期刊文献+
共找到26,804篇文章
< 1 2 250 >
每页显示 20 50 100
Design of Voltage Equalization Circuit and Control Method for Lithium-ion Battery Packs
1
作者 Qi Wang Lantian Ge +4 位作者 Tianru Xie Yibo Huang Yandong Gu Tao Zhu Xuehua Gao 《Energy Engineering》 2025年第2期733-746,共14页
The active equalization of lithium-ion batteries involves transferring energy from high-voltage cells to low-voltage cells,ensuring consistent voltage levels across the battery pack and maintaining safety.This paper p... The active equalization of lithium-ion batteries involves transferring energy from high-voltage cells to low-voltage cells,ensuring consistent voltage levels across the battery pack and maintaining safety.This paper presents a voltage balancing circuit and control method.First,a single capacitor method is used to design the circuit topology for energy transfer.Next,real-time voltage detection and control are employed to balance energy between cells.Finally,simulation and experimental results demonstrate the effectiveness of the proposed method,achieving balanced voltages of 3.97 V from initial voltages of 4.10,3.97,and 3.90 V.The proposed circuit is simple,reliable,and effectively prevents overcharge and overdischarge. 展开更多
关键词 Lithium-ion battery voltage balancing control single-capacitor method
在线阅读 下载PDF
An Intelligent Control Method Based on the Artificial Neural Network Model
2
作者 Liangkai Zhou Dan Han +1 位作者 Qinzhe Wang Nv Yang 《Journal of Electronic Research and Application》 2025年第5期299-303,共5页
The topology structure of the artificial neural network is an intelligent control model,which is used for the intelligent vehicle control system and household sweeping robot.When setting the intelligent control system... The topology structure of the artificial neural network is an intelligent control model,which is used for the intelligent vehicle control system and household sweeping robot.When setting the intelligent control system,the connection point of each network is regarded as a neuron in the nervous system,and each connection point has input and output functions.Only when the input of nodes reaches a certain threshold can the output function of nodes be stimulated.Using the networking mode of the artificial neural network model,the mobile node can output in multiple directions.If the input direction of a certain path is the same as that of other nodes,it can choose to avoid and choose another path.The weighted value of each path between nodes is different,which means that the influence of the front node on the current node varies.The control method based on the artificial neural network model can be applied to vehicle control,household sweeping robots,and other fields,and a relatively optimized scheme can be obtained from the aspect of time and energy consumption. 展开更多
关键词 Artificial neural network MODEL control method Optimization scheme
在线阅读 下载PDF
Review on internal flow mechanism and control methods of axial flow compressor at low Reynolds number
3
作者 Xuyang REN Xingen LU +6 位作者 Mingyang WANG Ge HAN Chengwu YANG Xu DONG Lipan YAO Yanfeng ZHANG Shengfeng ZHAO 《Chinese Journal of Aeronautics》 2025年第5期7-27,共21页
With the continuous increase of aeroengine flight ceiling(>20 km),the thin atmosphere at high altitudes and the size effect all cause the compressor component inlet Reynolds number to decrease rapidly to a critical... With the continuous increase of aeroengine flight ceiling(>20 km),the thin atmosphere at high altitudes and the size effect all cause the compressor component inlet Reynolds number to decrease rapidly to a critical value(approximately 2.0×10^(5)),and the significant transition process on the blade/endwall surface leads to the sharp degradation of compressor performance,which seriously affects the engine fuel consumption and working stability at high altitudes.In this paper,the research progress on the internal flow mechanism and flow control methods of axial compressors at low Reynolds numbers is reviewed from the aspects of quantification and prediction of performance variation,flow loss mechanism related to separation and transition,efficient transition control and flow field organization.The development trend of the low-Reynolds-number effect of axial flow compressors is noted,and the difficulties and application prospects of aerodynamic design and efficient flow control methods for compressors under low Reynolds numbers at high altitudes are discussed. 展开更多
关键词 LowReynolds number Axial compressor Flow mechanism Flow control methods AEROENGINE
原文传递
Global integration design method of acceleration and deceleration control schedule for variable cycle engine
4
作者 Ying CHEN Sangwei LU +1 位作者 Wenxiang ZHOU Jinquan HUANG 《Chinese Journal of Aeronautics》 2025年第5期248-261,共14页
