期刊文献+
共找到130,119篇文章
< 1 2 250 >
每页显示 20 50 100
A Novel Self-Supervised Learning Network for Binocular Disparity Estimation 被引量:1
1
作者 Jiawei Tian Yu Zhou +5 位作者 Xiaobing Chen Salman A.AlQahtani Hongrong Chen Bo Yang Siyu Lu Wenfeng Zheng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期209-229,共21页
Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This st... Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments. 展开更多
关键词 Parallax estimation parallax regression model self-supervised learning Pseudo-Siamese neural network pyramid dilated convolution binocular disparity estimation
在线阅读 下载PDF
FAULT LOCATION ESTIMATION FOR TWO-LINE FAULT INVOLVING DIFFERENT PHASES FROM EACH OF PARALLEL LINES 被引量:1
2
作者 张庆超 李铁 +1 位作者 张尧 宋文南 《Transactions of Tianjin University》 EI CAS 2001年第2期109-112,共4页
A novel numerical algorithm of fault location estimation for double line to ground fault involving different phases from each of two parallel lines is presented in this paper.It is based on the one terminal voltag... A novel numerical algorithm of fault location estimation for double line to ground fault involving different phases from each of two parallel lines is presented in this paper.It is based on the one terminal voltage and current data.The loop and nodal equations comparing faulted phase with non faulted phase of two parallel lines are introduced in the fault location estimation models,in which the source impedance of a remote end is not involved.The effects of load flow and fault resistance on the accuracy of fault location are effectively eliminated,therefore precise algorithms of locating fault are derived.The algorithm is demonstrated by digital computer simulations. 展开更多
关键词 fault location two parallel line line line fault
在线阅读 下载PDF
Improving DOA estimation of GNSS interference through sparse non-uniform array reconfiguration 被引量:1
3
作者 Rongling LANG Hao XU +3 位作者 Fei GAO Zewen TANG Zhipeng WANG Amir HUSSAIN 《Chinese Journal of Aeronautics》 2025年第8期104-118,共15页
Interference significantly impacts the performance of the Global Navigation Satellite Systems(GNSS),highlighting the need for advanced interference localization technology to bolster anti-interference and defense capa... Interference significantly impacts the performance of the Global Navigation Satellite Systems(GNSS),highlighting the need for advanced interference localization technology to bolster anti-interference and defense capabilities.The Uniform Circular Array(UCA)enables concurrent estimation of the Direction of Arrival(DOA)in both azimuth and elevation.Given the paramount importance of stability and real-time performance in interference localization,this work proposes an innovative approach to reduce the complexity and increase the robustness of the DOA estimation.The proposed method reduces computational complexity by selecting a reduced number of array elements to reconstruct a non-uniform sparse array from a UCA.To ensure DOA estimation accuracy,minimizing the Cramér-Rao Bound(CRB)is the objective,and the Spatial Correlation Coefficient(SCC)is incorporated as a constraint to mitigate side-lobe.The optimization model is a quadratic fractional model,which is solved by Semi-Definite Relaxation(SDR).When the array has perturbations,the mathematical expressions for CRB and SCC are re-derived to enhance the robustness of the reconstructed array.Simulation and hardware experiments validate the effectiveness of the proposed method in estimating interference DOA,showing high robustness and reductions in hardware and computational costs associated with DOA estimation. 展开更多
关键词 GNSS interference location Direction of arrival estimation Adaptive reconfigurable array Cramér-Raobound Quadratic fractional programming
原文传递
Passive location estimation using scatterer information for non-line-of-sight environments 被引量:1
4
作者 颜俊 王林汝 吴乐南 《Journal of Southeast University(English Edition)》 EI CAS 2010年第4期518-522,共5页
In order to improve the performance of the traditional hybrid time-of-arrival(TOA)/angle-of-arrival(AOA)location algorithm in non-line-of-sight(NLOS)environments,a new hybrid TOA/AOA location estimation algorith... In order to improve the performance of the traditional hybrid time-of-arrival(TOA)/angle-of-arrival(AOA)location algorithm in non-line-of-sight(NLOS)environments,a new hybrid TOA/AOA location estimation algorithm by utilizing scatterer information is proposed.The linearized region of the mobile station(MS)is obtained according to the base station(BS)coordinates and the TOA measurements.The candidate points(CPs)of the MS are generated from this region.Then,using the measured TOA and AOA measurements,the radius of each scatterer is computed.Compared with the prior scatterer information,true CPs are obtained among all the CPs.The adaptive fuzzy clustering(AFC)technology is adopted to estimate the position of the MS with true CPs.Finally,simulations are conducted to evaluate the performance of the algorithm.The results demonstrate that the proposed location algorithm can significantly mitigate the NLOS effect and efficiently estimate the MS position. 展开更多
