In this paper, we propose a new method that combines chaotic series phase space reconstruction and local polynomial estimation to solve the problem of suppressing strong chaotic noise. First, chaotic noise time series...In this paper, we propose a new method that combines chaotic series phase space reconstruction and local polynomial estimation to solve the problem of suppressing strong chaotic noise. First, chaotic noise time series are reconstructed to obtain multivariate time series according to Takens delay embedding theorem. Then the chaotic noise is estimated accurately using local polynomial estimation method. After chaotic noise is separated from observation signal, we can get the estimation of the useful signal. This local polynomial estimation method can combine the advantages of local and global law. Finally, it makes the estimation more exactly and we can calculate the formula of mean square error theoretically. The simulation results show that the method is effective for the suppression of strong chaotic noise when the signal to interference ratio is low.展开更多
This paper considers local median estimation in fixed design regression problems. The proposed method is employed to estimate the median function and the variance function of a heteroscedastic regression model. Strong...This paper considers local median estimation in fixed design regression problems. The proposed method is employed to estimate the median function and the variance function of a heteroscedastic regression model. Strong convergence rates of the proposed estimators are obtained. Simulation results are given to show the performance of the proposed methods.展开更多
In this study, a multivariate local quadratic polynomial regression(MLQPR) method is proposed to design a model for the sludge volume index(SVI). In MLQPR, a quadratic polynomial regression function is established to ...In this study, a multivariate local quadratic polynomial regression(MLQPR) method is proposed to design a model for the sludge volume index(SVI). In MLQPR, a quadratic polynomial regression function is established to describe the relationship between SVI and the relative variables, and the important terms of the quadratic polynomial regression function are determined by the significant test of the corresponding coefficients. Moreover, a local estimation method is introduced to adjust the weights of the quadratic polynomial regression function to improve the model accuracy. Finally, the proposed method is applied to predict the SVI values in a real wastewater treatment process(WWTP). The experimental results demonstrate that the proposed MLQPR method has faster testing speed and more accurate results than some existing methods.展开更多
Cochlodinium polykrikoides is a notoriously harmful algal species that inflicts severe damage on the aquacultures of the coastal seas of Korea and Japan. Information on their expected movement tracks and boundaries of...Cochlodinium polykrikoides is a notoriously harmful algal species that inflicts severe damage on the aquacultures of the coastal seas of Korea and Japan. Information on their expected movement tracks and boundaries of influence is very useful and important for the effective establishment of a reduction plan. In general, the information is supported by a red-tide(a.k.a algal bloom) model. The performance of the model is highly dependent on the accuracy of parameters, which are the coefficients of functions approximating the biological growth and loss patterns of the C. polykrikoides. These parameters have been estimated using the bioassay data composed of growth-limiting factor and net growth rate value pairs. In the case of the C. polykrikoides, the parameters are different from each other in accordance with the used data because the bioassay data are sufficient compared to the other algal species. The parameters estimated by one specific dataset can be viewed as locally-optimized because they are adjusted only by that dataset. In cases where the other one data set is used, the estimation error might be considerable. In this study, the parameters are estimated by all available data sets without the use of only one specific data set and thus can be considered globally optimized. The cost function for the optimization is defined as the integrated mean squared estimation error, i.e., the difference between the values of the experimental and estimated rates. Based on quantitative error analysis, the root-mean squared errors of the global parameters show smaller values, approximately 25%–50%, than the values of the local parameters. In addition, bias is removed completely in the case of the globally estimated parameters. The parameter sets can be used as the reference default values of a red-tide model because they are optimal and representative. However, additional tuning of the parameters using the in-situ monitoring data is highly required.As opposed to the bioassay data, it is necessary because the bioassay data have limitations in terms of the in-situ coastal conditions.展开更多