Variable Cycle Engine(VCE)serves as the core system in achieving future advanced fighters with cross-generational performance and mission versatility.However,the resultant complex configuration and strong coupling of ... Variable Cycle Engine(VCE)serves as the core system in achieving future advanced fighters with cross-generational performance and mission versatility.However,the resultant complex configuration and strong coupling of control parameters present significant challenges in designing acceleration and deceleration control schedules.To thoroughly explore the performance potential of engine,a global integration design method for acceleration and deceleration control schedule based on inner and outer loop optimization is proposed.The outer loop optimization module employs Integrated Surrogate-Assisted Co-Differential Evolutionary(ISACDE)algorithm to optimize the variable geometry adjustment laws based on B-spline curve,and the inner loop optimization module adopts the fixed-state method to design the open-loop fuel–air ratio control schedules,which are aimed at minimizing the acceleration and deceleration time under multiple constraints.Simulation results demonstrate that the proposed global integration design method not only furthest shortens the acceleration and deceleration time,but also effectively safeguards the engine from overlimit. 展开更多
关键词 control schedule design Acceleration and deceleration Variablecycle engine Fixed-states method Co-differential evolutionary algorithm
原文传递
An optimal midcourse guidance method for dual pulse air-to-air missiles using linear Gauss pseudospectral model predictive control method
5
作者 Jinyang WANG Wanchun CHEN +1 位作者 Liang YANG Xiaopeng GONG 《Chinese Journal of Aeronautics》 2025年第2期305-321,共17页
This paper proposes an optimal midcourse guidance method for dual pulse air-to-air missiles,which is based on the framework of the linear Gauss pseudospectral model predictive control method.Firstly,a multistage optim... This paper proposes an optimal midcourse guidance method for dual pulse air-to-air missiles,which is based on the framework of the linear Gauss pseudospectral model predictive control method.Firstly,a multistage optimal control problem with unspecified terminal time is formulated.Secondly,the control and terminal time update formulas are derived analytically.In contrast to previous work,the derivation process fully considers the Hamiltonian function corresponding to the unspecified terminal time,which is coupled with control,state,and costate.On the assumption of small perturbation,a special algebraic equation is provided to represent the equivalent optimal condition for the terminal time.Also,using Gauss pseudospectral collocation,error propagation dynamical equations involving the first-order correction term of the terminal time are transformed into a set of algebraic equations.Furthermore,analytical modification formulas can be derived by associating those equations and optimal conditions to eliminate terminal error and approach nonlinear optimal control.Even with their mathematical complexity,these formulas produce more accurate control and terminal time corrections and remove reliance on task-related parameters.Finally,several numerical simulations,comparisons with typical methods,and Monte Carlo simulations have been done to verify its optimality,high convergence rate,great stability and robustness. 展开更多
关键词 Optimal midcourse guidance Air-to-air missiles Gauss pseudospectral method Optimal control problem Unspecified terminal time
原文传递
Active traveling wave vibration control of elastic supported conical shells with smart micro fiber composites based on the differential quadrature method
6
作者 Yuxin HAO Lei SUN +1 位作者 Wei ZHANG Han LI 《Applied Mathematics and Mechanics(English Edition)》 2025年第2期305-322,共18页
This paper investigates the active traveling wave vibration control of an elastic supported rotating porous aluminium conical shell(CS)under impact loading.Piezoelectric smart materials in the form of micro fiber comp... This paper investigates the active traveling wave vibration control of an elastic supported rotating porous aluminium conical shell(CS)under impact loading.Piezoelectric smart materials in the form of micro fiber composites(MFCs)are used as actuators and sensors.To this end,a metal pore truncated CS with MFCs attached to its surface is considered.Adding artificial virtual springs at two edges of the truncated CS achieves various elastic supported boundaries by changing the spring stiffness.Based on the first-order shear deformation theory(FSDT),minimum energy principle,and artificial virtual spring technology,the theoretical formulations considering the electromechanical coupling are derived.The comparison of the natural frequency of the present results with the natural frequencies reported in previous literature evaluates the accuracy of the present approach.To study the vibration control,the integral quadrature method in conjunction with the differential quadrature approximation in the length direction is used to discretize the partial differential dynamical system to form a set of ordinary differential equations.With the aid of the velocity negative feedback method,both the time history and the input control voltage on the actuator are demonstrated to present the effects of velocity feedback gain,pore distribution type,semi-vertex angle,impact loading,and rotational angular velocity on the traveling wave vibration control. 展开更多
