demonstrate great promising potential for reservoir computing(RC)systems,but their lack of tunable dynamic characteristics limits their application in multi-temporal scale tasks.In this study,we report an OECT-based neuromorphic device with tunable relaxation time(τ)by introducing an additional vertical back-gate electrode into a planar structure.The dual-gate design enablesτreconfiguration from 93 to 541 ms.The tunable relaxation behaviors can be attributed to the combined effects of planar-gate induced electrochemical doping and back-gateinduced electrostatic coupling,as verified by electrochemical impedance spectroscopy analysis.Furthermore,we used theτ-tunable OECT devices as physical reservoirs in the RC system for intelligent driving trajectory prediction,achieving a significant improvement in prediction accuracy from below 69%to 99%.The results demonstrate that theτ-tunable OECT shows a promising candidate for multi-temporal scale neuromorphic computing applications.展开更多
This work presents a high-stability self-rectifying memristor(SRM)array based on the Pt/TaO_(x)/Ti structure,with an indepth investigation of the performance and potential applications of the device.The device demonst...This work presents a high-stability self-rectifying memristor(SRM)array based on the Pt/TaO_(x)/Ti structure,with an indepth investigation of the performance and potential applications of the device.The device demonstrates excellent rectification and on/off ratios,along with low-power readout,multi-state storage,and multi-level switching capabilities,highlighting its practicality and adaptability.Notably,the device exhibits outstanding fluctuation suppression and exceptional uniformity.The coefficient of variation(CV)of the rectification ratio,calculated as 0.11497 at 3 V,indicates its high stability under multiple cycles and low-voltage operation,making it well-suited for large-scale integration and operational applications.Moreover,the stability of the rectification ratio further reinforces its potential as a hardware foundation for large-scale inmemory computing systems.By combining the neuromorphic characteristics of the device with a simulated annealing algorithm and optimizing the annealing temperature function,the system emulates biological neuron behavior,enabling fast and efficient image restoration tasks.Experimental results demonstrate that this approach significantly outperforms traditional algorithms in both optimization speed and repair accuracy.The present study offers a novel perspective for the design of in-memory computing hardware and showcases promising applications in neuromorphic computing and image processing.展开更多
As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and el...As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and electrochemical characteristics,MXenes have shown great potential in brain-inspired neuromorphic computing electronics,including neuromorphic gas sensors,pressure sensors and photodetectors.This paper provides a forward-looking review of the research progress regarding MXenes in the neuromorphic sensing domain and discussed the critical challenges that need to be resolved.Key bottlenecks such as insufficient long-term stability under environmental exposure,high costs,scalability limitations in large-scale production,and mechanical mismatch in wearable integration hinder their practical deployment.Furthermore,unresolved issues like interfacial compatibility in heterostructures and energy inefficiency in neu-romorphic signal conversion demand urgent attention.The review offers insights into future research directions enhance the fundamental understanding of MXene properties and promote further integration into neuromorphic computing applications through the convergence with various emerging technologies.展开更多
The advancement of flexible memristors has significantly promoted the development of wearable electronic for emerging neuromorphic computing applications.Inspired by in-memory computing architecture of human brain,fle...The advancement of flexible memristors has significantly promoted the development of wearable electronic for emerging neuromorphic computing applications.Inspired by in-memory computing architecture of human brain,flexible memristors exhibit great application potential in emulating artificial synapses for highefficiency and low power consumption neuromorphic computing.This paper provides comprehensive overview of flexible memristors from perspectives of development history,material system,device structure,mechanical deformation method,device performance analysis,stress simulation during deformation,and neuromorphic computing applications.The recent advances in flexible electronics are summarized,including single device,device array and integration.The challenges and future perspectives of flexible memristor for neuromorphic computing are discussed deeply,paving the way for constructing wearable smart electronics and applications in large-scale neuromorphic computing and high-order intelligent robotics.展开更多
High-entropy oxides(HEOs)have emerged as a promising class of memristive materials,characterized by entropy-stabilized crystal structures,multivalent cation coordination,and tunable defect landscapes.These intrinsic f...High-entropy oxides(HEOs)have emerged as a promising class of memristive materials,characterized by entropy-stabilized crystal structures,multivalent cation coordination,and tunable defect landscapes.These intrinsic features enable forming-free resistive switching,multilevel conductance modulation,and synaptic plasticity,making HEOs attractive for neuromorphic computing.This review outlines recent progress in HEO-based memristors across materials engineering,switching mechanisms,and synaptic emulation.Particular attention is given to vacancy migration,phase transitions,and valence-state dynamics—mechanisms that underlie the switching behaviors observed in both amorphous and crystalline systems.Their relevance to neuromorphic functions such as short-term plasticity and spike-timing-dependent learning is also examined.While encouraging results have been achieved at the device level,challenges remain in conductance precision,variability control,and scalable integration.Addressing these demands a concerted effort across materials design,interface optimization,and task-aware modeling.With such integration,HEO memristors offer a compelling pathway toward energy-efficient and adaptable brain-inspired electronics.展开更多