Currently, some fault prognosis technology occasionally has relatively unsatisfied performance especially for in- cipient faults in nonlinear processes duo to their large time delay and complex internal connection. To...Currently, some fault prognosis technology occasionally has relatively unsatisfied performance especially for in- cipient faults in nonlinear processes duo to their large time delay and complex internal connection. To overcome this deficiency, multivariate time delay analysis is incorporated into the high sensitive local kernel principal component analysis. In this approach, mutual information estimation and Bayesian information criterion (BIC) are separately used to acquire the correlation degree and time delay of the process variables. Moreover, in order to achieve prediction, time series prediction by back propagation (BP) network is applied whose input is multivar- iate correlated time series other than the original time series. Then the multivariate time delayed series and future values obtained by time series prediction are combined to construct the input of local kernel principal component analysis (LKPCA) model for incipient fault prognosis. The new method has been exemplified in a sim- ple nonlinear process and the complicated Tennessee Eastman (TE) benchmark process. The results indicate that the new method has suoerioritv in the fault prognosis sensitivity over other traditional fault prognosis methods.展开更多
Underwater sensor network can achieve the unmanned environmental monitoring and military monitoring missions.Underwater acoustic sensor node cannot rely on the GPS to position itself,and the traditional indirect posit...Underwater sensor network can achieve the unmanned environmental monitoring and military monitoring missions.Underwater acoustic sensor node cannot rely on the GPS to position itself,and the traditional indirect positioning methods used in Ad Hoc networks are not fully applicable to the localization of underwater acoustic sensor networks.In this paper,we introduce an improved underwater acoustic network localization algorithm.The algorithm processes the raw data before localization calculation to enhance the tolerance of random noise.We reduce the redundancy of the calculation results by using a more accurate basic algorithm and an adjusted calculation strategy.The improved algorithm is more suitable for the underwater acoustic sensor network positioning.展开更多
Wireless local area networks (WLAN) localization based on received signal strength is becoming an important enabler of location based services. Limited efficiency and accuracy are disadvantages to the deterministic lo...Wireless local area networks (WLAN) localization based on received signal strength is becoming an important enabler of location based services. Limited efficiency and accuracy are disadvantages to the deterministic location estimation techniques. The probabilistic techniques show their good accuracy but cost more computation overhead. A Gaussian mixture model based on clustering technique was presented to improve location determination efficiency. The proposed clustering algorithm reduces the number of candidate locations from the whole area to a cluster. Within a cluster, an improved nearest neighbor algorithm was used to estimate user location using signal strength from more access points. Experiments show that the location estimation time is greatly decreased while high accuracy can still be achieved.展开更多
A uniform array of scalar-sensors with intersensor spacings over a large aperture size generally offers enhanced resolution and source localization accuracy,but it may also lead to cyclic ambiguity.By exploiting the p...A uniform array of scalar-sensors with intersensor spacings over a large aperture size generally offers enhanced resolution and source localization accuracy,but it may also lead to cyclic ambiguity.By exploiting the polarization information of impinging waves,an electromagnetic vector-sensor array outperforms the unpolarized scalar-sensor array in resolving this cyclic ambiguity.However,the electromagnetic vector-sensor array usually consists of cocentered orthogonal loops and dipoles(COLD),which is easily subjected to mutual coupling across these cocentered dipoles/loops.As a result,the source localization performance of the COLD array may substantially degrade rather than being improved.This paper proposes a new source localization method with a non-cocentered orthogonal loop and dipole(NCOLD)array.The NCOLD array contains only one dipole or loop on each array grid,and the intersensor spacings are larger than a half-wavelength.Therefore,unlike the COLD array,these well separated dipoles/loops minimize the mutual coupling effects and extend the spatial aperture as well.With the NCOLD array,the proposed method can effciently exploit the polarization information to offer high localization precision.展开更多
Allen and Liu (1995) introduced a new method for a time-dependent convection dominated diffusion problem, which combines the modified method of characteristics and method of streamline diffusion. But they ignored the ...Allen and Liu (1995) introduced a new method for a time-dependent convection dominated diffusion problem, which combines the modified method of characteristics and method of streamline diffusion. But they ignored the fact that the accuracy of time discretization decays at half an order when the characteristic line goes out of the domain. In present paper, the author shows that, as a remedy, a simple lumped scheme yields a full accuracy approximation. Forthermore, some local error bounds independent of the small viscosity axe derived for this scheme outside the boundary layers.展开更多