关键词 rotating conical shell(CS) porous metal material active vibration control elastic support differential quadrature method
在线阅读 下载PDF
Preload Control Method of Threaded Fasteners:A Review
7
作者 Xing Yan Zhifeng Liu +3 位作者 Mingpo Zheng Ying Li Yuezhen Wang Wentao Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第5期40-59,共20页
Threaded fasteners are one of the most commonly used connection methods for mechanical structures.Its primary function is to generate appropriate clamping forces and fasten the connected parts.An inappropriate preload... Threaded fasteners are one of the most commonly used connection methods for mechanical structures.Its primary function is to generate appropriate clamping forces and fasten the connected parts.An inappropriate preload can cause loosening,fatigue fracture,and other problems.This will affect the safety and reliability of mechanical equipment.The precise control of the preload has become a critical issue in mechanical assembly processes.Over the past few decades,various tightening measures and methods have been proposed to address this issue.However,many problems continue to exist with practical applications that have not been reviewed comprehensively and systematically.First,various control methods were summarized systematically,and their advantages and disadvantages in engineering applications were analyzed.Torque control is the most widely used tightening method owing to its simple operation and low cost.Therefore,the research on the torque control method was summarized systematically from three aspects:the torque-preload correlation formula,effective friction radius,and friction characteristics during tightening.In addition,the special circumstances that may increase preload uncertainty were discussed.Finally,based on a summary of the current research status,the prospects for future research were discussed.This study would aid researchers in extensively understanding the problems in preload control. 展开更多
关键词 Threaded fasteners PRELOAD Tightening method Torque control method Friction characteristics
在线阅读 下载PDF
A feedback control method for phase signal demodulation in fber-optic hydrophones
8
作者 Zhiqiang LIU Lei XIA +3 位作者 Qiangfeng LYU Bin WU Ronghua HUAN Zhilong HUANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第3期515-528,共14页
In the realm of acoustic signal detection,the identification of weak signals,particularly in the presence of negative signal-to-noise ratios,poses a significant challenge.This challenge is further heightened when sign... In the realm of acoustic signal detection,the identification of weak signals,particularly in the presence of negative signal-to-noise ratios,poses a significant challenge.This challenge is further heightened when signals are acquired through fiber-optic hydrophones,as these signals often lack physical significance and resist clear systematic modeling.Conventional processing methods,e.g.,low-pass filter(LPF),require a thorough understanding of the effective signal bandwidth for noise reduction,and may introduce undesirable time lags.This paper introduces an innovative feedback control method with dual Kalman filters for the demodulation of phase signals with noises in fiber-optic hydrophones.A mathematical model of the closed-loop system is established to guide the design of the feedback control,aiming to achieve a balance with the input phase signal.The dual Kalman filters are instrumental in mitigating the effects of signal noise,observation noise,and control execution noise,thereby enabling precise estimation for the input phase signals.The effectiveness of this feedback control method is demonstrated through examples,showcasing the restoration of low-noise signals,negative signal-to-noise ratio signals,and multi-frequency signals.This research contributes to the technical advancement of high-performance devices,including fiber-optic hydrophones and phase-locked amplifiers. 展开更多
关键词 feedback control method fiber-optic hydrophone acoustic signal detection phase signal
在线阅读 下载PDF
Trigonometric Regularization and Continuation Method Based Time-Optimal Control of Hypersonic Vehicles
9
作者 LIN Yujie HAN Yanhua 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第S01期52-59,共8页
Aiming at the time-optimal control problem of hypersonic vehicles(HSV)in ascending stage,a trigonometric regularization method(TRM)is introduced based on the indirect method of optimal control.This method avoids analy... Aiming at the time-optimal control problem of hypersonic vehicles(HSV)in ascending stage,a trigonometric regularization method(TRM)is introduced based on the indirect method of optimal control.This method avoids analyzing the switching function and distinguishing between singular control and bang-bang control,where the singular control problem is more complicated.While in bang-bang control,the costate variables are unsmooth due to the control jumping,resulting in difficulty in solving the two-point boundary value problem(TPBVP)induced by the indirect method.Aiming at the easy divergence when solving the TPBVP,the continuation method is introduced.This method uses the solution of the simplified problem as the initial value of the iteration.Then through solving a series of TPBVP,it approximates to the solution of the original complex problem.The calculation results show that through the above two methods,the time-optimal control problem of HSV in ascending stage under the complex model can be solved conveniently. 展开更多