关键词 passive location time-of-arrival/angle-of-arrival(TOA/AOA) non-line-of-sight(NLOS)mitigation adaptive fuzzy clustering
在线阅读 下载PDF
Nomenclature and location of acupuncture points for laboratory animals Part 2 被引量:1
5
作者 《World Journal of Acupuncture-Moxibustion》 2025年第2期163-165,共3页
This paper introduces part of the content in the association standard,T/CAAM0002–2020 Nomenclature and Location of Acupuncture Points for Laboratory Animals Part 2:Rat.This standard was released by the China Associat... This paper introduces part of the content in the association standard,T/CAAM0002–2020 Nomenclature and Location of Acupuncture Points for Laboratory Animals Part 2:Rat.This standard was released by the China Association of Acupuncture and Moxibustion on May 15,2020,implemented on October 31,2020,and published by Standards Press of China.The standard was drafted by the Institute of Acupuncture and Moxibustion,China Academy of Chinese Medical Sciences,and the Nanjing University of Chinese Medicine.Principal draftsmen:Xiang-hong JING and Xing-bang HUA.Participating draftsmen:Wan-Zhu BAI,Bin XU,Dong-sheng XU,Yi GUO,Tie-ming MA,Xin-jun WANG,and Sheng-feng LU. 展开更多
关键词 acupuncture points STANDARD NOMENCLATURE rat association standardt caam location acupuncture moxibustion
原文传递
Brain age estimation:premise,promise,and problems
6
作者 Jarrad Perron Ji Hyun Ko 《Neural Regeneration Research》 SCIE CAS 2025年第8期2313-2314,共2页
Premise:The com bined effects of modern healthcare practices which prolong lifespan and declining birthrates have created unprecedented changes in age demographics worldwide that are especially pronounced in Japan,Sou... Premise:The com bined effects of modern healthcare practices which prolong lifespan and declining birthrates have created unprecedented changes in age demographics worldwide that are especially pronounced in Japan,South Korea,Europe,and North America.Since old age is the most significant predictor of dementia,global healthcare systems must rise to the challenge of providing care for those with neurodegenerative disorders. 展开更多
关键词 estimation providing BIRTH
暂未订购
Sensorless battery expansion estimation using electromechanical coupled models and machine learning 被引量:1
7
作者 Xue Cai Caiping Zhang +4 位作者 Jue Chen Zeping Chen Linjing Zhang Dirk Uwe Sauer Weihan Li 《Journal of Energy Chemistry》 2025年第6期142-157,I0004,共17页
Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper... Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper presents a data-driven approach to expansion estimation using electromechanical coupled models with machine learning.The proposed method integrates reduced-order impedance models with data-driven mechanical models,coupling the electrochemical and mechanical states through the state of charge(SOC)and mechanical pressure within a state estimation framework.The coupling relationship was established through experimental insights into pressure-related impedance parameters and the nonlinear mechanical behavior with SOC and pressure.The data-driven model was interpreted by introducing a novel swelling coefficient defined by component stiffnesses to capture the nonlinear mechanical behavior across various mechanical constraints.Sensitivity analysis of the impedance model shows that updating model parameters with pressure can reduce the mean absolute error of simulated voltage by 20 mV and SOC estimation error by 2%.The results demonstrate the model's estimation capabilities,achieving a root mean square error of less than 1 kPa when the maximum expansion force is from 30 kPa to 120 kPa,outperforming calibrated stiffness models and other machine learning techniques.The model's robustness and generalizability are further supported by its effective handling of SOC estimation and pressure measurement errors.This work highlights the importance of the proposed framework in enhancing state estimation and fault diagnosis for lithium-ion batteries. 展开更多
关键词 Sensorless estimation Electromechanical coupling Impedance model Data-driven model Mechanical pressure
在线阅读 下载PDF
Multi-model ensemble learning for battery state-of-health estimation:Recent advances and perspectives 被引量:1
8
作者 Chuanping Lin Jun Xu +4 位作者 Delong Jiang Jiayang Hou Ying Liang Zhongyue Zou Xuesong Mei 《Journal of Energy Chemistry》 2025年第1期739-759,共21页