Consider the nonparametric median regression model Y-ni = g(x(ni)) + epsilon(ni), 1 less than or equal to i less than or equal to n, where Y-ni's are the observations at the fixed design points x(ni) is an element...Consider the nonparametric median regression model Y-ni = g(x(ni)) + epsilon(ni), 1 less than or equal to i less than or equal to n, where Y-ni's are the observations at the fixed design points x(ni) is an element of [0, 1], is an element of(ni)'s are independent identically distributed random variables with median zero, g(x) is the smooth function of interest, Suppose the local median estimate (g) over tilde(n, h)(x) of g(x) admits the Bahadur's representation. Under some regular conditions, the relative stability of the local median estimate is established in the L-2 sense.展开更多
Micro Air Vehicle(MAV)swarms are often constrained by limited onboard processing capabilities and payload capacity,restricting the use of sophisticated localization systems.Lightweight ultra-wideband(UWB)ranging techn...Micro Air Vehicle(MAV)swarms are often constrained by limited onboard processing capabilities and payload capacity,restricting the use of sophisticated localization systems.Lightweight ultra-wideband(UWB)ranging techniques are commonly used to estimate inter-vehicle distances,but they do not provide local bearing information—essential for precise relative positioning.Inspired by bat echolocation in low-visibility environments,we propose an acoustic-enhanced method for local bearing estimation designed for low-cost MAVs.Our approach leverages ambient acoustic signals naturally emitted by a target MAV in flight,combined with UWB distance measurements.The acoustic data is processed using the Frequency-Sliding Generalized Cross-Correlation(FS-GCC)method,enhanced with our analytical formulation that compensates for inter-channel switching delays in asynchronous,high-frequency sampling.This enables accurate Time Difference of Arrival(TDOA)estimation,even with compact microphone arrays.These TDOA values,along with known microphone geometry and UWB data,are integrated into our geometric model to estimate the bearing of the target MAV.We validate our approach in a controlled indoor hall across two experimental scenarios:static-bearing estimation,where the target MAV hovers at predefined angular positions(0◦,±30◦,±45◦,±60◦),and dynamic-bearing estimation,where it flies across angles at varying velocities.The results show that our method yields reliable TDOA measurements compared to classical and machine learning baselines,and produces accurate bearing estimates in both static and dynamic settings.This demonstrates the feasibility of our low-cost acoustic-enhanced solution for local bearing estimation in MAV swarms,supporting improved relative navigation and decentralized perception in GPS-denied or visually degraded environments.展开更多
In this paper, we establish asymptotically optimal simultaneous confidence bands for the copula function based on the local linear kernel estimator proposed by Chen and Huang [1]. For this, we prove under smoothness c...In this paper, we establish asymptotically optimal simultaneous confidence bands for the copula function based on the local linear kernel estimator proposed by Chen and Huang [1]. For this, we prove under smoothness conditions on the derivatives of the copula a uniform in bandwidth law of the iterated logarithm for the maximal deviation of this estimator from its expectation. We also show that the bias term converges uniformly to zero with a precise rate. The performance of these bands is illustrated by a simulation study. An application based on pseudo-panel data is also provided for modeling the dependence structure of Senegalese households’ expense data in 2001 and 2006.展开更多
In order to effectively improve the quality of recovered images, a single frame super-resolution reconstruction method based on sparse representation is proposed. The combination method of local orientation estimation...In order to effectively improve the quality of recovered images, a single frame super-resolution reconstruction method based on sparse representation is proposed. The combination method of local orientation estimation-based image patch clustering and principal component analysis is used to obtain a series of geometric dictionaries of different orientations in the dictionary learning process. Subsequently, the dictionary of the nearest orientation is adaptively assigned to each of the input patches that need to be represented in the sparse coding process. Moreover, the consistency of gradients is further incorporated into the basic framework to make more substantial progress in preserving more fine edges and producing sharper results. Two groups of experiments on different types of natural images indicate that the proposed method outperforms some state-of- the-art counterparts in terms of both numerical indicators and visual quality.展开更多
Varying-coefficient models are a useful extension of classical linear model. They are widely applied to economics, biomedicine, epidemiology, and so on. There are extensive studies on them in the latest three decade y...Varying-coefficient models are a useful extension of classical linear model. They are widely applied to economics, biomedicine, epidemiology, and so on. There are extensive studies on them in the latest three decade years. In this paper, many of models related to varying-coefficient models are gathered up. All kinds of the estimation procedures and theory of hypothesis test on the varying-coefficients model are summarized. Prom my opinion, some aspects waiting to study are proposed.展开更多
