This paper presents a parallel composite local search algorithm based on multiple search neighborhoods to solve a special kind of timetable problem. The new algorithm can also effectively solve those problems that can...This paper presents a parallel composite local search algorithm based on multiple search neighborhoods to solve a special kind of timetable problem. The new algorithm can also effectively solve those problems that can be solved by general local search algorithms. Experimental results show that the new algorithm can generate better solutions than general local search algorithms.展开更多
This paper presents an optimization technique coupling two optimization techniques for solving Economic Emission Load Dispatch Optimization Problem EELD. The proposed approach integrates the merits of both genetic alg...This paper presents an optimization technique coupling two optimization techniques for solving Economic Emission Load Dispatch Optimization Problem EELD. The proposed approach integrates the merits of both genetic algorithm (GA) and local search (LS), where it maintains a finite-sized archive of non-dominated solutions which gets iteratively updated in the presence of new solutions based on the concept of ε-dominance. To improve the solution quality, local search technique was applied as neighborhood search engine, where it intends to explore the less-crowded area in the current archive to possibly obtain more non-dominated solutions. TOPSIS technique can incorporate relative weights of criterion importance, which has been implemented to identify best compromise solution, which will satisfy the different goals to some extent. Several optimization runs of the proposed approach are carried out on the standard IEEE 30-bus 6-genrator test system. The comparison demonstrates the superiority of the proposed approach and confirms its potential to solve the multiobjective EELD problem.展开更多
We apply the transitionless driving on the local adiabatic quantum search algorithm to speed up the adiabatic process. By studying quantum dynamics of the adiabatic search algorithm with the equivalent two-level syste...We apply the transitionless driving on the local adiabatic quantum search algorithm to speed up the adiabatic process. By studying quantum dynamics of the adiabatic search algorithm with the equivalent two-level system, we derive the transi- tionless driving Hamiltonian for the local adiabatic quantum search algorithm. We found that when adding a transitionless quantum driving term Ht~ (t) on the local adiabatic quantum search algorithm, the success rate is 1 exactly with arbitrary evolution time by solving the time-dependent Schr6dinger equation in eigen-picture. Moreover, we show the reason for the drastic decrease of the evolution time is that the driving Hamiltonian increases the lowest eigenvalues to a maximum of展开更多
The genetic algorithm has been widely used in many fields as an easy robust global search and optimization method. In this paper, a new generic algorithm based on niche technique and local search method is presented u...The genetic algorithm has been widely used in many fields as an easy robust global search and optimization method. In this paper, a new generic algorithm based on niche technique and local search method is presented under the consideration of inadequacies of the simple genetic algorithm. In order to prove the adaptability and validity of the improved genetic algorithm, optimization problems of multimodal functions with equal peaks, unequal peaks and complicated peak distribution are discussed. The simulation results show that compared to other niching methods, this improved genetic algorithm has obvious potential on many respects, such as convergence speed, solution accuracy, ability of global optimization, etc.展开更多
This paper introduces a hybrid evolutionary algorithm for the resource-constrained project scheduling problem (RCPSP). Given an RCPSP instance, the algorithm identifies the problem structure and selects a suitable dec...This paper introduces a hybrid evolutionary algorithm for the resource-constrained project scheduling problem (RCPSP). Given an RCPSP instance, the algorithm identifies the problem structure and selects a suitable decoding scheme. Then a multi-pass biased sampling method followed up by a multi-local search is used to generate a diverse and good quality initial population. The population then evolves through modified order-based recombination and mutation operators to perform exploration for promising solutions within the entire region. Mutation is performed only if the current population has converged or the produced offspring by recombination operator is too similar to one of his parents. Finally the algorithm performs an intensified local search on the best solution found in the evolutionary stage. Computational experiments using standard instances indicate that the proposed algorithm works well in both computational time and solution quality.展开更多
Symmetric workpiece localization algorithms combine alternating optimization and linearization. The iterative variables are partitioned into two groups. Then simple optimization approaches can be employed for each sub...Symmetric workpiece localization algorithms combine alternating optimization and linearization. The iterative variables are partitioned into two groups. Then simple optimization approaches can be employed for each subset of variables, where optimization of configuration variables is simplified as a linear least-squares problem (LSP). Convergence of current symmetric localization algorithms is discussed firstly. It is shown that simply taking the solution of the LSP as start of the next iteration may result in divergence or incorrect convergence. Therefore in our enhanced algorithms, line search is performed along the solution of the LSP in order to find a better point reducing the value of objective function. We choose this point as start of the next iteration. Better convergence is verified by numerical simulation. Besides, imposing boundary constraints on the LSP proves to be another efficient way.展开更多