The burgeoning market for lithium-ion batteries has stimulated a growing need for more reliable battery performance monitoring. Accurate state-of-health(SOH) estimation is critical for ensuring battery operational per... The burgeoning market for lithium-ion batteries has stimulated a growing need for more reliable battery performance monitoring. Accurate state-of-health(SOH) estimation is critical for ensuring battery operational performance. Despite numerous data-driven methods reported in existing research for battery SOH estimation, these methods often exhibit inconsistent performance across different application scenarios. To address this issue and overcome the performance limitations of individual data-driven models,integrating multiple models for SOH estimation has received considerable attention. Ensemble learning(EL) typically leverages the strengths of multiple base models to achieve more robust and accurate outputs. However, the lack of a clear review of current research hinders the further development of ensemble methods in SOH estimation. Therefore, this paper comprehensively reviews multi-model ensemble learning methods for battery SOH estimation. First, existing ensemble methods are systematically categorized into 6 classes based on their combination strategies. Different realizations and underlying connections are meticulously analyzed for each category of EL methods, highlighting distinctions, innovations, and typical applications. Subsequently, these ensemble methods are comprehensively compared in terms of base models, combination strategies, and publication trends. Evaluations across 6 dimensions underscore the outstanding performance of stacking-based ensemble methods. Following this, these ensemble methods are further inspected from the perspectives of weighted ensemble and diversity, aiming to inspire potential approaches for enhancing ensemble performance. Moreover, addressing challenges such as base model selection, measuring model robustness and uncertainty, and interpretability of ensemble models in practical applications is emphasized. Finally, future research prospects are outlined, specifically noting that deep learning ensemble is poised to advance ensemble methods for battery SOH estimation. The convergence of advanced machine learning with ensemble learning is anticipated to yield valuable avenues for research. Accelerated research in ensemble learning holds promising prospects for achieving more accurate and reliable battery SOH estimation under real-world conditions. 展开更多
关键词 Lithium-ion battery State-of-health estimation DATA-DRIVEN Machine learning Ensemble learning Ensemble diversity
在线阅读 下载PDF
A new predictive based secure geographic routing strategy for UAV network under location spoofing attack
9
作者 Zihao ZHOU Jie TANG +3 位作者 Zhutian YANG Junyuan FAN Xiaokai SONG Kai Kit WONG 《Chinese Journal of Aeronautics》 2025年第10期47-58,共12页
Unmanned aerial vehicle(UAV)swarm network consisting of a collection of micro UAVs can be used for many applications.It is well established that packet routing is a fundamental problem to achieve UAV collaboration.How... Unmanned aerial vehicle(UAV)swarm network consisting of a collection of micro UAVs can be used for many applications.It is well established that packet routing is a fundamental problem to achieve UAV collaboration.However,the highly dynamic nature of UAVs,frequently changing network topologies and security issues,poses significant challenges to packet forwarding in UAV networks.The existing topology-based routing protocols are not well suited in UAV network due to their high controlling overhead or excessive end-to-end delay.Geographic routing is regarded as a promising solution,as it only requires local information.In order to enhance the accuracy and security of geographic routing in highly dynamic UAV network,in this paper,we propose a new predictive geographic(PGeo)routing strategy with location verification.First,a detection mechanism is adopted to recognize malicious UAVs falsifying their location.Then,an accurate average service time of a packet in the medium access control(MAC)layer is derived to assist location prediction.The proposed delay model can provide a theoretical basis for future work,and our simulation results reveal that PGeo outstrips the existing geographic routing protocols in terms of packet delivery ratio in the presence of location spoofing behavior. 展开更多
关键词 Unmanned aerial vehicle Secure communication Geographic routing location spoofing Delay estimation location prediction location verification
原文传递
Fault Distance EstimationMethod for DC Distribution Networks Based on Sparse Measurement of High-Frequency Electrical Quantities
10
作者 He Wang Shiqiang Li +1 位作者 Yiqi Liu Jing Bian 《Energy Engineering》 2025年第11期4497-4521,共25页
