期刊文献+
共找到449篇文章
< 1 2 23 >
每页显示 20 50 100
Multiple Kernel Clustering Based on Self-Weighted Local Kernel Alignment
1
作者 Chuanli Wang En Zhu +3 位作者 Xinwang Liu Jiaohua Qin Jianping Yin Kaikai Zhao 《Computers, Materials & Continua》 SCIE EI 2019年第7期409-421,共13页
Multiple kernel clustering based on local kernel alignment has achieved outstanding clustering performance by applying local kernel alignment on each sample.However,we observe that most of existing works usually assum... Multiple kernel clustering based on local kernel alignment has achieved outstanding clustering performance by applying local kernel alignment on each sample.However,we observe that most of existing works usually assume that each local kernel alignment has the equal contribution to clustering performance,while local kernel alignment on different sample actually has different contribution to clustering performance.Therefore this assumption could have a negative effective on clustering performance.To solve this issue,we design a multiple kernel clustering algorithm based on self-weighted local kernel alignment,which can learn a proper weight to clustering performance for each local kernel alignment.Specifically,we introduce a new optimization variable-weight-to denote the contribution of each local kernel alignment to clustering performance,and then,weight,kernel combination coefficients and cluster membership are alternately optimized under kernel alignment frame.In addition,we develop a three-step alternate iterative optimization algorithm to address the resultant optimization problem.Broad experiments on five benchmark data sets have been put into effect to evaluate the clustering performance of the proposed algorithm.The experimental results distinctly demonstrate that the proposed algorithm outperforms the typical multiple kernel clustering algorithms,which illustrates the effectiveness of the proposed algorithm. 展开更多
关键词 Multiple kernel clustering kernel alignment local kernel alignment self-weighted
在线阅读 下载PDF
Surface Detection of Continuous Casting Slabs Based on Curvelet Transform and Kernel Locality Preserving Projections 被引量:19
2
作者 AI Yong-hao XU Ke 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2013年第5期80-86,共7页
Longitudinal cracks are common defects of continuous casting slabs and may lead to serious quality accidents. Image capturing and recognition of hot slabs is an effective way for on-line detection of cracks, and recog... Longitudinal cracks are common defects of continuous casting slabs and may lead to serious quality accidents. Image capturing and recognition of hot slabs is an effective way for on-line detection of cracks, and recognition of cracks is essential because the surface of