To solve vehicle routing problem with different fleets, two methodologies are developed. The first methodology adopts twophase strategy. In the first phase, the improved savings method is used to assign customers to a...To solve vehicle routing problem with different fleets, two methodologies are developed. The first methodology adopts twophase strategy. In the first phase, the improved savings method is used to assign customers to appropriate vehicles. In the second phase, the iterated dynasearch algorithm is adopted to route each selected vehicle with the assigned customers. The iterated dynasearch algorithm combines dynasearch algorithm with iterated local search algorithm based on random kicks. The second methodplogy adopts the idea of cyclic transfer which is performed by using dynamic programming algorithm, and the iterated dynasearch algorithm is also embedded in it. The test results show that both methodologies generate better solutions than the traditional method, and the second methodology is superior to the first one.展开更多
This study examines the multicriteria scheduling problem on a single machine to minimize three criteria: the maximum cost function, denoted by maximum late work (V<sub>max</sub>), maximum tardy job, denote...This study examines the multicriteria scheduling problem on a single machine to minimize three criteria: the maximum cost function, denoted by maximum late work (V<sub>max</sub>), maximum tardy job, denoted by (T<sub>max</sub>), and maximum earliness (E<sub>max</sub>). We propose several algorithms based on types of objectives function to be optimized when dealing with simultaneous minimization problems with and without weight and hierarchical minimization problems. The proposed Algorithm (3) is to find the set of efficient solutions for 1//F (V<sub>max</sub>, T<sub>max</sub>, E<sub>max</sub>) and 1//(V<sub>max</sub> + T<sub>max</sub> + E<sub>max</sub>). The Local Search Heuristic Methods (Descent Method (DM), Simulated Annealing (SA), Genetic Algorithm (GA), and the Tree Type Heuristics Method (TTHM) are applied to solve all suggested problems. Finally, the experimental results of Algorithm (3) are compared with the results of the Branch and Bound (BAB) method for optimal and Pareto optimal solutions for smaller instance sizes and compared to the Local Search Heuristic Methods for large instance sizes. These results ensure the efficiency of Algorithm (3) in a reasonable time.展开更多
文摘This paper presents a parallel composite local search algorithm based on multiple search neighborhoods to solve a special kind of timetable problem. The new algorithm can also effectively solve those problems that can be solved by general local search algorithms. Experimental results show that the new algorithm can generate better solutions than general local search algorithms.
文摘This paper presents an optimization technique coupling two optimization techniques for solving Economic Emission Load Dispatch Optimization Problem EELD. The proposed approach integrates the merits of both genetic algorithm (GA) and local search (LS), where it maintains a finite-sized archive of non-dominated solutions which gets iteratively updated in the presence of new solutions based on the concept of ε-dominance. To improve the solution quality, local search technique was applied as neighborhood search engine, where it intends to explore the less-crowded area in the current archive to possibly obtain more non-dominated solutions. TOPSIS technique can incorporate relative weights of criterion importance, which has been implemented to identify best compromise solution, which will satisfy the different goals to some extent. Several optimization runs of the proposed approach are carried out on the standard IEEE 30-bus 6-genrator test system. The comparison demonstrates the superiority of the proposed approach and confirms its potential to solve the multiobjective EELD problem.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB338002)the National Natural Science Foundation of China(Grant Nos.11504430 and 61502526)
文摘We apply the transitionless driving on the local adiabatic quantum search algorithm to speed up the adiabatic process. By studying quantum dynamics of the adiabatic search algorithm with the equivalent two-level system, we derive the transi- tionless driving Hamiltonian for the local adiabatic quantum search algorithm. We found that when adding a transitionless quantum driving term Ht~ (t) on the local adiabatic quantum search algorithm, the success rate is 1 exactly with arbitrary evolution time by solving the time-dependent Schr6dinger equation in eigen-picture. Moreover, we show the reason for the drastic decrease of the evolution time is that the driving Hamiltonian increases the lowest eigenvalues to a maximum of
文摘The genetic algorithm has been widely used in many fields as an easy robust global search and optimization method. In this paper, a new generic algorithm based on niche technique and local search method is presented under the consideration of inadequacies of the simple genetic algorithm. In order to prove the adaptability and validity of the improved genetic algorithm, optimization problems of multimodal functions with equal peaks, unequal peaks and complicated peak distribution are discussed. The simulation results show that compared to other niching methods, this improved genetic algorithm has obvious potential on many respects, such as convergence speed, solution accuracy, ability of global optimization, etc.