With the evolution of DC distribution networks from traditional radial topologies to more complex multi-branch structures,the number of measurement points supporting synchronous communication remains relatively limite... With the evolution of DC distribution networks from traditional radial topologies to more complex multi-branch structures,the number of measurement points supporting synchronous communication remains relatively limited.This poses challenges for conventional fault distance estimation methods,which are often tailored to simple topologies and are thus difficult to apply to large-scale,multi-node DC networks.To address this,a fault distance estimation method based on sparse measurement of high-frequency electrical quantities is proposed in this paper.First,a preliminary fault line identification model based on compressed sensing is constructed to effectively narrow the fault search range and improve localization efficiency.Then,leveraging the high-frequency impedance characteristics and the voltage-current relationship of electrical quantities,a fault distance estimation approach based on high-frequency measurements from both ends of a line is designed.This enables accurate distance estimation even when the measurement devices are not directly placed at both ends of the faulted line,overcoming the dependence on specific sensor placement inherent in traditional methods.Finally,to further enhance accuracy,an optimization model based on minimizing the high-frequency voltage error at the fault point is introduced to reduce estimation error.Simulation results demonstrate that the proposed method achieves a fault distance estimation error of less than 1%under normal conditions,and maintains good performance even under adverse scenarios. 展开更多
关键词 DC distribution network fault location compressed sensing fault distance estimation high-frequency electrical quantities
在线阅读 下载PDF
Hourglass-GCN for 3D Human Pose Estimation Using Skeleton Structure and View Correlation
11
作者 Ange Chen Chengdong Wu Chuanjiang Leng 《Computers, Materials & Continua》 SCIE EI 2025年第1期173-191,共19页
Previous multi-view 3D human pose estimation methods neither correlate different human joints in each view nor model learnable correlations between the same joints in different views explicitly,meaning that skeleton s... Previous multi-view 3D human pose estimation methods neither correlate different human joints in each view nor model learnable correlations between the same joints in different views explicitly,meaning that skeleton structure information is not utilized and multi-view pose information is not completely fused.Moreover,existing graph convolutional operations do not consider the specificity of different joints and different views of pose information when processing skeleton graphs,making the correlation weights between nodes in the graph and their neighborhood nodes shared.Existing Graph Convolutional Networks(GCNs)cannot extract global and deeplevel skeleton structure information and view correlations efficiently.To solve these problems,pre-estimated multiview 2D poses are designed as a multi-view skeleton graph to fuse skeleton priors and view correlations explicitly to process occlusion problem,with the skeleton-edge and symmetry-edge representing the structure correlations between adjacent joints in each viewof skeleton graph and the view-edge representing the view correlations between the same joints in different views.To make graph convolution operation mine elaborate and sufficient skeleton structure information and view correlations,different correlation weights are assigned to different categories of neighborhood nodes and further assigned to each node in the graph.Based on the graph convolution operation proposed above,a Residual Graph Convolution(RGC)module is designed as the basic module to be combined with the simplified Hourglass architecture to construct the Hourglass-GCN as our 3D pose estimation network.Hourglass-GCNwith a symmetrical and concise architecture processes three scales ofmulti-viewskeleton graphs to extract local-to-global scale and shallow-to-deep level skeleton features efficiently.Experimental results on common large 3D pose dataset Human3.6M and MPI-INF-3DHP show that Hourglass-GCN outperforms some excellent methods in 3D pose estimation accuracy. 展开更多
关键词 3D human pose estimation multi-view skeleton graph elaborate graph convolution operation Hourglass-GCN
在线阅读 下载PDF
Secure Channel Estimation Using Norm Estimation Model for 5G Next Generation Wireless Networks
12
作者 Khalil Ullah Song Jian +4 位作者 Muhammad Naeem Ul Hassan Suliman Khan Mohammad Babar Arshad Ahmad Shafiq Ahmad 《Computers, Materials & Continua》 SCIE EI 2025年第1期1151-1169,共19页