Neuromorphic devices have garnered significant attention as potential building blocks for energy-efficient hardware systems owing to their capacity to emulate the computational efficiency of the brain.In this regard,r...Neuromorphic devices have garnered significant attention as potential building blocks for energy-efficient hardware systems owing to their capacity to emulate the computational efficiency of the brain.In this regard,reservoir computing(RC)framework,which leverages straightforward training methods and efficient temporal signal processing,has emerged as a promising scheme.While various physical reservoir devices,including ferroelectric,optoelectronic,and memristor-based systems,have been demonstrated,many still face challenges related to compatibility with mainstream complementary metal oxide semiconductor(CMOS)integration processes.This study introduced a silicon-based schottky barrier metal-oxide-semiconductor field effect transistor(SB-MOSFET),which was fabricated under low thermal budget and compatible with back-end-of-line(BEOL).The device demonstrated short-term memory characteristics,facilitated by the modulation of schottky barriers and charge trapping.Utilizing these characteristics,a RC system for temporal data processing was constructed,and its performance was validated in a 5×4 digital classification task,achieving an accuracy exceeding 98%after 50 training epochs.Furthermore,the system successfully processed temporal signal in waveform classification and prediction tasks using time-division multiplexing.Overall,the SB-MOSFET's high compatibility with CMOS technology provides substantial advantages for large-scale integration,enabling the development of energy-efficient reservoir computing hardware.展开更多
This study proposes a lightweight rice disease detection model optimized for edge computing environments.The goal is to enhance the You Only Look Once(YOLO)v5 architecture to achieve a balance between real-time diagno...This study proposes a lightweight rice disease detection model optimized for edge computing environments.The goal is to enhance the You Only Look Once(YOLO)v5 architecture to achieve a balance between real-time diagnostic performance and computational efficiency.To this end,a total of 3234 high-resolution images(2400×1080)were collected from three major rice diseases Rice Blast,Bacterial Blight,and Brown Spot—frequently found in actual rice cultivation fields.These images served as the training dataset.The proposed YOLOv5-V2 model removes the Focus layer from the original YOLOv5s and integrates ShuffleNet V2 into the backbone,thereby resulting in both model compression and improved inference speed.Additionally,YOLOv5-P,based on PP-PicoDet,was configured as a comparative model to quantitatively evaluate performance.Experimental results demonstrated that YOLOv5-V2 achieved excellent detection performance,with an mAP 0.5 of 89.6%,mAP 0.5–0.95 of 66.7%,precision of 91.3%,and recall of 85.6%,while maintaining a lightweight model size of 6.45 MB.In contrast,YOLOv5-P exhibited a smaller model size of 4.03 MB,but showed lower performance with an mAP 0.5 of 70.3%,mAP 0.5–0.95 of 35.2%,precision of 62.3%,and recall of 74.1%.This study lays a technical foundation for the implementation of smart agriculture and real-time disease diagnosis systems by proposing a model that satisfies both accuracy and lightweight requirements.展开更多
To provide the right services or information to the right users, at the right time and in the right place in ubiquitous computing environment, an Indoor Ubiquitous Computing Environment based on Location-Awareness, IU...To provide the right services or information to the right users, at the right time and in the right place in ubiquitous computing environment, an Indoor Ubiquitous Computing Environment based on Location-Awareness, IUCELA, is presented in this paper. A general architecture of IUCELA is designed to connect multiple sensing devices with locationaware applications. Then the function of location-aware middleware which is the core componnet of the proposed architecture is elaborated. Finally an indoor forum is taken as an example scenario to demonstrate the security, usefulness, flexibiltity and robustness of IUCELA.展开更多
In order to integrate heterogeneous location-aware systems into pervasive computing environment,a novel pervasive computing location-aware model based on ontology is presented.A location-aware model ontology(LMO)is co...In order to integrate heterogeneous location-aware systems into pervasive computing environment,a novel pervasive computing location-aware model based on ontology is presented.A location-aware model ontology(LMO)is constructed.The location-aware model has the capabilities of sharing knowledge,reasoning and adjusting the usage policies of services dynamically through a unified semantic location manner.At last,the work process of our proposed location-aware model is explained by an application scenario.展开更多
Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in us...Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency.展开更多
Optoelectronic memristor is generating growing research interest for high efficient computing and sensing-memory applications.In this work,an optoelectronic memristor with Au/a-C:Te/Pt structure is developed.Synaptic ...Optoelectronic memristor is generating growing research interest for high efficient computing and sensing-memory applications.In this work,an optoelectronic memristor with Au/a-C:Te/Pt structure is developed.Synaptic functions,i.e.,excita-tory post-synaptic current and pair-pulse facilitation are successfully mimicked with the memristor under electrical and optical stimulations.More importantly,the device exhibited distinguishable response currents by adjusting 4-bit input electrical/opti-cal signals.A multi-mode reservoir computing(RC)system is constructed with the optoelectronic memristors to emulate human tactile-visual fusion recognition and an accuracy of 98.7%is achieved.The optoelectronic memristor provides potential for developing multi-mode RC system.展开更多