关键词 hypersonic vehicle(HSV) optimal control trigonometric regularization method(TRM) continuation method
在线阅读 下载PDF
A BICUBIC B-SPLINE FINITE ELEMENT METHOD FOR FOURTH-ORDER SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS
10
作者 Fangfang DU Tongjun SUN 《Acta Mathematica Scientia》 SCIE CSCD 2024年第6期2411-2421,共11页
A bicubic B-spline finite element method is proposed to solve optimal control problems governed by fourth-order semilinear parabolic partial differential equations.Its key feature is the selection of bicubic B-splines... A bicubic B-spline finite element method is proposed to solve optimal control problems governed by fourth-order semilinear parabolic partial differential equations.Its key feature is the selection of bicubic B-splines as trial functions to approximate the state and costate variables in two space dimensions.A Crank-Nicolson difference scheme is constructed for time discretization.The resulting numerical solutions belong to C2in space,and the order of the coefficient matrix is low.Moreover,the Bogner-Fox-Schmit element is considered for comparison.Two numerical experiments demonstrate the feasibility and effectiveness of the proposed method. 展开更多
关键词 bicubic B-spline finite element method optimal control problem Bogner-Fox-Schmit element Crank-Nicolson scheme numerical experiment
在线阅读 下载PDF
Control and Stabilization of Chaotic System Based on Linear Feedback Control Method
11
作者 WEI Xingmin LI Dekui 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2024年第3期284-292,共9页
In this paper, two kinds of chaotic systems are controlled respectively with and without time-delay to eliminate their chaotic behaviors. First of all, according to the first-order approximation method and the stabili... In this paper, two kinds of chaotic systems are controlled respectively with and without time-delay to eliminate their chaotic behaviors. First of all, according to the first-order approximation method and the stabilization condition of the linear system, one linear feedback controller is structured to control the chaotic system without time-delay, its chaotic behavior is eliminated and stabilized to its equilibrium. After that, based on the first-order approximation method, the Lyapunov stability theorem, and the matrix inequality theory, the other linear feedback controller is structured to control the chaotic system with time-delay and make it stabilized at its equilibrium. Finally, two numerical examples are given to illustrate the correctness and effectiveness of the two linear feedback controllers. 展开更多
关键词 chaotic system without time-delay chaotic system with time-delay STABILIZATION linear feedback control method
原文传递
An asymmetrically variable wingtip anhedral angles morphing aircraft based on incremental sliding mode control:Improving lateral maneuver capability 被引量:1
12
作者 Xiaodong LIU Yong XU Jianqiao LUO 《Chinese Journal of Aeronautics》 2025年第1期455-470,共16页
This paper presents the design of an asymmetrically variable wingtip anhedral angles morphing aircraft,inspired by biomimetic mechanisms,to enhance lateral maneuver capability.Firstly,we establish a lateral dynamic mo... This paper presents the design of an asymmetrically variable wingtip anhedral angles morphing aircraft,inspired by biomimetic mechanisms,to enhance lateral maneuver capability.Firstly,we establish a lateral dynamic model considering additional forces and moments resulting during the morphing process,and convert it into a Multiple Input Multiple Output(MIMO)virtual control system by importing virtual inputs.Secondly,a classical dynamics inversion controller is designed for the outer-loop system.A new Global Fast Terminal Incremental Sliding Mode Controller(NDO-GFTISMC)is proposed for the inner-loop system,in which an adaptive law is implemented to weaken control surface chattering,and a Nonlinear Disturbance Observer(NDO)is integrated to compensate for unknown disturbances.The whole control system is proven semiglobally uniformly ultimately bounded based on the multi-Lyapunov function method.Furthermore,we consider tracking errors and self-characteristics of actuators,a quadratic programmingbased dynamic control allocation law is designed,which allocates virtual control inputs to the asymmetrically deformed wingtip and rudder.Actuator dynamic models are incorporated to ensure physical realizability of designed allocation law.Finally,comparative experimental results validate the effectiveness of the designed control system and control allocation law.The NDO-GFTISMC features faster convergence,stronger robustness,and 81.25%and 75.0%reduction in maximum state tracking error under uncertainty compared to the Incremental Nonlinear Dynamic Inversion Controller based on NDO(NDO-INDI)and Incremental Sliding Mode Controller based on NDO(NDO-ISMC),respectively.The design of the morphing aircraft significantly enhances lateral maneuver capability,maintaining a substantial control margin during lateral maneuvering,reducing the burden of the rudder surface,and effectively solving the actuator saturation problem of traditional aircraft during lateral maneuvering. 展开更多