The emergence of next generation networks(NextG),including 5G and beyond,is reshaping the technological landscape of cellular and mobile networks.These networks are sufficiently scaled to interconnect billions of user... The emergence of next generation networks(NextG),including 5G and beyond,is reshaping the technological landscape of cellular and mobile networks.These networks are sufficiently scaled to interconnect billions of users and devices.Researchers in academia and industry are focusing on technological advancements to achieve highspeed transmission,cell planning,and latency reduction to facilitate emerging applications such as virtual reality,the metaverse,smart cities,smart health,and autonomous vehicles.NextG continuously improves its network functionality to support these applications.Multiple input multiple output(MIMO)technology offers spectral efficiency,dependability,and overall performance in conjunctionwithNextG.This article proposes a secure channel estimation technique in MIMO topology using a norm-estimation model to provide comprehensive insights into protecting NextG network components against adversarial attacks.The technique aims to create long-lasting and secure NextG networks using this extended approach.The viability of MIMO applications and modern AI-driven methodologies to combat cybersecurity threats are explored in this research.Moreover,the proposed model demonstrates high performance in terms of reliability and accuracy,with a 20%reduction in the MalOut-RealOut-Diff metric compared to existing state-of-the-art techniques. 展开更多
关键词 Next generation networks massive mimo communication network artificial intelligence 5G adversarial attacks channel estimation information security
在线阅读 下载PDF
Nomenclature and location of acupuncture points for laboratory animals Part 3:Mouse
13
作者 《World Journal of Acupuncture-Moxibustion》 2025年第2期160-162,共3页
This paper introduces part of the content in the association standard,T/CAAM0002–2020 Nomenclature and Location of Acupuncture Points for Laboratory Animals Part 3:Mouse.This standard was released by the China Associ... This paper introduces part of the content in the association standard,T/CAAM0002–2020 Nomenclature and Location of Acupuncture Points for Laboratory Animals Part 3:Mouse.This standard was released by the China Association of Acupuncture and Moxibustion on May 15,2020,implemented on October 31,2020,and published by Standards Press of China.The standard was drafted by the Institute of Acupuncture and Moxibustion,China Academy of Chinese Medical Sciences,and the Nanjing University of Chinese Medicine.Principal draftsmen:Xiang-hong JING and Xing-bang HUA.Participating draftsmen:Wan-zhu BAI,Bin XU,Dong-sheng XU,Yi GUO,Tie-ming MA,Xin-jun WANG,and Sheng-feng LU. 展开更多
关键词 acupuncture points STANDARD MOUSE NOMENCLATURE location acupuncture points association standardt caam location acupuncture moxibustion
原文传递
Sensitivity-based state and parameter moving horizon estimation method for liquid propellant rocket engine
14
作者 Zizhao WANG Dan WANG +2 位作者 Hongyu CHEN Zhijiang SHAO Zhengyu SONG 《Chinese Journal of Aeronautics》 2025年第7期46-60,共15页
The reuse of liquid propellant rocket engines has increased the difficulty of their control and estimation.State and parameter Moving Horizon Estimation(MHE)is an optimization-based strategy that provides the necessar... The reuse of liquid propellant rocket engines has increased the difficulty of their control and estimation.State and parameter Moving Horizon Estimation(MHE)is an optimization-based strategy that provides the necessary information for model predictive control.Despite the many advantages of MHE,long computation time has limited its applications for system-level models of liquid propellant rocket engines.To address this issue,we propose an asynchronous MHE method called advanced-multi-step MHE with Noise Covariance Estimation(amsMHE-NCE).This method computes the MHE problem asynchronously to obtain the states and parameters and can be applied to multi-threaded computations.In the background,the state and covariance estimation optimization problems are computed using multiple sampling times.In real-time,sensitivity is used to quickly approximate state and parameter estimates.A covariance estimation method is developed using sensitivity to avoid redundant MHE problem calculations in case of sensor degradation during engine reuse.The amsMHE-NCE is validated through three cases based on the space shuttle main engine system-level model,and we demonstrate that it can provide more accurate real-time estimates of states and parameters compared to other commonly used estimation methods. 展开更多
关键词 Sensitivity Moving horizon estimation Noise covariance estimation Parameter estimation Liquid propellant rocket engine
原文传递
Reliability Performance Estimation and Its Applications of Rate-Compatible Polar Codes for B5G-IoT
15
作者 Liang Hao Liang Xiaohu +2 位作者 Ye Ganhua Lu Ruimin Lu Xinjin 《China Communications》 2025年第7期124-137,共14页