A new visual measurement method is proposed to estimate three-dimensional (3D) position of the object on the floor based on a single camera. The camera fixed on a robot is in an inclined position with respect to the...A new visual measurement method is proposed to estimate three-dimensional (3D) position of the object on the floor based on a single camera. The camera fixed on a robot is in an inclined position with respect to the floor. A measurement model with the camera's extrinsic parameters such as the height and pitch angle is described. Single image of a chessboard pattern placed on the floor is enough to calibrate the camera's extrinsic parameters after the camera's intrinsic parameters are calibrated. Then the position of object on the floor can be computed with the measurement model. Furthermore, the height of object can be calculated with the paired-points in the vertical line sharing the same position on the floor. Compared to the conventional method used to estimate the positions on the plane, this method can obtain the 3D positions. The indoor experiment testifies the accuracy and validity of the proposed method.展开更多
In this paper, we propose the test statistic to check whether the nonparametric function in partially linear models is linear or not. We estimate the nonparametric function in alternative by using the local linear met...In this paper, we propose the test statistic to check whether the nonparametric function in partially linear models is linear or not. We estimate the nonparametric function in alternative by using the local linear method, and then estimate the parameters by the two stage method. The test statistic under the null hypothesis is calculated, and it is shown to be asymptotically normal.展开更多
Underwater target localization and parameters(azimuth and range) estimation by the method of utilizing explosions as underwater sound sources are described in this paper.The narrow beam reverberation model of the targ...Underwater target localization and parameters(azimuth and range) estimation by the method of utilizing explosions as underwater sound sources are described in this paper.The narrow beam reverberation model of the target echo signal is researched to estimate the target azimuth in reverberation background.Estimation errors of target azimuth and range are studied and proved to approximately meet Gauss distribution.Then the variance formula of target range error is deduced.Simulation experiments are applied to research the target range error and its standard deviation,and a series of measures to improve the estimation accuracy of target range are proposed.It is confirmed by the data processing results of simulations and lake experiments that the proposed method can accurately locate underwater target at a long distance on the condition of a certain underwater explosion range error.展开更多
In this paper,we consider the weighted local polynomial calibration estimation and imputation estimation of a non-parametric function when the data are right censored and the censoring indicators are missing at random...In this paper,we consider the weighted local polynomial calibration estimation and imputation estimation of a non-parametric function when the data are right censored and the censoring indicators are missing at random,and establish the asymptotic normality of these estimators.As their applications,we derive the weighted local linear calibration estimators and imputation estimations of the conditional distribution function,the conditional density function and the conditional quantile function,and investigate the asymptotic normality of these estimators.Finally,the simulation studies are conducted to illustrate the finite sample performance of the estimators.展开更多
M-cross-validation criterion is proposed for selecting a smoothing parameter in a nonparametric median regression model in which a uniform weak convergency rate for the M-cross-validated local median estimate, and the...M-cross-validation criterion is proposed for selecting a smoothing parameter in a nonparametric median regression model in which a uniform weak convergency rate for the M-cross-validated local median estimate, and the upper and lower bounds of the smoothing parameter selected by the proposed criterion are established. The main contribution of this study shows a drastic difference from those encountered in the classical L2-, L1- cross-validation technique, which leads only to the consistency in the sense of the average. Obviously, our results are novel and nontrivial from the point of view of mathematics and statistics, which provides insight and possibility for practitioners substituting maximum deviation for average deviation to evaluate the performance of the data-driven technique.展开更多
This paper deals with the conditional density estimator of a real response variable given a functional random variable(i.e.,takes values in an infinite-dimensional space).Specifically,we focus on the functional index ...This paper deals with the conditional density estimator of a real response variable given a functional random variable(i.e.,takes values in an infinite-dimensional space).Specifically,we focus on the functional index model,and this approach represents a good compromise between nonparametric and parametric models.Then we give under general conditions and when the variables are independent,the quadratic error and asymptotic normality of estimator by local linear method,based on the single-index structure.Finally,wecomplete these theoretical advances by some simulation studies showing both the practical result of the local linear method and the good behaviour for finite sample sizes of the estimator and of the Monte Carlo methods to create functional pseudo-confidence area.展开更多