关键词 Morphing aircraft Lateral maneuver capability Incremental sliding mode control Multi-Lyapunov function method control theory control allocation law
原文传递
Gradient Recovery Based Two-Grid Finite Element Method for Parabolic Integro-Differential Optimal Control Problems
13
作者 Miao Yang 《Journal of Applied Mathematics and Physics》 2024年第8期2849-2865,共17页
In this paper, the optimal control problem of parabolic integro-differential equations is solved by gradient recovery based two-grid finite element method. Piecewise linear functions are used to approximate state and ... In this paper, the optimal control problem of parabolic integro-differential equations is solved by gradient recovery based two-grid finite element method. Piecewise linear functions are used to approximate state and co-state variables, and piecewise constant function is used to approximate control variables. Generally, the optimal conditions for the problem are solved iteratively until the control variable reaches error tolerance. In order to calculate all the variables individually and parallelly, we introduce a gradient recovery based two-grid method. First, we solve the small scaled optimal control problem on coarse grids. Next, we use the gradient recovery technique to recover the gradients of state and co-state variables. Finally, using the recovered variables, we solve the large scaled optimal control problem for all variables independently. Moreover, we estimate priori error for the proposed scheme, and use an example to validate the theoretical results. 展开更多
关键词 Optimal control Problem Gradient Recovery Two-Grid Finite Element method
在线阅读 下载PDF
Research on the Optimization Control Method of Inbound Traffic Flow on On-ramp
14
作者 Yun Li Zengqiang Wang 《Journal of World Architecture》 2024年第6期16-21,共6页
This study aims to optimize the inbound traffic flow on on-ramps by considering low time costs,good speed stability,and high driving safety for mixed traffic flow.The optimal inlet gap is identified in advance,and tra... This study aims to optimize the inbound traffic flow on on-ramps by considering low time costs,good speed stability,and high driving safety for mixed traffic flow.The optimal inlet gap is identified in advance,and trajectory guidance for vehicles entering the gap is determined under safety constraints.Based on the initial state and sequence of vehicles entering the merging area,individual vehicle trajectories are optimized sequentially.An optimization model and method for ramp entry trajectories in mixed traffic flow are developed,incorporating on-ramp vehicle entry sequencing and ordinary vehicle trajectory prediction.Key performance indicators,including driving safety,total travel time,parking wait probability,and trajectory smoothness,are compared and analyzed to evaluate the proposed approach. 展开更多
关键词 Traffic flow Optimization control method On-ramp vehicle
在线阅读 下载PDF
Research on Teaching Methods of Flight Control Principles
15
作者 Dongying Li 《Journal of Electronic Research and Application》 2024年第3期155-160,共6页
With the rapid development of China’s civil aviation industry,the teaching method of operating knowledge of flight principles has changed greatly,which creates a good implementation environment to improve the safety ... With the rapid development of China’s civil aviation industry,the teaching method of operating knowledge of flight principles has changed greatly,which creates a good implementation environment to improve the safety of civil aviation in our country.At present,the main training content of air route transport pilots in China is basic aviation theory,initial flight training,airline modification,etc.The principles of flight control are an important part of basic aviation theoretical knowledge training,which will involve a large number of flight technology training content,instructors will also be based on the pilot type.Teaching flight control theory and practical knowledge requires relatively high theoretical learning ability of students,and the learning effect of this part of theoretical knowledge will directly affect the quality of subsequent learning,but also directly affect the effectiveness of flight training.This paper focuses on the analysis of the basic concepts of flight control,studies the existing problems in the teaching of flight control principles,summarizes the teaching measures of flight control principles,aiming to provide a reference to teaching personnel. 展开更多