As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the...As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the task offloading strategies by interacting with the entities. In actual application scenarios, users of edge computing are always changing dynamically. However, the existing task offloading strategies cannot be applied to such dynamic scenarios. To solve this problem, we propose a novel dynamic task offloading framework for distributed edge computing, leveraging the potential of meta-reinforcement learning (MRL). Our approach formulates a multi-objective optimization problem aimed at minimizing both delay and energy consumption. We model the task offloading strategy using a directed acyclic graph (DAG). Furthermore, we propose a distributed edge computing adaptive task offloading algorithm rooted in MRL. This algorithm integrates multiple Markov decision processes (MDP) with a sequence-to-sequence (seq2seq) network, enabling it to learn and adapt task offloading strategies responsively across diverse network environments. To achieve joint optimization of delay and energy consumption, we incorporate the non-dominated sorting genetic algorithm II (NSGA-II) into our framework. Simulation results demonstrate the superiority of our proposed solution, achieving a 21% reduction in time delay and a 19% decrease in energy consumption compared to alternative task offloading schemes. Moreover, our scheme exhibits remarkable adaptability, responding swiftly to changes in various network environments.展开更多
The rise of large-scale artificial intelligence(AI)models,such as ChatGPT,Deep-Seek,and autonomous vehicle systems,has significantly advanced the boundaries of AI,enabling highly complex tasks in natural language proc...The rise of large-scale artificial intelligence(AI)models,such as ChatGPT,Deep-Seek,and autonomous vehicle systems,has significantly advanced the boundaries of AI,enabling highly complex tasks in natural language processing,image recognition,and real-time decisionmaking.However,these models demand immense computational power and are often centralized,relying on cloud-based architectures with inherent limitations in latency,privacy,and energy efficiency.To address these challenges and bring AI closer to real-world applications,such as wearable health monitoring,robotics,and immersive virtual environments,innovative hardware solutions are urgently needed.This work introduces a near-sensor edge computing(NSEC)system,built on a bilayer AlN/Si waveguide platform,to provide real-time,energy-efficient AI capabilities at the edge.Leveraging the electro-optic properties of AlN microring resonators for photonic feature extraction,coupled with Si-based thermo-optic Mach-Zehnder interferometers for neural network computations,the system represents a transformative approach to AI hardware design.Demonstrated through multimodal gesture and gait analysis,the NSEC system achieves high classification accuracies of 96.77%for gestures and 98.31%for gaits,ultra-low latency(<10 ns),and minimal energy consumption(<0.34 pJ).This groundbreaking system bridges the gap between AI models and real-world applications,enabling efficient,privacy-preserving AI solutions for healthcare,robotics,and next-generation human-machine interfaces,marking a pivotal advancement in edge computing and AI deployment.展开更多
As the demand for advanced computational systems capable of handling large data volumes rises,nano-electronic devices,such as memristors,are being developed for efficient data processing,especially in reservoir comput...As the demand for advanced computational systems capable of handling large data volumes rises,nano-electronic devices,such as memristors,are being developed for efficient data processing,especially in reservoir computing(RC).RC enables the processing of temporal information with minimal training costs,making it a promising approach for neuromorphic computing.However,current memristor devices of-ten suffer from limitations in dynamic conductance and temporal behavior,which affects their perfor-mance in these applications.In this study,we present a multilayered indium-tin-oxide(ITO)/ZnO/indium-gallium-zinc oxide(IGZO)/ZnO/ITO memristor fabricated via radiofrequency sputtering to explore its fil-amentary and nonfilamentary resistive switching(RS)characteristics.High-resolution transmission elec-tron microscopy confirmed the polycrystalline structure of the ZnO/IGZO/ZnO active layer.Dual-switching modes were demonstrated by controlling the current compliance(I_(CC)).In the filamentary mode,the memristor exhibited a large memory window(10^(3)),low-operating voltages(±2 V),excellent cycle-to-cycle stability,and multilevel switching with controlled reset-stop voltages,making it suitable for high-density memory applications.Nonfilamentary switching demonstrated stable on/off ratios above 10,en-durance up to 102 cycles,and retention suited for short-term memory.Key synaptic behaviors,such as paired-pulse facilitation(PPF),post-tetanic potentiation(PTP),and spike-rate dependent plasticity(SRDP)were successfully emulated by modulating pulse amplitude,width,and interval.Experience-dependent plasticity(EDP)was also demonstrated,further replicating biological synaptic functions.These tempo-ral properties were utilized to develop a 4-bit reservoir computing system with 16 distinct conductance states,enabling efficient information encoding.For image recognition tasks,convolutional neural net-work(CNN)simulations achieved a high accuracy of 98.45%after 25 training epochs,outperforming the accuracy achieved following artificial neural network(ANN)simulations(87.79%).These findings demon-strate that the multilayered memristor exhibits high performance in neuromorphic systems,particularly for complex pattern recognition tasks,such as digit and letter classification.展开更多
To address the increasing demand for massive data storage and processing,brain-inspired neuromorphic comput-ing systems based on artificial synaptic devices have been actively developed in recent years.Among the vario...To address the increasing demand for massive data storage and processing,brain-inspired neuromorphic comput-ing systems based on artificial synaptic devices have been actively developed in recent years.Among the various materials inves-tigated for the fabrication of synaptic devices,silicon carbide(SiC)has emerged as a preferred choices due to its high electron mobility,superior thermal conductivity,and excellent thermal stability,which exhibits promising potential for neuromorphic applications in harsh environments.In this review,the recent progress in SiC-based synaptic devices is summarized.Firstly,an in-depth discussion is conducted regarding the categories,working mechanisms,and structural designs of these devices.Subse-quently,several application scenarios for SiC-based synaptic devices are presented.Finally,a few perspectives and directions for their future development are outlined.展开更多