基金supported by the Natural Science Foundation of Chongqing Science & Technology Commission,China (Grant No.CSTC2010BB2310)the Chongqing Municipal Education Commission Foundation,China (Grant Nos.KJ080614,KJ100810,and KJ100818)
文摘In this paper, we propose a new method that combines chaotic series phase space reconstruction and local polynomial estimation to solve the problem of suppressing strong chaotic noise. First, chaotic noise time series are reconstructed to obtain multivariate time series according to Takens delay embedding theorem. Then the chaotic noise is estimated accurately using local polynomial estimation method. After chaotic noise is separated from observation signal, we can get the estimation of the useful signal. This local polynomial estimation method can combine the advantages of local and global law. Finally, it makes the estimation more exactly and we can calculate the formula of mean square error theoretically. The simulation results show that the method is effective for the suppression of strong chaotic noise when the signal to interference ratio is low.
基金The first author’s research was supported by the National Natural Science Foundation of China(Grant No.198310110 and Grant No.19871003)the partly support of the Doctoral Foundation of China and the last three authors’research was supported by a gra
文摘This paper considers local median estimation in fixed design regression problems. The proposed method is employed to estimate the median function and the variance function of a heteroscedastic regression model. Strong convergence rates of the proposed estimators are obtained. Simulation results are given to show the performance of the proposed methods.
文摘In this study, a multivariate local quadratic polynomial regression(MLQPR) method is proposed to design a model for the sludge volume index(SVI). In MLQPR, a quadratic polynomial regression function is established to describe the relationship between SVI and the relative variables, and the important terms of the quadratic polynomial regression function are determined by the significant test of the corresponding coefficients. Moreover, a local estimation method is introduced to adjust the weights of the quadratic polynomial regression function to improve the model accuracy. Finally, the proposed method is applied to predict the SVI values in a real wastewater treatment process(WWTP). The experimental results demonstrate that the proposed MLQPR method has faster testing speed and more accurate results than some existing methods.
基金The part of the project "Development of Korea Operational Oceanographic System(KOOS),Phase 2",funded by the Ministry of Oceans and Fisheries,Koreathe part of the project entitled "Cooperative Project on Korea-China Bilateral Committee on Ocean Science",funded by the Ministry of Oceans and Fisheries,Korea and China-Korea Joint Research Ocean Research Center
文摘Cochlodinium polykrikoides is a notoriously harmful algal species that inflicts severe damage on the aquacultures of the coastal seas of Korea and Japan. Information on their expected movement tracks and boundaries of influence is very useful and important for the effective establishment of a reduction plan. In general, the information is supported by a red-tide(a.k.a algal bloom) model. The performance of the model is highly dependent on the accuracy of parameters, which are the coefficients of functions approximating the biological growth and loss patterns of the C. polykrikoides. These parameters have been estimated using the bioassay data composed of growth-limiting factor and net growth rate value pairs. In the case of the C. polykrikoides, the parameters are different from each other in accordance with the used data because the bioassay data are sufficient compared to the other algal species. The parameters estimated by one specific dataset can be viewed as locally-optimized because they are adjusted only by that dataset. In cases where the other one data set is used, the estimation error might be considerable. In this study, the parameters are estimated by all available data sets without the use of only one specific data set and thus can be considered globally optimized. The cost function for the optimization is defined as the integrated mean squared estimation error, i.e., the difference between the values of the experimental and estimated rates. Based on quantitative error analysis, the root-mean squared errors of the global parameters show smaller values, approximately 25%–50%, than the values of the local parameters. In addition, bias is removed completely in the case of the globally estimated parameters. The parameter sets can be used as the reference default values of a red-tide model because they are optimal and representative. However, additional tuning of the parameters using the in-situ monitoring data is highly required.As opposed to the bioassay data, it is necessary because the bioassay data have limitations in terms of the in-situ coastal conditions.