hot slabs is very complicated. In order to detect the surface longitudinal cracks of the slabs, a new feature extraction method based on Curvelet transform and kernel locality preserving projections (KLPP) is proposed. First, sample images are decomposed into three levels by Curvelet transform. Second, Fourier transform is applied to all sub-band images and the Fourier amplitude spectrum of each sub-band is computed to get features with translational invariance. Third, five kinds of statistical features of the Fourier amplitude spectrum are computed and combined in different forms. Then, KLPP is employed for dimensionality reduction of the obtained 62 types of high-dimensional combined features. Finally, a support vector machine (SVM) is used for sample set classification. Experiments with samples from a real production line of continuous casting slabs show that the algorithm is effective to detect longitudinal cracks, and the classification rate is 91.89%. 展开更多
关键词 surface detection continuous casting slab Curvelet transform feature extraction kernel locality preserving projections
原文传递
Full-viewpoint 3D Space Object Recognition Based on Kernel Locality Preserving Projections 被引量:2
3
作者 孟钢 姜志国 +2 位作者 刘正一 张浩鹏 赵丹培 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2010年第5期563-572,共10页
Space object recognition plays an important role in spatial exploitation and surveillance, followed by two main problems: lacking of data and drastic changes in viewpoints. In this article, firstly, we build a three-... Space object recognition plays an important role in spatial exploitation and surveillance, followed by two main problems: lacking of data and drastic changes in viewpoints. In this article, firstly, we build a three-dimensional (3D) satellites dataset named BUAA Satellite Image Dataset (BUAA-SID 1.0) to supply data for 3D space object research. Then, based on the dataset, we propose to recognize full-viewpoint 3D space objects based on kernel locality preserving projections (KLPP). To obtain more accurate and separable description of the objects, firstly, we build feature vectors employing moment invariants, Fourier descriptors, region covariance and histogram of oriented gradients. Then, we map the features into kernel space followed by dimensionality reduction using KLPP to obtain the submanifold of the features. At last, k-nearest neighbor (kNN) is used to accomplish the classification. Experimental results show that the proposed approach is more appropriate for space object recognition mainly considering changes of viewpoints. Encouraging recognition rate could be obtained based on images in BUAA-SID 1.0, and the highest recognition result could achieve 95.87%. 展开更多