The beyond fifth-generation Internet of Things requires more capable channel coding schemes to achieve high-reliability,low-complexity and lowlatency communications.The theoretical analysis of error-correction perform... The beyond fifth-generation Internet of Things requires more capable channel coding schemes to achieve high-reliability,low-complexity and lowlatency communications.The theoretical analysis of error-correction performance of channel coding functions as a significant way of optimizing the transmission reliability and efficiency.In this paper,the efficient estimation methods of the block error rate(BLER)performance for rate-compatible polar codes(RCPC)are proposed under several scenarios.Firstly,the BLER performance of RCPC is generally evaluated in the additive white Gaussian noise channels.That is further extended into the Rayleigh fading channel case using an equivalent estimation method.Moreover,with respect to the powerful decoder such as successive cancellation list decoding,the performance estimation is derived analytically based on the polar weight spectrum and BLER upper bounds.Theoretical evaluation and numerical simulation results show that the estimated performance can fit well the practical simulated results of RCPC under the objective conditions,verifying the validity of our proposed performance estimation methods.Furthermore,the application designs of the reliability estimation of RCPC are explored,particularly in the advantages of the signal-to-noise(SNR)estimation and throughput efficiency optimization of polar coded hybrid automatic repeat request. 展开更多
关键词 Internet of Things polar codes ratecompatible reliability estimation SNR estimation throughput optimization
在线阅读 下载PDF
Precise Location of Passive Intermodulation in Long Cables by Fractional Frequency Based Multi-Range Rulers
16
作者 DONG Anhua LIANG Haodong +2 位作者 ZHU Shaohao ZHANG Qi ZHAO Deshuang 《ZTE Communications》 2025年第1期101-106,共6页
A novel method is developed by utilizing the fractional frequency based multirange rulers to precisely position the passive inter-modulation(PIM)sources within radio frequency(RF)cables.The proposed method employs a s... A novel method is developed by utilizing the fractional frequency based multirange rulers to precisely position the passive inter-modulation(PIM)sources within radio frequency(RF)cables.The proposed method employs a set of fractional frequencies to create multiple measuring rulers with different metric ranges to determine the values of the tens,ones,tenths,and hundredths digits of the distance.Among these rulers,the one with the lowest frequency determines the maximum metric range,while the one with the highest frequency decides the highest achievable accuracy of the position system.For all rulers,the metric accuracy is uniquely determined by the phase accuracy of the detected PIM signals.With the all-phase Fourier transform method,the phases of the PIM signals at all fractional frequencies maintain almost the same accuracy,approximately 1°(about 1/360 wavelength in the positioning accuracy)at the signal-to-noise ratio(SNR)of 10 d B.Numerical simulations verify the effectiveness of the proposed method,improving the positioning accuracy of the cable PIM up to a millimeter level with the highest fractional frequency operating at 200 MHz. 展开更多
关键词 passive intermodulation location multi-range
在线阅读 下载PDF
Automatic location of surface-monitored microseismicity with deep learning
17
作者 Zhaolong Gan Xiao Tian +1 位作者 Xiong Zhang Mengxue Dai 《Earthquake Research Advances》 2025年第2期20-31,共12页
Accurate and rapid determination of source locations is of great significance for surface microseismic monitoring.Traditional methods,such as diffraction stacking,are time-consuming and challenging for real-time monit... Accurate and rapid determination of source locations is of great significance for surface microseismic monitoring.Traditional methods,such as diffraction stacking,are time-consuming and challenging for real-time monitoring.In this study,we propose an approach to locate microseismic events using a deep learning algorithm with surface data.A fully convolutional network is designed to predict source locations.The input data is the waveform of a microseismic event,and the output consists of three 1D Gaussian distributions representing the probability distribution of the source location in the x,y,and z dimensions.The theoretical dataset is generated to train the model,and several data augmentation methods are applied to reduce discrepancies between the theoretical and field data.After applying the trained model to field data,the results demonstrate that our method is fast and achieves comparable location accuracy to the traditional diffraction stacking location method,making it promising for real-time microseismic monitoring. 展开更多