基金Supported by the National Natural Science Foundation of China(61573051,61472021)the Natural Science Foundation of Beijing(4142039)+1 种基金Open Fund of the State Key Laboratory of Software Development Environment(SKLSDE-2015KF-01)Fundamental Research Funds for the Central Universities(PT1613-05)
文摘Currently, some fault prognosis technology occasionally has relatively unsatisfied performance especially for in- cipient faults in nonlinear processes duo to their large time delay and complex internal connection. To overcome this deficiency, multivariate time delay analysis is incorporated into the high sensitive local kernel principal component analysis. In this approach, mutual information estimation and Bayesian information criterion (BIC) are separately used to acquire the correlation degree and time delay of the process variables. Moreover, in order to achieve prediction, time series prediction by back propagation (BP) network is applied whose input is multivar- iate correlated time series other than the original time series. Then the multivariate time delayed series and future values obtained by time series prediction are combined to construct the input of local kernel principal component analysis (LKPCA) model for incipient fault prognosis. The new method has been exemplified in a sim- ple nonlinear process and the complicated Tennessee Eastman (TE) benchmark process. The results indicate that the new method has suoerioritv in the fault prognosis sensitivity over other traditional fault prognosis methods.
基金performed in the Project "The Research of Cluster Structure Based Underwater Acoustic Communication Network Topology Algorithm"supported by National Natural Science Foundation of China(No.61101164)
文摘Underwater sensor network can achieve the unmanned environmental monitoring and military monitoring missions.Underwater acoustic sensor node cannot rely on the GPS to position itself,and the traditional indirect positioning methods used in Ad Hoc networks are not fully applicable to the localization of underwater acoustic sensor networks.In this paper,we introduce an improved underwater acoustic network localization algorithm.The algorithm processes the raw data before localization calculation to enhance the tolerance of random noise.We reduce the redundancy of the calculation results by using a more accurate basic algorithm and an adjusted calculation strategy.The improved algorithm is more suitable for the underwater acoustic sensor network positioning.
基金the Shanghai Commission of Science and Technology Grant (No. 05SN07114)
文摘Wireless local area networks (WLAN) localization based on received signal strength is becoming an important enabler of location based services. Limited efficiency and accuracy are disadvantages to the deterministic location estimation techniques. The probabilistic techniques show their good accuracy but cost more computation overhead. A Gaussian mixture model based on clustering technique was presented to improve location determination efficiency. The proposed clustering algorithm reduces the number of candidate locations from the whole area to a cluster. Within a cluster, an improved nearest neighbor algorithm was used to estimate user location using signal strength from more access points. Experiments show that the location estimation time is greatly decreased while high accuracy can still be achieved.
基金supported by the Scientifc Research Fund of Zhejiang Provincial Education Department(No.Y201225848)the Scientifc and Technological Innovation Programs of Higher Education Institutions in Shanxi(No.2013124)
文摘A uniform array of scalar-sensors with intersensor spacings over a large aperture size generally offers enhanced resolution and source localization accuracy,but it may also lead to cyclic ambiguity.By exploiting the polarization information of impinging waves,an electromagnetic vector-sensor array outperforms the unpolarized scalar-sensor array in resolving this cyclic ambiguity.However,the electromagnetic vector-sensor array usually consists of cocentered orthogonal loops and dipoles(COLD),which is easily subjected to mutual coupling across these cocentered dipoles/loops.As a result,the source localization performance of the COLD array may substantially degrade rather than being improved.This paper proposes a new source localization method with a non-cocentered orthogonal loop and dipole(NCOLD)array.The NCOLD array contains only one dipole or loop on each array grid,and the intersensor spacings are larger than a half-wavelength.Therefore,unlike the COLD array,these well separated dipoles/loops minimize the mutual coupling effects and extend the spatial aperture as well.With the NCOLD array,the proposed method can effciently exploit the polarization information to offer high localization precision.