关键词 SATELLITES object recognition THREE-DIMENSIONAL image dataset full-viewpoint kernel locality preserving projections
原文传递
ON RIESZ TYPE KERNELS OVER LOCAL FIELDS 被引量:1
4
作者 Zheng Shijun(Nanjing University, China) 《Analysis in Theory and Applications》 1995年第4期24-34,共11页
Based on a representation lemma. Riesz type kernels on the local field K and on the integer ring O in K are coitstructed. Furthermore, we discuss approximation theorems for the Lipschitz class Lip(L ;α) ana the Lp bo... Based on a representation lemma. Riesz type kernels on the local field K and on the integer ring O in K are coitstructed. Furthermore, we discuss approximation theorems for the Lipschitz class Lip(L ;α) ana the Lp boundedness of such operators motivated by the open problem: Does σηfa,s→f for f ∈L1(O) (see M. H. Taible-son [6] and [5])? 展开更多
关键词 ON RIESZ TYPE kernelS OVER local FIELDS LIM
在线阅读 下载PDF
Anomalous Cell Detection with Kernel Density-Based Local Outlier Factor 被引量:2
5
作者 Miao Dandan Qin Xiaowei Wang Weidong 《China Communications》 SCIE CSCD 2015年第9期64-75,共12页
Since data services are penetrating into our daily life rapidly, the mobile network becomes more complicated, and the amount of data transmission is more and more increasing. In this case, the traditional statistical ... Since data services are penetrating into our daily life rapidly, the mobile network becomes more complicated, and the amount of data transmission is more and more increasing. In this case, the traditional statistical methods for anomalous cell detection cannot adapt to the evolution of networks, and data mining becomes the mainstream. In this paper, we propose a novel kernel density-based local outlier factor(KLOF) to assign a degree of being an outlier to each object. Firstly, the notion of KLOF is introduced, which captures exactly the relative degree of isolation. Then, by analyzing its properties, including the tightness of upper and lower bounds, sensitivity of density perturbation, we find that KLOF is much greater than 1 for outliers. Lastly, KLOFis applied on a real-world dataset to detect anomalous cells with abnormal key performance indicators(KPIs) to verify its reliability. The experiment shows that KLOF can find outliers efficiently. It can be a guideline for the operators to perform faster and more efficient trouble shooting. 展开更多
关键词 data mining key performance indicators kernel density-based local outlier factor density perturbation anomalous cell detection
在线阅读 下载PDF
Synthesis and Characterisation of a Biolubricant from Cameroon Palm Kernel Seed Oil Using a Locally Produced Base Catalyst from Plantain Peelings 被引量:1
6
作者 Michael Bong Alang Maurice Kor Ndikontar +1 位作者 Yahaya Muhammad Sani Peter T. Ndifon 《Green and Sustainable Chemistry》 2018年第3期275-287,共13页