In the 9 December 2024 issue of Nature[1],a team of Google engineers reported breakthrough results using“Willow”,their lat-est quantum computing chip(Fig.1).By meeting a milestone“below threshold”reduction in the ...In the 9 December 2024 issue of Nature[1],a team of Google engineers reported breakthrough results using“Willow”,their lat-est quantum computing chip(Fig.1).By meeting a milestone“below threshold”reduction in the rate of errors that plague super-conducting circuit-based quantum computing systems(Fig.2),the work moves the field another step towards its promised super-charged applications,albeit likely still many years away.Areas expected to benefit from quantum computing include,among others,drug discovery,materials science,finance,cybersecurity,and machine learning.展开更多
The rapid advent in artificial intelligence and big data has revolutionized the dynamic requirement in the demands of the computing resource for executing specific tasks in the cloud environment.The process of achievi...The rapid advent in artificial intelligence and big data has revolutionized the dynamic requirement in the demands of the computing resource for executing specific tasks in the cloud environment.The process of achieving autonomic resource management is identified to be a herculean task due to its huge distributed and heterogeneous environment.Moreover,the cloud network needs to provide autonomic resource management and deliver potential services to the clients by complying with the requirements of Quality-of-Service(QoS)without impacting the Service Level Agreements(SLAs).However,the existing autonomic cloud resource managing frameworks are not capable in handling the resources of the cloud with its dynamic requirements.In this paper,Coot Bird Behavior Model-based Workload Aware Autonomic Resource Management Scheme(CBBM-WARMS)is proposed for handling the dynamic requirements of cloud resources through the estimation of workload that need to be policed by the cloud environment.This CBBM-WARMS initially adopted the algorithm of adaptive density peak clustering for workloads clustering of the cloud.Then,it utilized the fuzzy logic during the process of workload scheduling for achieving the determining the availability of cloud resources.It further used CBBM for potential Virtual Machine(VM)deployment that attributes towards the provision of optimal resources.It is proposed with the capability of achieving optimal QoS with minimized time,energy consumption,SLA cost and SLA violation.The experimental validation of the proposed CBBMWARMS confirms minimized SLA cost of 19.21%and reduced SLA violation rate of 18.74%,better than the compared autonomic cloud resource managing frameworks.展开更多
Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power sta...Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power stations).To solve the problem,we propose an energy harvesting based task scheduling and resource management framework to provide robust and low-cost edge computing services for smart grid.First,we formulate an energy consumption minimization problem with regard to task offloading,time switching,and resource allocation for mobile devices,which can be decoupled and transformed into a typical knapsack problem.Then,solutions are derived by two different algorithms.Furthermore,we deploy renewable energy and energy storage units at edge servers to tackle intermittency and instability problems.Finally,we design an energy management algorithm based on sampling average approximation for edge computing servers to derive the optimal charging/discharging strategies,number of energy storage units,and renewable energy utilization.The simulation results show the efficiency and superiority of our proposed framework.展开更多
Large language models(LLMs)have emerged as powerful tools for addressing a wide range of problems,including those in scientific computing,particularly in solving partial differential equations(PDEs).However,different ...Large language models(LLMs)have emerged as powerful tools for addressing a wide range of problems,including those in scientific computing,particularly in solving partial differential equations(PDEs).However,different models exhibit distinct strengths and preferences,resulting in varying levels of performance.In this paper,we compare the capabilities of the most advanced LLMs—DeepSeek,ChatGPT,and Claude—along with their reasoning-optimized versions in addressing computational challenges.Specifically,we evaluate their proficiency in solving traditional numerical problems in scientific computing as well as leveraging scientific machine learning techniques for PDE-based problems.We designed all our experiments so that a nontrivial decision is required,e.g,defining the proper space of input functions for neural operator learning.Our findings show that reasoning and hybrid-reasoning models consistently and significantly outperform non-reasoning ones in solving challenging problems,with ChatGPT o3-mini-high generally offering the fastest reasoning speed.展开更多
文摘This paper gives an overall introduction to the basic concept of LAC(location-aware computing) and its development status, puts forward an integrated location-aware computing architecture which is useful for designing the reasonable logical model of LBS(location-based service). Finally, a brief introduction is conducted on a LAC experimental prototype, which acts as a mobile urban tourism assistant.
基金supported by the National Key Research and Development Program of China under Grant 2022YFB3608300in part by the National Nature Science Foundation of China(NSFC)under Grants 62404050,U2341218,62574056,62204052。
文摘Organic electrochemical transistor(OECT)devices demonstrate great promising potential for reservoir computing(RC)systems,but their lack of tunable dynamic characteristics limits their application in multi-temporal scale tasks.In this study,we report an OECT-based neuromorphic device with tunable relaxation time(τ)by introducing an additional vertical back-gate electrode into a planar structure.The dual-gate design enablesτreconfiguration from 93 to 541 ms.The tunable relaxation behaviors can be attributed to the combined effects of planar-gate induced electrochemical doping and back-gateinduced electrostatic coupling,as verified by electrochemical impedance spectroscopy analysis.Furthermore,we used theτ-tunable OECT devices as physical reservoirs in the RC system for intelligent driving trajectory prediction,achieving a significant improvement in prediction accuracy from below 69%to 99%.The results demonstrate that theτ-tunable OECT shows a promising candidate for multi-temporal scale neuromorphic computing applications.