文摘Allen and Liu (1995) introduced a new method for a time-dependent convection dominated diffusion problem, which combines the modified method of characteristics and method of streamline diffusion. But they ignored the fact that the accuracy of time discretization decays at half an order when the characteristic line goes out of the domain. In present paper, the author shows that, as a remedy, a simple lumped scheme yields a full accuracy approximation. Forthermore, some local error bounds independent of the small viscosity axe derived for this scheme outside the boundary layers.
文摘Consider the nonparametric median regression model Y-ni = g(x(ni)) + epsilon(ni), 1 less than or equal to i less than or equal to n, where Y-ni's are the observations at the fixed design points x(ni) is an element of [0, 1], is an element of(ni)'s are independent identically distributed random variables with median zero, g(x) is the smooth function of interest, Suppose the local median estimate (g) over tilde(n, h)(x) of g(x) admits the Bahadur's representation. Under some regular conditions, the relative stability of the local median estimate is established in the L-2 sense.
基金Malaysian Ministry of Higher Education(MOHE)for providing the Fundamental Research Grant Scheme(FRGS)(FRGS/1/2024/TK04/USM/02/3)for conducting this research.
文摘Micro Air Vehicle(MAV)swarms are often constrained by limited onboard processing capabilities and payload capacity,restricting the use of sophisticated localization systems.Lightweight ultra-wideband(UWB)ranging techniques are commonly used to estimate inter-vehicle distances,but they do not provide local bearing information—essential for precise relative positioning.Inspired by bat echolocation in low-visibility environments,we propose an acoustic-enhanced method for local bearing estimation designed for low-cost MAVs.Our approach leverages ambient acoustic signals naturally emitted by a target MAV in flight,combined with UWB distance measurements.The acoustic data is processed using the Frequency-Sliding Generalized Cross-Correlation(FS-GCC)method,enhanced with our analytical formulation that compensates for inter-channel switching delays in asynchronous,high-frequency sampling.This enables accurate Time Difference of Arrival(TDOA)estimation,even with compact microphone arrays.These TDOA values,along with known microphone geometry and UWB data,are integrated into our geometric model to estimate the bearing of the target MAV.We validate our approach in a controlled indoor hall across two experimental scenarios:static-bearing estimation,where the target MAV hovers at predefined angular positions(0◦,±30◦,±45◦,±60◦),and dynamic-bearing estimation,where it flies across angles at varying velocities.The results show that our method yields reliable TDOA measurements compared to classical and machine learning baselines,and produces accurate bearing estimates in both static and dynamic settings.This demonstrates the feasibility of our low-cost acoustic-enhanced solution for local bearing estimation in MAV swarms,supporting improved relative navigation and decentralized perception in GPS-denied or visually degraded environments.
文摘In this paper, we establish asymptotically optimal simultaneous confidence bands for the copula function based on the local linear kernel estimator proposed by Chen and Huang [1]. For this, we prove under smoothness conditions on the derivatives of the copula a uniform in bandwidth law of the iterated logarithm for the maximal deviation of this estimator from its expectation. We also show that the bias term converges uniformly to zero with a precise rate. The performance of these bands is illustrated by a simulation study. An application based on pseudo-panel data is also provided for modeling the dependence structure of Senegalese households’ expense data in 2001 and 2006.
基金The National Natural Science Foundation of China(No.61374194,No.61403081)the National Key Science&Technology Pillar Program of China(No.2014BAG01B03)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20140638)Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘In order to effectively improve the quality of recovered images, a single frame super-resolution reconstruction method based on sparse representation is proposed. The combination method of local orientation estimation-based image patch clustering and principal component analysis is used to obtain a series of geometric dictionaries of different orientations in the dictionary learning process. Subsequently, the dictionary of the nearest orientation is adaptively assigned to each of the input patches that need to be represented in the sparse coding process. Moreover, the consistency of gradients is further incorporated into the basic framework to make more substantial progress in preserving more fine edges and producing sharper results. Two groups of experiments on different types of natural images indicate that the proposed method outperforms some state-of- the-art counterparts in terms of both numerical indicators and visual quality.