Biolubricant was synthesized from Cameroon palm kernel oil (PKO) by double transesterification, producing methyl esters in the first stage which were then transesterified with trimethylolpropane (TMP) to give the PKO ... Biolubricant was synthesized from Cameroon palm kernel oil (PKO) by double transesterification, producing methyl esters in the first stage which were then transesterified with trimethylolpropane (TMP) to give the PKO biolubricant in the presence of a base catalyst obtained from plantain peelings (municipal waste). The yields from both catalysts were significantly similar (48% for the locally produced and 51% for the conventional) showing that the locally produced catalyst could be valorized. The synthesized biolubricant was characterized by measuring its physical and chemical properties. The specific gravity of 1.2, ASTM color of 1.5, cloud point of 0°C, pour point of -9°C, viscosities at 40°C of 509.80 cSt and at 100°C of 30.80 cSt, viscosity index of 120, flash point greater than 210°C and a fire point greater than 220°C were obtained. This synthesized biolubricant was found to be comparable to commercial T-46 petroleum lubricant sample produced industrially from mineral sources. We have therefore used local materials to produce a biolubricant using a cheap base catalyst produced from municipal waste. 展开更多
关键词 Biolubricant TRANSESTERIFICATION PALM kernel Oil localLY PRODUCED Base Catalyst Viscosity Index Acid Value Methyl Esters
暂未订购
Multivariate time delay analysis based local KPCA fault prognosis approach for nonlinear processes 被引量:7
7
作者 Yuan Xu Ying Liu Qunxiong Zhu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第10期1413-1422,共10页
Currently, some fault prognosis technology occasionally has relatively unsatisfied performance especially for in- cipient faults in nonlinear processes duo to their large time delay and complex internal connection. To... Currently, some fault prognosis technology occasionally has relatively unsatisfied performance especially for in- cipient faults in nonlinear processes duo to their large time delay and complex internal connection. To overcome this deficiency, multivariate time delay analysis is incorporated into the high sensitive local kernel principal component analysis. In this approach, mutual information estimation and Bayesian information criterion (BIC) are separately used to acquire the correlation degree and time delay of the process variables. Moreover, in order to achieve prediction, time series prediction by back propagation (BP) network is applied whose input is multivar- iate correlated time series other than the original time series. Then the multivariate time delayed