基金the National Natural Science Foundation of China(No.U23A20322)the National Key Research and Development Program of China(Nos.2023YFF0719600,2021YFA1202600,and 2021YFB4000800)+4 种基金the CAS Project for Young Scientists in Basic Research(No.YSBR-113)the Ningbo Technology Project(No.2022A-007-C)the Hunan Provincial Natural Science Foundation(Nos.2023JJ50009,2025JJ60351,and 2023JJ30599)the Foundation of Innovation Center of Radiation Application(No.KFZC2023020701)the Major Scientific and Technological Innovation Platform Project of Hunan Province(No.2024JC1003).
文摘This work presents a high-stability self-rectifying memristor(SRM)array based on the Pt/TaO_(x)/Ti structure,with an indepth investigation of the performance and potential applications of the device.The device demonstrates excellent rectification and on/off ratios,along with low-power readout,multi-state storage,and multi-level switching capabilities,highlighting its practicality and adaptability.Notably,the device exhibits outstanding fluctuation suppression and exceptional uniformity.The coefficient of variation(CV)of the rectification ratio,calculated as 0.11497 at 3 V,indicates its high stability under multiple cycles and low-voltage operation,making it well-suited for large-scale integration and operational applications.Moreover,the stability of the rectification ratio further reinforces its potential as a hardware foundation for large-scale inmemory computing systems.By combining the neuromorphic characteristics of the device with a simulated annealing algorithm and optimizing the annealing temperature function,the system emulates biological neuron behavior,enabling fast and efficient image restoration tasks.Experimental results demonstrate that this approach significantly outperforms traditional algorithms in both optimization speed and repair accuracy.The present study offers a novel perspective for the design of in-memory computing hardware and showcases promising applications in neuromorphic computing and image processing.
基金supported by the NSFC(12474071)Natural Science Foundation of Shandong Province(ZR2024YQ051,ZR2025QB50)+6 种基金Guangdong Basic and Applied Basic Research Foundation(2025A1515011191)the Shanghai Sailing Program(23YF1402200,23YF1402400)funded by Basic Research Program of Jiangsu(BK20240424)Open Research Fund of State Key Laboratory of Crystal Materials(KF2406)Taishan Scholar Foundation of Shandong Province(tsqn202408006,tsqn202507058)Young Talent of Lifting engineering for Science and Technology in Shandong,China(SDAST2024QTB002)the Qilu Young Scholar Program of Shandong University。
文摘As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and electrochemical characteristics,MXenes have shown great potential in brain-inspired neuromorphic computing electronics,including neuromorphic gas sensors,pressure sensors and photodetectors.This paper provides a forward-looking review of the research progress regarding MXenes in the neuromorphic sensing domain and discussed the critical challenges that need to be resolved.Key bottlenecks such as insufficient long-term stability under environmental exposure,high costs,scalability limitations in large-scale production,and mechanical mismatch in wearable integration hinder their practical deployment.Furthermore,unresolved issues like interfacial compatibility in heterostructures and energy inefficiency in neu-romorphic signal conversion demand urgent attention.The review offers insights into future research directions enhance the fundamental understanding of MXene properties and promote further integration into neuromorphic computing applications through the convergence with various emerging technologies.
基金supported by the NSFC(12474071)Natural Science Foundation of Shandong Province(ZR2024YQ051)+5 种基金Open Research Fund of State Key Laboratory of Materials for Integrated Circuits(SKLJC-K2024-12)the Shanghai Sailing Program(23YF1402200,23YF1402400)Natural Science Foundation of Jiangsu Province(BK20240424)Taishan Scholar Foundation of Shandong Province(tsqn202408006)Young Talent of Lifting engineering for Science and Technology in Shandong,China(SDAST2024QTB002)the Qilu Young Scholar Program of Shandong University.
文摘The advancement of flexible memristors has significantly promoted the development of wearable electronic for emerging neuromorphic computing applications.Inspired by in-memory computing architecture of human brain,flexible memristors exhibit great application potential in emulating artificial synapses for highefficiency and low power consumption neuromorphic computing.This paper provides comprehensive overview of flexible memristors from perspectives of development history,material system,device structure,mechanical deformation method,device performance analysis,stress simulation during deformation,and neuromorphic computing applications.The recent advances in flexible electronics are summarized,including single device,device array and integration.The challenges and future perspectives of flexible memristor for neuromorphic computing are discussed deeply,paving the way for constructing wearable smart electronics and applications in large-scale neuromorphic computing and high-order intelligent robotics.