关键词 Flight control principle knowledge Virtual simulation Teaching method
在线阅读 下载PDF
From Static and Dynamic Perspectives:A Survey on Historical Data Benchmarks of Control Performance Monitoring 被引量:1
16
作者 Pengyu Song Jie Wang +1 位作者 Chunhui Zhao Biao Huang 《IEEE/CAA Journal of Automatica Sinica》 2025年第2期300-316,共17页
In recent decades,control performance monitoring(CPM)has experienced remarkable progress in research and industrial applications.While CPM research has been investigated using various benchmarks,the historical data be... In recent decades,control performance monitoring(CPM)has experienced remarkable progress in research and industrial applications.While CPM research has been investigated using various benchmarks,the historical data benchmark(HIS)has garnered the most attention due to its practicality and effectiveness.However,existing CPM reviews usually focus on the theoretical benchmark,and there is a lack of an in-depth review that thoroughly explores HIS-based methods.In this article,a comprehensive overview of HIS-based CPM is provided.First,we provide a novel static-dynamic perspective on data-level manifestations of control performance underlying typical controller capacities including regulation and servo:static and dynamic properties.The static property portrays time-independent variability in system output,and the dynamic property describes temporal behavior driven by closed-loop feedback.Accordingly,existing HIS-based CPM approaches and their intrinsic motivations are classified and analyzed from these two perspectives.Specifically,two mainstream solutions for CPM methods are summarized,including static analysis and dynamic analysis,which match data-driven techniques with actual controlling behavior.Furthermore,this paper also points out various opportunities and challenges faced in CPM for modern industry and provides promising directions in the context of artificial intelligence for inspiring future research. 展开更多
关键词 control performance monitoring(CPM) datadriven method historical data benchmark(HIS) industrial process performance index static and dynamic analysis.
在线阅读 下载PDF
A Survey on Security Control and Estimation for Cyber-Physical Systems Under Cyber-Attacks:Advances,Challenges and Future Directions
17
作者 Haoyang YU Zidong WANG +1 位作者 Lei ZOU Yezheng WANG 《Artificial Intelligence Science and Engineering》 2025年第1期1-16,共16页
Cyber-physical systems(CPSs)are regarded as the backbone of the fourth industrial revolution,in which communication,physical processes,and computer technology are integrated.In modern industrial systems,CPSs are widel... Cyber-physical systems(CPSs)are regarded as the backbone of the fourth industrial revolution,in which communication,physical processes,and computer technology are integrated.In modern industrial systems,CPSs are widely utilized across various domains,such as smart grids,smart healthcare systems,smart vehicles,and smart manufacturing,among others.Due to their unique spatial distribution,CPSs are highly vulnerable to cyber-attacks,which may result in severe performance degradation and even system instability.Consequently,the security concerns of CPSs have attracted significant attention in recent years.In this paper,a comprehensive survey on the security issues of CPSs under cyber-attacks is provided.Firstly,mathematical descriptions of various types of cyberattacks are introduced in detail.Secondly,two types of secure estimation and control processing schemes,including robust methods and active methods,are reviewed.Thirdly,research findings related to secure control and estimation problems for different types of CPSs are summarized.Finally,the survey is concluded by outlining the challenges and suggesting potential research directions for the future. 展开更多
关键词 cyber-physical systems cyber-attacks robust methods active methods secure estimation secure control
在线阅读 下载PDF
Singular optimal control of ascent stage for a surface-to-air missile
18
作者 Wengui LEI Wanchun CHEN +1 位作者 Liang YANG Xiaopeng GONG 《Chinese Journal of Aeronautics》 2025年第8期527-541,共15页
This paper addresses the Singular Optimal Control Problem(SOCP)for a surface-to-air missile with limited control,fully considering aerodynamic effects with a parabolic drag polar.This problem is an extension of the ty... This paper addresses the Singular Optimal Control Problem(SOCP)for a surface-to-air missile with limited control,fully considering aerodynamic effects with a parabolic drag polar.This problem is an extension of the typical Goddard problem.First,the classical Legendre-Clebsch condition is applied to derive optimal conditions for the singular angle of attack,revealing that the missile turns by gravity along the singular arc.Second,the higher-order differentiation of the switching function provides the necessary conditions to determine the optimal thrust,expressed as linear functions of the costate variables.The vanishing coefficient determinant is then employed to decouple the control and costate variables,yielding the singular thrust solely dependent on state variables and identifying the singular surface.Moreover,the analytical singular control can be regarded as path constraints subject to the typical Optimal Control Problem(OCP),enabling the GPOPS-Ⅱ,a direct method framework that does not involve the singular condition,to solve the SOCP.Finally,three cases with different structures are presented to evaluate the performance of the proposed method.The results show that it takes a few steps to obtain the numerical optimal solution,which is consistent with the analytical solution derived from the calculus of variations,highlighting its great computational accuracy and effectiveness. 展开更多