series and future values obtained by time series prediction are combined to construct the input of local kernel principal component analysis (LKPCA) model for incipient fault prognosis. The new method has been exemplified in a sim- ple nonlinear process and the complicated Tennessee Eastman (TE) benchmark process. The results indicate that the new method has suoerioritv in the fault prognosis sensitivity over other traditional fault prognosis methods. 展开更多
关键词 Fault prognosis Time delay estimation local kernel principal component analysis
在线阅读 下载PDF
Feature Extraction of Kernel Regress Reconstruction for Fault Diagnosis Based on Self-organizing Manifold Learning 被引量:3
8
作者 CHEN Xiaoguang LIANG Lin +1 位作者 XU Guanghua LIU Dan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第5期1041-1049,共9页
The feature space extracted from vibration signals with various faults is often nonlinear and of high dimension.Currently,nonlinear dimensionality reduction methods are available for extracting low-dimensional embeddi... The feature space extracted from vibration signals with various faults is often nonlinear and of high dimension.Currently,nonlinear dimensionality reduction methods are available for extracting low-dimensional embeddings,such as manifold learning.However,these methods are all based on manual intervention,which have some shortages in stability,and suppressing the disturbance noise.To extract features automatically,a manifold learning method with self-organization mapping is introduced for the first time.Under the non-uniform sample distribution reconstructed by the phase space,the expectation maximization(EM) iteration algorithm is used to divide the local neighborhoods adaptively without manual intervention.After that,the local tangent space alignment(LTSA) algorithm is adopted to compress the high-dimensional phase space into a more truthful low-dimensional representation.Finally,the signal is reconstructed by the kernel regression.Several typical states include the Lorenz system,engine fault with piston pin defect,and bearing fault with outer-race defect are analyzed.Compared with the LTSA and continuous wavelet transform,the results show that the background noise can be fully restrained and the entire periodic repetition of impact components is well separated and identified.A new way to automatically and precisely extract the impulsive components from mechanical signals is proposed. 展开更多
关键词 feature extraction manifold learning self-organize mapping kernel regression local tangent space alignment
在线阅读 下载PDF
Numerical Solution of Integro-Differential Equations with Local Polynomial Regression 被引量:1
9
作者 Liyun Su Tianshun Yan +2 位作者 Yanyong Zhao Fenglan Li Ruihua Liu 《Open Journal of Statistics》 2012年第3期352-355,共4页