基金financially supported by the National Natural Science Foundation of China(Grant No.12172093)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2021A1515012607)。
文摘High-entropy oxides(HEOs)have emerged as a promising class of memristive materials,characterized by entropy-stabilized crystal structures,multivalent cation coordination,and tunable defect landscapes.These intrinsic features enable forming-free resistive switching,multilevel conductance modulation,and synaptic plasticity,making HEOs attractive for neuromorphic computing.This review outlines recent progress in HEO-based memristors across materials engineering,switching mechanisms,and synaptic emulation.Particular attention is given to vacancy migration,phase transitions,and valence-state dynamics—mechanisms that underlie the switching behaviors observed in both amorphous and crystalline systems.Their relevance to neuromorphic functions such as short-term plasticity and spike-timing-dependent learning is also examined.While encouraging results have been achieved at the device level,challenges remain in conductance precision,variability control,and scalable integration.Addressing these demands a concerted effort across materials design,interface optimization,and task-aware modeling.With such integration,HEO memristors offer a compelling pathway toward energy-efficient and adaptable brain-inspired electronics.
基金supported in part by the Chinese Academy of Sciences(No.XDA0330302)NSFC program(No.22127901)。
文摘Neuromorphic devices have garnered significant attention as potential building blocks for energy-efficient hardware systems owing to their capacity to emulate the computational efficiency of the brain.In this regard,reservoir computing(RC)framework,which leverages straightforward training methods and efficient temporal signal processing,has emerged as a promising scheme.While various physical reservoir devices,including ferroelectric,optoelectronic,and memristor-based systems,have been demonstrated,many still face challenges related to compatibility with mainstream complementary metal oxide semiconductor(CMOS)integration processes.This study introduced a silicon-based schottky barrier metal-oxide-semiconductor field effect transistor(SB-MOSFET),which was fabricated under low thermal budget and compatible with back-end-of-line(BEOL).The device demonstrated short-term memory characteristics,facilitated by the modulation of schottky barriers and charge trapping.Utilizing these characteristics,a RC system for temporal data processing was constructed,and its performance was validated in a 5×4 digital classification task,achieving an accuracy exceeding 98%after 50 training epochs.Furthermore,the system successfully processed temporal signal in waveform classification and prediction tasks using time-division multiplexing.Overall,the SB-MOSFET's high compatibility with CMOS technology provides substantial advantages for large-scale integration,enabling the development of energy-efficient reservoir computing hardware.
文摘This study proposes a lightweight rice disease detection model optimized for edge computing environments.The goal is to enhance the You Only Look Once(YOLO)v5 architecture to achieve a balance between real-time diagnostic performance and computational efficiency.To this end,a total of 3234 high-resolution images(2400×1080)were collected from three major rice diseases Rice Blast,Bacterial Blight,and Brown Spot—frequently found in actual rice cultivation fields.These images served as the training dataset.The proposed YOLOv5-V2 model removes the Focus layer from the original YOLOv5s and integrates ShuffleNet V2 into the backbone,thereby resulting in both model compression and improved inference speed.Additionally,YOLOv5-P,based on PP-PicoDet,was configured as a comparative model to quantitatively evaluate performance.Experimental results demonstrated that YOLOv5-V2 achieved excellent detection performance,with an mAP 0.5 of 89.6%,mAP 0.5–0.95 of 66.7%,precision of 91.3%,and recall of 85.6%,while maintaining a lightweight model size of 6.45 MB.In contrast,YOLOv5-P exhibited a smaller model size of 4.03 MB,but showed lower performance with an mAP 0.5 of 70.3%,mAP 0.5–0.95 of 35.2%,precision of 62.3%,and recall of 74.1%.This study lays a technical foundation for the implementation of smart agriculture and real-time disease diagnosis systems by proposing a model that satisfies both accuracy and lightweight requirements.
基金Supported by the Ministry of Educationin China (No.104086)
文摘To provide the right services or information to the right users, at the right time and in the right place in ubiquitous computing environment, an Indoor Ubiquitous Computing Environment based on Location-Awareness, IUCELA, is presented in this paper. A general architecture of IUCELA is designed to connect multiple sensing devices with locationaware applications. Then the function of location-aware middleware which is the core componnet of the proposed architecture is elaborated. Finally an indoor forum is taken as an example scenario to demonstrate the security, usefulness, flexibiltity and robustness of IUCELA.
基金The Key Project of Chinese Ministry of Education(No.104086)
文摘In order to integrate heterogeneous location-aware systems into pervasive computing environment,a novel pervasive computing location-aware model based on ontology is presented.A location-aware model ontology(LMO)is constructed.The location-aware model has the capabilities of sharing knowledge,reasoning and adjusting the usage policies of services dynamically through a unified semantic location manner.At last,the work process of our proposed location-aware model is explained by an application scenario.
文摘Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency.
基金supported by the"Science and Technology Development Plan Project of Jilin Province,China"(Grant No.20240101018JJ)the Fundamental Research Funds for the Central Universities(Grant No.2412023YQ004)the National Natural Science Foundation of China(Grant Nos.52072065,52272140,52372137,and U23A20568).