基金Foundation item: Supported by the National Natural Science Foundation of China(10501053) Acknowledgement I would like to thank Henan Society of Applied Statistics for which give me a chance to declare my opinion about the varying-coefficient model.
文摘Varying-coefficient models are a useful extension of classical linear model. They are widely applied to economics, biomedicine, epidemiology, and so on. There are extensive studies on them in the latest three decade years. In this paper, many of models related to varying-coefficient models are gathered up. All kinds of the estimation procedures and theory of hypothesis test on the varying-coefficients model are summarized. Prom my opinion, some aspects waiting to study are proposed.
基金supported by National Natural Science Foundation of China(Nos.61273352 and 61473295)National High Technology Research and Development Program of China(863 Program)(No.2015AA042307)Beijing Natural Science Foundation(No.4161002)
文摘A new visual measurement method is proposed to estimate three-dimensional (3D) position of the object on the floor based on a single camera. The camera fixed on a robot is in an inclined position with respect to the floor. A measurement model with the camera's extrinsic parameters such as the height and pitch angle is described. Single image of a chessboard pattern placed on the floor is enough to calibrate the camera's extrinsic parameters after the camera's intrinsic parameters are calibrated. Then the position of object on the floor can be computed with the measurement model. Furthermore, the height of object can be calculated with the paired-points in the vertical line sharing the same position on the floor. Compared to the conventional method used to estimate the positions on the plane, this method can obtain the 3D positions. The indoor experiment testifies the accuracy and validity of the proposed method.
文摘In this paper, we propose the test statistic to check whether the nonparametric function in partially linear models is linear or not. We estimate the nonparametric function in alternative by using the local linear method, and then estimate the parameters by the two stage method. The test statistic under the null hypothesis is calculated, and it is shown to be asymptotically normal.
基金supported by the National Natural Science Foundation of China(61431020,61571434)
文摘Underwater target localization and parameters(azimuth and range) estimation by the method of utilizing explosions as underwater sound sources are described in this paper.The narrow beam reverberation model of the target echo signal is researched to estimate the target azimuth in reverberation background.Estimation errors of target azimuth and range are studied and proved to approximately meet Gauss distribution.Then the variance formula of target range error is deduced.Simulation experiments are applied to research the target range error and its standard deviation,and a series of measures to improve the estimation accuracy of target range are proposed.It is confirmed by the data processing results of simulations and lake experiments that the proposed method can accurately locate underwater target at a long distance on the condition of a certain underwater explosion range error.
基金supported in part by the National Social Science Foundation of China(Grant No.20BTJ049).
文摘In this paper,we consider the weighted local polynomial calibration estimation and imputation estimation of a non-parametric function when the data are right censored and the censoring indicators are missing at random,and establish the asymptotic normality of these estimators.As their applications,we derive the weighted local linear calibration estimators and imputation estimations of the conditional distribution function,the conditional density function and the conditional quantile function,and investigate the asymptotic normality of these estimators.Finally,the simulation studies are conducted to illustrate the finite sample performance of the estimators.
文摘M-cross-validation criterion is proposed for selecting a smoothing parameter in a nonparametric median regression model in which a uniform weak convergency rate for the M-cross-validated local median estimate, and the upper and lower bounds of the smoothing parameter selected by the proposed criterion are established. The main contribution of this study shows a drastic difference from those encountered in the classical L2-, L1- cross-validation technique, which leads only to the consistency in the sense of the average. Obviously, our results are novel and nontrivial from the point of view of mathematics and statistics, which provides insight and possibility for practitioners substituting maximum deviation for average deviation to evaluate the performance of the data-driven technique.
文摘This paper deals with the conditional density estimator of a real response variable given a functional random variable(i.e.,takes values in an infinite-dimensional space).Specifically,we focus on the functional index model,and this approach represents a good compromise between nonparametric and parametric models.Then we give under general conditions and when the variables are independent,the quadratic error and asymptotic normality of estimator by local linear method,based on the single-index structure.Finally,wecomplete these theoretical advances by some simulation studies showing both the practical result of the local linear method and the good behaviour for finite sample sizes of the estimator and of the Monte Carlo methods to create functional pseudo-confidence area.