文摘This paper introduces a hybrid evolutionary algorithm for the resource-constrained project scheduling problem (RCPSP). Given an RCPSP instance, the algorithm identifies the problem structure and selects a suitable decoding scheme. Then a multi-pass biased sampling method followed up by a multi-local search is used to generate a diverse and good quality initial population. The population then evolves through modified order-based recombination and mutation operators to perform exploration for promising solutions within the entire region. Mutation is performed only if the current population has converged or the produced offspring by recombination operator is too similar to one of his parents. Finally the algorithm performs an intensified local search on the best solution found in the evolutionary stage. Computational experiments using standard instances indicate that the proposed algorithm works well in both computational time and solution quality.
基金Supported by "973" National Fundamental Research Program (51332)
文摘Symmetric workpiece localization algorithms combine alternating optimization and linearization. The iterative variables are partitioned into two groups. Then simple optimization approaches can be employed for each subset of variables, where optimization of configuration variables is simplified as a linear least-squares problem (LSP). Convergence of current symmetric localization algorithms is discussed firstly. It is shown that simply taking the solution of the LSP as start of the next iteration may result in divergence or incorrect convergence. Therefore in our enhanced algorithms, line search is performed along the solution of the LSP in order to find a better point reducing the value of objective function. We choose this point as start of the next iteration. Better convergence is verified by numerical simulation. Besides, imposing boundary constraints on the LSP proves to be another efficient way.
基金The National Natural Science Founda-tion of China ( No.70471039)the National Social Science Foundation of China (No.07BJY038)the Program for New Century Excellent Talents in University (No.NCET-04-0886)
文摘To solve vehicle routing problem with different fleets, two methodologies are developed. The first methodology adopts twophase strategy. In the first phase, the improved savings method is used to assign customers to appropriate vehicles. In the second phase, the iterated dynasearch algorithm is adopted to route each selected vehicle with the assigned customers. The iterated dynasearch algorithm combines dynasearch algorithm with iterated local search algorithm based on random kicks. The second methodplogy adopts the idea of cyclic transfer which is performed by using dynamic programming algorithm, and the iterated dynasearch algorithm is also embedded in it. The test results show that both methodologies generate better solutions than the traditional method, and the second methodology is superior to the first one.
文摘This study examines the multicriteria scheduling problem on a single machine to minimize three criteria: the maximum cost function, denoted by maximum late work (V<sub>max</sub>), maximum tardy job, denoted by (T<sub>max</sub>), and maximum earliness (E<sub>max</sub>). We propose several algorithms based on types of objectives function to be optimized when dealing with simultaneous minimization problems with and without weight and hierarchical minimization problems. The proposed Algorithm (3) is to find the set of efficient solutions for 1//F (V<sub>max</sub>, T<sub>max</sub>, E<sub>max</sub>) and 1//(V<sub>max</sub> + T<sub>max</sub> + E<sub>max</sub>). The Local Search Heuristic Methods (Descent Method (DM), Simulated Annealing (SA), Genetic Algorithm (GA), and the Tree Type Heuristics Method (TTHM) are applied to solve all suggested problems. Finally, the experimental results of Algorithm (3) are compared with the results of the Branch and Bound (BAB) method for optimal and Pareto optimal solutions for smaller instance sizes and compared to the Local Search Heuristic Methods for large instance sizes. These results ensure the efficiency of Algorithm (3) in a reasonable time.
文摘最小负载着色问题(minimum load coloring problem,MLCP)源于构建光通信网络的波分复用(wavelength division multiplexing,WDM)技术,是一个被证明的NP完全问题.由于NP完全问题有着随问题规模呈指数增长的解空间,因此启发式算法常被用来解决这类问题.在对国内外相关工作的深入分析基础上得知,现有的多类求解MLCP问题的启发式算法中局部搜索算法表现是最好的.研究针对当前求解MLCP问题的局部搜索算法在数据预处理和邻域空间搜索上的不足,提出了两点相应的优化策略:一是在数据的预处理阶段,提出一度顶点规则来约简数据的规模,进而减小MLCP问题的搜索空间;二是在算法的邻域空间搜索阶段,提出两阶段多重选择策略(twostage best from multiple selections,TSBMS)来帮助局部搜索算法在面对不同规模的邻域空间时可以高效地选择一个高质量的邻居解,它有效地提高了局部搜索算法在处理不同规模数据时的求解表现.将这个优化后的局部搜索算法命名为IRLTS.采用74个经典的测试用例来验证IRLTS算法的有效性.实验结果表明,无论最优解还是平均解,IRLTS算法在大多数测试用例上都明显优于当前表现最好的3个局部搜索算法.此外,还通过实验验证了所提策略的有效性以及分析了关键参数对算法的影响.