文摘Optoelectronic memristor is generating growing research interest for high efficient computing and sensing-memory applications.In this work,an optoelectronic memristor with Au/a-C:Te/Pt structure is developed.Synaptic functions,i.e.,excita-tory post-synaptic current and pair-pulse facilitation are successfully mimicked with the memristor under electrical and optical stimulations.More importantly,the device exhibited distinguishable response currents by adjusting 4-bit input electrical/opti-cal signals.A multi-mode reservoir computing(RC)system is constructed with the optoelectronic memristors to emulate human tactile-visual fusion recognition and an accuracy of 98.7%is achieved.The optoelectronic memristor provides potential for developing multi-mode RC system.
基金funded by the Fundamental Research Funds for the Central Universities(J2023-024,J2023-027).
文摘As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the task offloading strategies by interacting with the entities. In actual application scenarios, users of edge computing are always changing dynamically. However, the existing task offloading strategies cannot be applied to such dynamic scenarios. To solve this problem, we propose a novel dynamic task offloading framework for distributed edge computing, leveraging the potential of meta-reinforcement learning (MRL). Our approach formulates a multi-objective optimization problem aimed at minimizing both delay and energy consumption. We model the task offloading strategy using a directed acyclic graph (DAG). Furthermore, we propose a distributed edge computing adaptive task offloading algorithm rooted in MRL. This algorithm integrates multiple Markov decision processes (MDP) with a sequence-to-sequence (seq2seq) network, enabling it to learn and adapt task offloading strategies responsively across diverse network environments. To achieve joint optimization of delay and energy consumption, we incorporate the non-dominated sorting genetic algorithm II (NSGA-II) into our framework. Simulation results demonstrate the superiority of our proposed solution, achieving a 21% reduction in time delay and a 19% decrease in energy consumption compared to alternative task offloading schemes. Moreover, our scheme exhibits remarkable adaptability, responding swiftly to changes in various network environments.
基金the National Research Foundation(NRF)Singapore mid-sized center grant(NRF-MSG-2023-0002)FrontierCRP grant(NRF-F-CRP-2024-0006)+2 种基金A*STAR Singapore MTC RIE2025 project(M24W1NS005)IAF-PP project(M23M5a0069)Ministry of Education(MOE)Singapore Tier 2 project(MOE-T2EP50220-0014).
文摘The rise of large-scale artificial intelligence(AI)models,such as ChatGPT,Deep-Seek,and autonomous vehicle systems,has significantly advanced the boundaries of AI,enabling highly complex tasks in natural language processing,image recognition,and real-time decisionmaking.However,these models demand immense computational power and are often centralized,relying on cloud-based architectures with inherent limitations in latency,privacy,and energy efficiency.To address these challenges and bring AI closer to real-world applications,such as wearable health monitoring,robotics,and immersive virtual environments,innovative hardware solutions are urgently needed.This work introduces a near-sensor edge computing(NSEC)system,built on a bilayer AlN/Si waveguide platform,to provide real-time,energy-efficient AI capabilities at the edge.Leveraging the electro-optic properties of AlN microring resonators for photonic feature extraction,coupled with Si-based thermo-optic Mach-Zehnder interferometers for neural network computations,the system represents a transformative approach to AI hardware design.Demonstrated through multimodal gesture and gait analysis,the NSEC system achieves high classification accuracies of 96.77%for gestures and 98.31%for gaits,ultra-low latency(<10 ns),and minimal energy consumption(<0.34 pJ).This groundbreaking system bridges the gap between AI models and real-world applications,enabling efficient,privacy-preserving AI solutions for healthcare,robotics,and next-generation human-machine interfaces,marking a pivotal advancement in edge computing and AI deployment.
基金supported by the National R&D Pro-gram through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(Nos.RS-2024-00356939 and RS-2024-00405691).
文摘As the demand for advanced computational systems capable of handling large data volumes rises,nano-electronic devices,such as memristors,are being developed for efficient data processing,especially in reservoir computing(RC).RC enables the processing of temporal information with minimal training costs,making it a promising approach for neuromorphic computing.However,current memristor devices of-ten suffer from limitations in dynamic conductance and temporal behavior,which affects their perfor-mance in these applications.In this study,we present a multilayered indium-tin-oxide(ITO)/ZnO/indium-gallium-zinc oxide(IGZO)/ZnO/ITO memristor fabricated via radiofrequency sputtering to explore its fil-amentary and nonfilamentary resistive switching(RS)characteristics.High-resolution transmission elec-tron microscopy confirmed the polycrystalline structure of the ZnO/IGZO/ZnO active layer.Dual-switching modes were demonstrated by controlling the current compliance(I_(CC)).In the filamentary mode,the memristor exhibited a large memory window(10^(3)),low-operating voltages(±2 V),excellent cycle-to-cycle stability,and multilevel switching with controlled reset-stop voltages,making it suitable for high-density memory applications.Nonfilamentary switching demonstrated stable on/off ratios above 10,en-durance up to 102 cycles,and retention suited for short-term memory.Key synaptic behaviors,such as paired-pulse facilitation(PPF),post-tetanic potentiation(PTP),and spike-rate dependent plasticity(SRDP)were successfully emulated by modulating pulse amplitude,width,and interval.Experience-dependent plasticity(EDP)was also demonstrated,further replicating biological synaptic functions.These tempo-ral properties were utilized to develop a 4-bit reservoir computing system with 16 distinct conductance states,enabling efficient information encoding.For image recognition tasks,convolutional neural net-work(CNN)simulations achieved a high accuracy of 98.45%after 25 training epochs,outperforming the accuracy achieved following artificial neural network(ANN)simulations(87.79%).These findings demon-strate that the multilayered memristor exhibits high performance in neuromorphic systems,particularly for complex pattern recognition tasks,such as digit and letter classification.