关键词 Microseismic monitoring Source location Deep learning
在线阅读 下载PDF
ELDE-Net:Efficient Light-Weight Depth Estimation Network for Deep Reinforcement Learning-Based Mobile Robot Path Planning
18
作者 Thai-Viet Dang Dinh-Manh-Cuong Tran +1 位作者 Nhu-Nghia Bui Phan Xuan Tan 《Computers, Materials & Continua》 2025年第11期2651-2680,共30页
Precise and robust three-dimensional object detection(3DOD)presents a promising opportunity in the field of mobile robot(MR)navigation.Monocular 3DOD techniques typically involve extending existing twodimensional obje... Precise and robust three-dimensional object detection(3DOD)presents a promising opportunity in the field of mobile robot(MR)navigation.Monocular 3DOD techniques typically involve extending existing twodimensional object detection(2DOD)frameworks to predict the three-dimensional bounding box(3DBB)of objects captured in 2D RGB images.However,these methods often require multiple images,making them less feasible for various real-time scenarios.To address these challenges,the emergence of agile convolutional neural networks(CNNs)capable of inferring depth froma single image opens a new avenue for investigation.The paper proposes a novel ELDENet network designed to produce cost-effective 3DBounding Box Estimation(3D-BBE)froma single image.This novel framework comprises the PP-LCNet as the encoder and a fast convolutional decoder.Additionally,this integration includes a Squeeze-Exploit(SE)module utilizing the Math Kernel Library for Deep Neural Networks(MKLDNN)optimizer to enhance convolutional efficiency and streamline model size during effective training.Meanwhile,the proposed multi-scale sub-pixel decoder generates high-quality depth maps while maintaining a compact structure.Furthermore,the generated depthmaps provide a clear perspective with distance details of objects in the environment.These depth insights are combined with 2DOD for precise evaluation of 3D Bounding Boxes(3DBB),facilitating scene understanding and optimal route planning for mobile robots.Based on the estimated object center of the 3DBB,the Deep Reinforcement Learning(DRL)-based obstacle avoidance strategy for MRs is developed.Experimental results demonstrate that our model achieves state-of-the-art performance across three datasets:NYU-V2,KITTI,and Cityscapes.Overall,this framework shows significant potential for adaptation in intelligent mechatronic systems,particularly in developing knowledge-driven systems for mobile robot navigation. 展开更多
关键词 3D bounding box estimation depth estimation mobile robot navigation monocular camera object detection
在线阅读 下载PDF
Self-Supervised Monocular Depth Estimation with Scene Dynamic Pose
19
作者 Jing He Haonan Zhu +1 位作者 Chenhao Zhao Minrui Zhao 《Computers, Materials & Continua》 2025年第6期4551-4573,共23页
Self-supervised monocular depth estimation has emerged as a major research focus in recent years,primarily due to the elimination of ground-truth depth dependence.However,the prevailing architectures in this domain su... Self-supervised monocular depth estimation has emerged as a major research focus in recent years,primarily due to the elimination of ground-truth depth dependence.However,the prevailing architectures in this domain suffer from inherent limitations:existing pose network branches infer camera ego-motion exclusively under static-scene and Lambertian-surface assumptions.These assumptions are often violated in real-world scenarios due to dynamic objects,non-Lambertian reflectance,and unstructured background elements,leading to pervasive artifacts such as depth discontinuities(“holes”),structural collapse,and ambiguous reconstruction.To address these challenges,we propose a novel framework that integrates scene dynamic pose estimation into the conventional self-supervised depth network,enhancing its ability to model complex scene dynamics.Our contributions are threefold:(1)a pixel-wise dynamic pose estimation module that jointly resolves the pose transformations of moving objects and localized scene perturbations;(2)a physically-informed loss function that couples dynamic pose and depth predictions,designed to mitigate depth errors arising from high-speed distant objects and geometrically inconsistent motion profiles;(3)an efficient SE(3)transformation parameterization that streamlines network complexity and temporal pre-processing.Extensive experiments on the KITTI and NYU-V2 benchmarks show that our framework achieves state-of-the-art performance in both quantitative metrics and qualitative visual fidelity,significantly improving the robustness and generalization of monocular depth estimation under dynamic conditions. 展开更多
关键词 Monocular depth estimation self-supervised learning scene dynamic pose estimation dynamic-depth constraint pixel-wise dynamic pose
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部