In this paper, we try to find numerical solution of y'(x)= p(x)y(x)+g(x)+λ∫ba K(x, t)y(t)dt, y(a)=α. a≤x≤b, a≤t≤b or y'(x)= p(x)y(x)+g(x)+λ∫xa K(x, t)y(t)dt, y(a)=α. a≤x≤b, a≤t≤b by using Local p... In this paper, we try to find numerical solution of y'(x)= p(x)y(x)+g(x)+λ∫ba K(x, t)y(t)dt, y(a)=α. a≤x≤b, a≤t≤b or y'(x)= p(x)y(x)+g(x)+λ∫xa K(x, t)y(t)dt, y(a)=α. a≤x≤b, a≤t≤b by using Local polynomial regression (LPR) method. The numerical solution shows that this method is powerful in solving integro-differential equations. The method will be tested on three model problems in order to demonstrate its usefulness and accuracy. 展开更多
关键词 Integro-Differential EQUATIONS local POLYNOMIAL Regression kernel FUNCTIONS
在线阅读 下载PDF
基于核主成分分析的半监督日志异常检测模型 被引量:5
10
作者 顾兆军 叶经纬 +2 位作者 刘春波 张智凯 王志 《江苏大学学报(自然科学版)》 CAS 北大核心 2025年第1期64-72,97,共10页
对于具有“组异常”和“局部异常”分布特点的系统日志数据,传统的ADOA(anomaly detection with partially observed anomalies)半监督日志异常检测方法存在为无标签数据生成的伪标签准确性不佳的问题.针对此问题,提出一种改进的半监督... 对于具有“组异常”和“局部异常”分布特点的系统日志数据,传统的ADOA(anomaly detection with partially observed anomalies)半监督日志异常检测方法存在为无标签数据生成的伪标签准确性不佳的问题.针对此问题,提出一种改进的半监督日志异常检测模型.对已知异常样本采用k均值聚类,采用核主成分分析计算无标签样本的重构误差;运用重构误差和异常样本相似分计算出样本的综合异常分,作为其伪标签;依据伪标签计算LightGBM分类器的样本权重,训练异常检测模型.通过参数试验探究了训练集样本比例变化对模型性能的影响.在HDFS和BGL这2个公开数据集上进行试验,结果表明该模型能够提高伪标签的准确性,相较于DeepLog、LogAnomaly、LogCluster、PCA和PLELog等已有模型,精确率和F 1分数均有提升.与传统的ADOA异常检测方法相比,该模型F 1分数在2类数据集上分别提高了0.084和0.085. 展开更多
关键词 系统日志 日志异常检测 组异常 局部异常 半监督 重构误差 核主成分分析 伪标签
在线阅读 下载PDF
基于局部自适应带宽扩散核密度估计的载荷外推
11
作者 王立勇 郑存金 +1 位作者 张金乐 李乐 《吉林大学学报(工学版)》 北大核心 2025年第8期2511-2519,共9页
为实现由有限载荷数据外推得到全周期载荷谱,针对传统自适应带宽优化算法在参数选择上存在局限性,本文提出一种基于局部自适应带宽扩散核密度估计的载荷外推方法。该方法首先将二维雨流矩阵降维至一维等效幅值,然后基于局部积分均方误... 为实现由有限载荷数据外推得到全周期载荷谱,针对传统自适应带宽优化算法在参数选择上存在局限性,本文提出一种基于局部自适应带宽扩散核密度估计的载荷外推方法。该方法首先将二维雨流矩阵降维至一维等效幅值,然后基于局部积分均方误差优化局部带宽,利用局部最优带宽,通过扩散核密度估计构建概率密度分布模型,最后结合蒙特卡洛模拟方法外推目标频次载荷。对某特种车辆综合传动装置的预处理载荷数据进行对比验证,结果表明:与传统方法相比,本文所提方法得到的概率密度分布曲线和累计频次曲线更接近实际等效幅值,相关系数与决定系数均更趋近于1,其中相关系数分别为0.9838与0.9996,决定系数分别为0.9679与0.9991;均方根误差也更小,分别为5.05×10^(-5)与15.9。 展开更多
关键词 机械工程 特种车辆 综合传动装置 载荷谱 载荷外推 局部自适应带宽 扩散核密度估计
原文传递
基于加权局部密度的双超球支持向量机算法 被引量:1
12
作者 王梦珍 张德生 张晓 《计算机工程》 北大核心 2025年第5期188-195,共8页
使用一对超球面描述样本分布的双超球支持向量机(THSVM)算法没有考虑样本数据的密度信息,容易受噪声干扰,对所有特征赋予相同权重,忽略了不同特征对分类结果的影响。针对上述问题,提出了基于加权局部密度的双超球支持向量机(WLDTHSVM)... 使用一对超球面描述样本分布的双超球支持向量机(THSVM)算法没有考虑样本数据的密度信息,容易受噪声干扰,对所有特征赋予相同权重,忽略了不同特征对分类结果的影响。针对上述问题,提出了基于加权局部密度的双超球支持向量机(WLDTHSVM)算法。首先,利用信息增益计算每个特征的权重,并将特征权重应用到欧氏距离以及核函数的计算中,降低了不相关或弱相关的特征对样本相似性的影响;其次,利用特征加权的欧氏距离,构造一种新的加权局部密度函数,不仅考虑了样本点近邻的类别信息,而且考虑不同特征对样本间距离的影响,将归一化加权局部密度与误差项结合来增强模型的抗噪声干扰能力;最后,用特征加权的决策函数判定测试样本点的所属类别。在人工数据集和UCI数据集上对WLDTHSVM算法的可行性与有效性进行验证,实验结果表明,WLDTHSVM算法与支持向量机(SVM)、孪生支持向量机(TWSVM)、THSVM等对比算法相比,在11个UCI数据集上平均准确率最高可提升2.76百分点,在含噪数据集上具有较好的分类表现。 展开更多