关键词 Singular optimal control Optimal control problem Goddard problem Singular surface Pseudospectral method Surface-to-air missiles
原文传递
Nonvolatile Electrical Control of Transport Properties in Multiferroic OsCl_(2)/Sc_(2)CO_(2)Heterostructure
19
作者 Shi-Xu Wang Shu-Xiang Qiao +4 位作者 Mei-Yan Ni Xiao-Hong Zheng Hua Hao Hong-Yan Lu Ping Zhang 《Chinese Physics Letters》 2025年第8期129-142,共14页
Ferromagnetic materials play an important role in memory materials,but conventional control methods are often limited by issues such as high power consumption and volatility.Multiferroic heterostructures provide a pro... Ferromagnetic materials play an important role in memory materials,but conventional control methods are often limited by issues such as high power consumption and volatility.Multiferroic heterostructures provide a promising alternative to achieve low power consumption and nonvolatile electric control of magnetic properties.In this paper,a two-dimensional multiferroic van der Waals heterostructure OsCl_(2)/Sc_(2)CO_(2),which is composed of ferromagnetic monolayer OsCl_(2)and ferroelectric monolayer Sc_(2)CO_(2),is studied by first-principles density functional theory.The results show that by reversing the direction of the electric polarization of Sc_(2)CO_(2),OsCl_(2)can be transformed from a semiconductor to a half-metal,demonstrating a nonvolatile electrical manipulation of the heterostructure through ferroelectric polarization.The underlying physical mechanism is explained by band alignments and charge density differences.Furthermore,based on the heterostructure,we construct a multiferroic tunnel junction with a tunnel electroresistance ratio of 3.38×10^(14)%and a tunnel magnetoresistance ratio of 5.04×10^(6)%,allowing control of conduction states via instantaneous electric or magnetic fields.The findings provide a feasible strategy for designing advanced nanodevices based on the giant tunnel electroresistance and tunnel magnetoresistance effects. 展开更多
关键词 nonvolatile electrical control conventional control methods multiferroic heterostructure oscl ferromagnetic materials sc Co ferromagnetic monolayer ferroelectric monolayer
原文传递
Adaptive terminal sliding combined super twisting control design and flight tests for automatic carrier landing system
20
作者 Zhuoer YAO Daochun LI +1 位作者 Zi KAN Jinwu XIANG 《Chinese Journal of Aeronautics》 2025年第4期437-449,共13页
Considering the challenges posed by external disturbances on carrier-based aircraft land-ing control,higher demands are required for the precision and convergence of the carrier landingcontrol system.First,this paper ... Considering the challenges posed by external disturbances on carrier-based aircraft land-ing control,higher demands are required for the precision and convergence of the carrier landingcontrol system.First,this paper proposes an Adaptive Terminal Sliding Combined Super TwistingControl(ATS-STC)method to address the issues of low precision,slow convergence,and poor dis-turbance rejection capability resulting from external disturbances,such as carrier air-wake and deckmotion.By introducing a nonlinear term into the sliding surface and employing an integralapproach,the proposed ATS-STC method can ensure finite-time convergence and mitigate the chat-tering problem.An adaptive law is also utilized to estimate the external disturbances,therebyenhancing the anti-disturbance performance.Then,the stability and convergence time analysis ofthe designed controller are conducted.Based on the proposed method,an Automatic Carrier Land-ing System(ACLS)is developed to perform the carrier landing control task.Furthermore,a multi-dimensional validation is carried out.For the numerical simulation test,the Terminal Sliding ModeControl(TSMC)method and Proportion Integration Differentiation(PID)method are introducedas comparison,the quantitative assessment results show that the tracking error of TSMC and PIDcan reach 1.5 times and 2 times that of the proposed method.Finally,the Hardware-in-the-Loop(HIL)test and real flight test are conducted.All the experimental results demonstrate that the pro-posed control method is more effective and precise. 展开更多
关键词 Terminal sliding mode control Super twisting control Automatic carrier landing system Numerical methods Hardware-in-the-loop test Flight test
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部