基金supported by the Natural Science Foundation of Zhejiang Province(Grant No.LQ24F040007)the National Natural Science Foundation of China(Grant No.U22A2075)the Opening Project of State Key Laboratory of Polymer Materials Engineering(Sichuan University)(Grant No.sklpme2024-1-21).
文摘To address the increasing demand for massive data storage and processing,brain-inspired neuromorphic comput-ing systems based on artificial synaptic devices have been actively developed in recent years.Among the various materials inves-tigated for the fabrication of synaptic devices,silicon carbide(SiC)has emerged as a preferred choices due to its high electron mobility,superior thermal conductivity,and excellent thermal stability,which exhibits promising potential for neuromorphic applications in harsh environments.In this review,the recent progress in SiC-based synaptic devices is summarized.Firstly,an in-depth discussion is conducted regarding the categories,working mechanisms,and structural designs of these devices.Subse-quently,several application scenarios for SiC-based synaptic devices are presented.Finally,a few perspectives and directions for their future development are outlined.
文摘In the 9 December 2024 issue of Nature[1],a team of Google engineers reported breakthrough results using“Willow”,their lat-est quantum computing chip(Fig.1).By meeting a milestone“below threshold”reduction in the rate of errors that plague super-conducting circuit-based quantum computing systems(Fig.2),the work moves the field another step towards its promised super-charged applications,albeit likely still many years away.Areas expected to benefit from quantum computing include,among others,drug discovery,materials science,finance,cybersecurity,and machine learning.
文摘The rapid advent in artificial intelligence and big data has revolutionized the dynamic requirement in the demands of the computing resource for executing specific tasks in the cloud environment.The process of achieving autonomic resource management is identified to be a herculean task due to its huge distributed and heterogeneous environment.Moreover,the cloud network needs to provide autonomic resource management and deliver potential services to the clients by complying with the requirements of Quality-of-Service(QoS)without impacting the Service Level Agreements(SLAs).However,the existing autonomic cloud resource managing frameworks are not capable in handling the resources of the cloud with its dynamic requirements.In this paper,Coot Bird Behavior Model-based Workload Aware Autonomic Resource Management Scheme(CBBM-WARMS)is proposed for handling the dynamic requirements of cloud resources through the estimation of workload that need to be policed by the cloud environment.This CBBM-WARMS initially adopted the algorithm of adaptive density peak clustering for workloads clustering of the cloud.Then,it utilized the fuzzy logic during the process of workload scheduling for achieving the determining the availability of cloud resources.It further used CBBM for potential Virtual Machine(VM)deployment that attributes towards the provision of optimal resources.It is proposed with the capability of achieving optimal QoS with minimized time,energy consumption,SLA cost and SLA violation.The experimental validation of the proposed CBBMWARMS confirms minimized SLA cost of 19.21%and reduced SLA violation rate of 18.74%,better than the compared autonomic cloud resource managing frameworks.
基金supported in part by the National Natural Science Foundation of China under Grant No.61473066in part by the Natural Science Foundation of Hebei Province under Grant No.F2021501020+2 种基金in part by the S&T Program of Qinhuangdao under Grant No.202401A195in part by the Science Research Project of Hebei Education Department under Grant No.QN2025008in part by the Innovation Capability Improvement Plan Project of Hebei Province under Grant No.22567637H
文摘Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power stations).To solve the problem,we propose an energy harvesting based task scheduling and resource management framework to provide robust and low-cost edge computing services for smart grid.First,we formulate an energy consumption minimization problem with regard to task offloading,time switching,and resource allocation for mobile devices,which can be decoupled and transformed into a typical knapsack problem.Then,solutions are derived by two different algorithms.Furthermore,we deploy renewable energy and energy storage units at edge servers to tackle intermittency and instability problems.Finally,we design an energy management algorithm based on sampling average approximation for edge computing servers to derive the optimal charging/discharging strategies,number of energy storage units,and renewable energy utilization.The simulation results show the efficiency and superiority of our proposed framework.
基金supported by the ONR Vannevar Bush Faculty Fellowship(Grant No.N00014-22-1-2795).
文摘Large language models(LLMs)have emerged as powerful tools for addressing a wide range of problems,including those in scientific computing,particularly in solving partial differential equations(PDEs).However,different models exhibit distinct strengths and preferences,resulting in varying levels of performance.In this paper,we compare the capabilities of the most advanced LLMs—DeepSeek,ChatGPT,and Claude—along with their reasoning-optimized versions in addressing computational challenges.Specifically,we evaluate their proficiency in solving traditional numerical problems in scientific computing as well as leveraging scientific machine learning techniques for PDE-based problems.We designed all our experiments so that a nontrivial decision is required,e.g,defining the proper space of input functions for neural operator learning.Our findings show that reasoning and hybrid-reasoning models consistently and significantly outperform non-reasoning ones in solving challenging problems,with ChatGPT o3-mini-high generally offering the fastest reasoning speed.