关键词 支持向量机 局部密度 特征权重 信息增益 核函数
在线阅读 下载PDF
多站测向交叉定位系统误差影响分析及其估计
13
作者 孙海英 潘江怀 《舰船电子工程》 2025年第7期48-54,共7页
针对系统误差在多平台纯方位测向交叉定位精度的影响进行了定量分析,并指出了其作为影响定位精度的主要因素之一,提出了一种基于核函数均值移动(KFMS)的多平台纯方位测向交叉定位系统误差估计方法,该方法利用多平台测向对目标状态进行... 针对系统误差在多平台纯方位测向交叉定位精度的影响进行了定量分析,并指出了其作为影响定位精度的主要因素之一,提出了一种基于核函数均值移动(KFMS)的多平台纯方位测向交叉定位系统误差估计方法,该方法利用多平台测向对目标状态进行估计和融合,再采用核函数方法对各传感器的系统误差进行估计。仿真结果表明,该方法相比MLE算法,避免了矩阵求逆运算,并且具有更稳定的估计结果和较短的收敛时间。 展开更多
关键词 交叉定位 系统误差 无源定位 核函数 无源传感器
在线阅读 下载PDF
GHGeo:基于异构空间对比损失的跨视角对象级地理定位方法
14
作者 桑泽豪 卢俊 +4 位作者 郭海涛 丁磊 朱坤 徐国峻 魏昊麒 《地球信息科学学报》 北大核心 2025年第11期2563-2577,共15页
【目的】跨视角对象级地理定位(CVOGL)旨在卫星影像上精确定位地面街景或无人机影像所观测目标的地理位置。现有方法多聚焦于图像级匹配,通过对整张影像全局处理实现跨视角关联,缺乏对特定目标的位置编码研究,导致无法将模型的注意力引... 【目的】跨视角对象级地理定位(CVOGL)旨在卫星影像上精确定位地面街景或无人机影像所观测目标的地理位置。现有方法多聚焦于图像级匹配,通过对整张影像全局处理实现跨视角关联,缺乏对特定目标的位置编码研究,导致无法将模型的注意力引导到感兴趣目标。并且由于参考图像覆盖范围的变化,查询目标在对应卫星图像中的像素占比极低,精确定位较为困难。【方法】针对以上问题,本文提出了一种基于高斯核函数与异构空间对比损失的跨视角对象级地理定位方法(Cross-View Object-Level Geo-Localization Method with Gaussian Kernel Function and Heterogeneous Spatial Contrastive Loss,GHGeo),用于精确定位感兴趣目标位置。该方法首先通过高斯核函数对查询目标进行精确位置编码,实现了对目标中心点及其分布特征的精细化建模;此外还提出了动态注意力精细化融合模块来动态加权交叉感知全局上下文与局部几何特征的空间相似性,以概率密度预测查询目标在卫星影像中的精确位置;最后通过异构空间对比损失函数来约束其训练过程,缓解跨视角特征差异。【结果】本文在CVOGL数据集进行了实验,实验结果显示:GHGeo在该数据集的“无人机-卫星”任务中,当交并比(IoU)≥25%和≥50%时定位准确率分别达到67.73%和63.00%,相较于基准方法DetGeo分别提升了5.76%和5.34%;在“街景-卫星”定位任务中,对应IoU阈值下的定位准确率分别为48.41%和45.43%的定位准确率,相较于基准方法DetGeo分别提升了2.98%和3.19%。同时与TransGeo,SAFA和VAGeo等方法在CVOGL数据集上进行对比,GHGeo则展现出了更高的定位准确性。【结论】本文方法有效提升了跨视角对象级地理定位方法的精度,为城市规划监测,应急救援调度等应用领域提供关键技术支持和精确位置信息支撑。 展开更多
关键词 遥感影像 跨视角对象级地理定位 对比学习 高斯核编码 动态融合模块 多模态特征提取 深度学习
原文传递
基于多尺度特征聚合的轻量化跨视角匹配定位方法
15
作者 刘瑞康 卢俊 +4 位作者 郭海涛 朱坤 侯青峰 张雪松 汪泽田 《地球信息科学学报》 北大核心 2025年第1期193-206,共14页
【目的】跨视角图像匹配与定位是指通过将地视查询影像与带有地理标记的空视参考影像进行匹配,从而确定地视查询影像地理位置的技术。目前的跨视角图像匹配与定位技术主要使用固定感受野的CNN或者具有全局建模能力的Transformer作为特... 【目的】跨视角图像匹配与定位是指通过将地视查询影像与带有地理标记的空视参考影像进行匹配,从而确定地视查询影像地理位置的技术。目前的跨视角图像匹配与定位技术主要使用固定感受野的CNN或者具有全局建模能力的Transformer作为特征提取主干网络,不能充分考虑影像中不同特征之间的尺度差异,且由于网络参数量和计算复杂度较高,轻量化部署面临显著挑战。【方法】为了解决这些问题,本文提出了一种面向地面全景影像和卫星影像的多尺度特征聚合轻量化跨视角图像匹配与定位方法,首先使用LskNet提取影像特征,然后设计一个多尺度特征聚合模块,将影像特征聚合为全局描述符。在该模块中,本文将单个大卷积核分解为两个连续的相对较小的逐层卷积,从多个尺度聚合影像特征,显著减少了网络的参数量与计算量。【结果】本文在CVUSA、CVACT、VIGOR 3个公开数据集上进行了对比实验和消融实验,实验结果表明,本文方法在VIGOR数据集和CVACT数据集上的Top1召回率分别达到79.00%和91.43%,相比于目前精度最高的Sample4Geo分别提升了1.14%、0.62%,在CVUSA数据集上的Top1召回率达到98.64%,与Sample4Geo几乎相同,但参数量与计算量降至30.09 M和16.05 GFLOPs,仅为Sample4Geo的34.36%、23.70%。【结论】与现有方法相比,本文方法在保持高精度的同时,显著减少了参数量和计算量,降低了模型部署的硬件要求。 展开更多
关键词 跨视角图像匹配 多尺度特征 特征聚合 大卷积核分解 轻量化 地理定位
原文传递
基于频谱压缩感知和核极限学习机的柔性复合材料结构冲击定位 被引量:1
16
作者 喻俊松 刘君 +2 位作者 彭子鹏 干灵辉 万生鹏 《航空科学技术》 2025年第5期51-58,共8页
柔性复合材料以其质量轻、收展重复性好、收展原理简单等优点,广泛应用于航空航天器结构中,这些结构在服役过程中随时可能遭受冲击载荷作用而产生损伤。针对柔性复合材料结构上冲击载荷定位问题,本文搭建一种基于光纤光栅的冲击监测系统... 柔性复合材料以其质量轻、收展重复性好、收展原理简单等优点,广泛应用于航空航天器结构中,这些结构在服役过程中随时可能遭受冲击载荷作用而产生损伤。针对柔性复合材料结构上冲击载荷定位问题,本文搭建一种基于光纤光栅的冲击监测系统,分析柔性复合材料结构冲击响应信号时频域特征,利用频谱信号的稀疏性和压缩感知具有在远低于奈奎斯特采样率条件下重构信号的特性,提出一种基于频谱压缩感知和核极限学习机的柔性复合材料结构冲击定位方法。对柔性复合材料冲击响应信号频谱进行稀疏表示及压缩测量,将冲击响应信号频谱压缩降维所得观测矢量作为特征量,采用减法平均算法优化核极限学习机实现柔性复合材料上冲击载荷位置辨识。在柔性复合材料结构上200mm×400mm的监测区域内随机选取15个测试样本点进行冲击定位,试验结果表明,平均定位误差为18.83mm,为柔性复合材料结构的冲击定位提供了一种可靠的方法。 展开更多
关键词 冲击定位 柔性复合材料结构 光纤光栅 压缩感知 核极限学习机
在线阅读 下载PDF
面向胶囊机器人的Huber加权抗干扰磁定位方法
17
作者 林宇飞 苏诗荐 戴厚德 《微纳电子技术》 2025年第6期83-92,共10页
胶囊机器人因其无创、无痛等特点在胃肠道疾病诊疗中展现出广阔的应用前景,基于永磁场的定位技术凭借其高精度与适应性,在胶囊的体内定位应用中备受关注。然而,复杂手术环境中普遍存在的铁磁物质及外来磁源,会引发硬铁、软铁效应,严重... 胶囊机器人因其无创、无痛等特点在胃肠道疾病诊疗中展现出广阔的应用前景,基于永磁场的定位技术凭借其高精度与适应性,在胶囊的体内定位应用中备受关注。然而,复杂手术环境中普遍存在的铁磁物质及外来磁源,会引发硬铁、软铁效应,严重影响定位精度。为此,提出了一种融合Huber加权算法与动态初值策略的磁定位方法。首先,通过Huber核函数对可能受干扰的传感器测量值进行差异化处理,削减异常测量数据的权重;其次,通过动态初值策略降低算法对初值的敏感度。这些改进措施使算法在硬铁、软铁及其复合干扰等多种场景下,能够有效抑制异常测量导致的定位误差。实验结果表明,该方法在不同强度和类型干扰下均能获得稳定且高精度的定位结果,优化后定位误差均可控制在2 mm以内。与标准Levenberg-Marquardt(LM)算法相比,本方法的定位精度最高提升约56.69%,为复杂磁场环境下实现高精度且具有强鲁棒性的磁定位提供了一种可行方案。 展开更多
关键词 永磁定位 Huber核函数 胶囊机器人 磁传感器阵列 抗干扰
原文传递
基于最邻近算法的财政数据异常值实时监测方法研究 被引量:1
18
作者 殷曼曼 《数字通信世界》 2025年第4期13-15,18,共4页
现有财政数据异常值实时监测方法监测准确率较低,误报率较高,导致财政数据异常值的监测不准确,有一定的局限性。对此本文中提出了基于最邻近算法的财政数据异常值实时监测方法。首先,通过计算局部密度和最小距离,选择RBF核函数,根据聚... 现有财政数据异常值实时监测方法监测准确率较低,误报率较高,导致财政数据异常值的监测不准确,有一定的局限性。对此本文中提出了基于最邻近算法的财政数据异常值实时监测方法。首先,通过计算局部密度和最小距离,选择RBF核函数,根据聚类结果建立财政数据异常值实时监测模型。其次,对设置的参考窗口和考察窗口进行强度比率计算,从而提取财政数据的异常模式。最后,综合上述过程,根据肘部法则曲线,按照一定流程,完成财政数据异常值的监测任务。实验结果表明,运用基于最邻近算法的财政数据异常值实时监测方法,监测准确率在95%以上,且其平均误报率为3.21%。 展开更多
关键词 局部密度 最邻近算法 RBF核函数 强度比率 肘部法则
在线阅读 下载PDF
一种基于改进型YOLOv5s的结直肠息肉检测算法QB-YOLO
19
作者 张子健 徐建宇 杨欢 《软件导刊》 2025年第6期41-48,共8页
在医学影像领域,结直肠息肉的早期检测对预防结直肠癌等疾病至关重要。在实际医疗操作中,自动化检测结直肠息肉的准确率受制于多种特殊条件。为此,提出基于改进型YOLOv5s的结直肠息肉检测模型QB-YOLO。首先,在原骨干网络中引入一种局部... 在医学影像领域,结直肠息肉的早期检测对预防结直肠癌等疾病至关重要。在实际医疗操作中,自动化检测结直肠息肉的准确率受制于多种特殊条件。为此,提出基于改进型YOLOv5s的结直肠息肉检测模型QB-YOLO。首先,在原骨干网络中引入一种局部上下文信息增强模块——通道注意力机制(CAM),替换原模型中的空间金字塔池化SPPF模块,以增强模型对结直肠息肉的目标关注度;其次,在骨干网络中添加大核分离卷积注意力模块(LSKA模块),加强模型捕捉结直肠息肉图像中局部细节的能力;最后,将软非极大值抑制Soft-NMS引入模型以应对部分结直肠息肉可能会密集分布的情况,使模型更高效地处理重叠目标和密集目标。实验表明,改进后模型的准确率、召回率、平均精度相较于原始模型提升4.1%、8.5%、3.9%。 展开更多
关键词 YOLOv5s 结直肠息肉 目标检测 局部上下文信息增强 大核分离卷积注意力 软非极大值抑制
在线阅读 下载PDF
中国“癌症村”的聚集格局 被引量:38
20
作者 董丞妍 谭亚玲 +1 位作者 罗明良 翟有龙 《地理研究》 CSSCI CSCD 北大核心 2014年第11期2115-2124,共10页
"癌症村"反映了在一定时间和空间上癌症聚集发生、引起社会群体格外关心的公共卫生问题,具体表现为从某一年开始并持续多年的远高于正常水平的癌症发生率和死亡率。研究基于地理空间统计分析的局部自相关、点距离关联维及核... "癌症村"反映了在一定时间和空间上癌症聚集发生、引起社会群体格外关心的公共卫生问题,具体表现为从某一年开始并持续多年的远高于正常水平的癌症发生率和死亡率。研究基于地理空间统计分析的局部自相关、点距离关联维及核密度等方法,从不同空间尺度分析了"癌症村"的分布状况。结果表明:"癌症村"聚集分布但区域差异显著,总体上自东向西梯度递减,局部自相关分析表明川陕晋冀津构成西部与东部之间低—高集聚分布的分界线;距离关联无标度区间为120~180 km,核密度分析显示"癌症村"集中于河流下游地区,及中部、沿海部分地区,多中心、集中分布格局明显。研究突出了"癌症村"地理多尺度分布特征的探索,可为相关环境污染整治工作提供参照。 展开更多
关键词 “癌症村” 空间分布 局部自相关 核密度 中国
原文传递
上一页 1 2 23 下一页 到第
使用帮助 返回顶部