期刊文献+
共找到2,920篇文章
< 1 2 146 >
每页显示 20 50 100
危化品车辆装卸载过程识别的Transformer-RNN模型 被引量:2
1
作者 李晓辉 孙子文 《传感技术学报》 北大核心 2025年第2期272-278,共7页
针对危化品运输过程的偷倒、漏倒问题导致的安全事故,构建Transformer-RNN模型,对运输过程中的运行、装载、卸载三种状态进行识别。首先获取通过安装了传感器的车辆传回的速度、载重、原始AD值等实时数据,通过差分提取速度差、载重差、... 针对危化品运输过程的偷倒、漏倒问题导致的安全事故,构建Transformer-RNN模型,对运输过程中的运行、装载、卸载三种状态进行识别。首先获取通过安装了传感器的车辆传回的速度、载重、原始AD值等实时数据,通过差分提取速度差、载重差、方向差等特征;其次构建融合Transformer和RNN的分类模型,通过Transformer完成对输入的表征学习,RNN进行学习,自注意力机制突出关键特征;最后由全连接网络输出分类结果。实验结果表明,所构建的模型在危化品车运输过程识别中的准确率、查准率、查全率和F1值均优于现有模型。 展开更多
关键词 车辆装卸载识别 transformer模型 循环神经网络 自注意力机制 时间序列
在线阅读 下载PDF
基于自适应Transformer的短期负荷预测域适应方法 被引量:1
2
作者 周俊 马泽菊 《重庆电力高等专科学校学报》 2025年第1期1-6,共6页
有效的STLF对于当今电力系统的平稳运行至关重要。然而,传统的预测方法往往无法应对电力消费数据中的复杂性、非线性和动态变化,特别是在处理具有不同数据分布的新区域时。为了克服这些限制,提出了针对STLF的ATDA。ATDA利用Transformer... 有效的STLF对于当今电力系统的平稳运行至关重要。然而,传统的预测方法往往无法应对电力消费数据中的复杂性、非线性和动态变化,特别是在处理具有不同数据分布的新区域时。为了克服这些限制,提出了针对STLF的ATDA。ATDA利用Transformer编码器有效的建模时间依赖性,并结合带有重要性加权的部分对抗域适应策略,解决源域和目标域之间的差异。通过优先考虑与目标域最相关的源样本,ATDA最小化了负迁移并提高了预测精度。在来自国家电网公司的真实数据上进行的综合实验表明,ATDA在预测性能上显著优于当前领先的模型。 展开更多
关键词 短期负荷预测 域适应 transformER 对抗学习 重要性加权
在线阅读 下载PDF
基于MSCSO-Transformer-BiLSTM的短期电力负荷预测
3
作者 张翾 李红月 《佳木斯大学学报(自然科学版)》 2025年第11期15-20,共6页
针对传统预测模型超参数难以选取及无法有效捕捉电力负荷数据全局特征的问题,提出一种基于改进沙猫群算法(MSCSO)优化Transformer编码器与双向长短期记忆网络(BiLSTM)解码器的组合模型。为克服沙猫群算法(SCSO)在种群初始化及处理高维... 针对传统预测模型超参数难以选取及无法有效捕捉电力负荷数据全局特征的问题,提出一种基于改进沙猫群算法(MSCSO)优化Transformer编码器与双向长短期记忆网络(BiLSTM)解码器的组合模型。为克服沙猫群算法(SCSO)在种群初始化及处理高维复杂问题上存在的不足,利用SPM混沌映射、Levy飞行策略、透镜成像反向学习与麻雀预警机制对SCSO的3个主要阶段进行改进,并利用MSCSO对Transformer-BiLSTM模型的超参数进行寻优,以提升模型的预测精度和训练效率。通过与原始SCSO、灰狼算法、麻雀算法、鹈鹕算法的寻优对比测试,证明MSCSO的优越性。最后,在福建某市真实电力负荷数据集上对预测模型进行算例仿真分析,结果表明:预测结果的MAE,RMSE,R~2分别达到118.643 MW,167.555 MW与0.987,均优于其他对比模型,验证了模型在超参数选择及电力负荷预测方面的优良性能。 展开更多
关键词 短期电力负荷预测 transformer架构 双向长短期记忆神经网络 改进沙猫群算法
在线阅读 下载PDF
基于STGCN-Transformer的短期电力净负荷预测
4
作者 孟伟 俞斌 +3 位作者 白隆 徐婕 顾晋豪 郭锋 《中国测试》 北大核心 2025年第6期160-169,共10页
智能电网的发展认识到短期电力净负荷预测对综合能源系统(integrated energy system,IES)的重要性。净负荷预测代表用电负荷与安装的可再生能源之间的差异,是能量管理和优化调度的基础。为解决IES波动性大,传统统计模型预测精较差的问题... 智能电网的发展认识到短期电力净负荷预测对综合能源系统(integrated energy system,IES)的重要性。净负荷预测代表用电负荷与安装的可再生能源之间的差异,是能量管理和优化调度的基础。为解决IES波动性大,传统统计模型预测精较差的问题,该文提出一种基于时空图卷积网络(spatial temporal graph convolutional networks,STGCN)和Transformer相结合的综合能源系统短期负荷预测模型。首先,利用STGCN作为输入嵌入层对多元输入序列进行编码,填补Transformer中没有充分考虑相关信息的空白。然后,利用Transformer中的自注意机制捕获序列数据的时间依赖性。最后,利用前馈神经网络输出预测负荷值。以浙江省某地区电力数据集为例,与其他4种预测模型相比较平均绝对百分比误差均在5%以内,结果表明该文模型具有较高的预测精度和稳定性。 展开更多
关键词 时空图卷积网络 transformER 多头注意力机制 短期净负荷预测
在线阅读 下载PDF
一种基于Transformer多特征融合的短期负荷预测方法 被引量:1
5
作者 张帅 刘文霞 +3 位作者 唐浩洋 马英杰 万海洋 鲁宇 《华北电力大学学报(自然科学版)》 北大核心 2025年第3期68-75,83,共9页
电力负荷的变化不仅具有潜在周期性特征,外部气象等因素对负荷变化同样具有较大的影响,为提高负荷预测精度,提出一种基于Transformer-CNN融合内部周期性特征和外部气象特征的短期负荷预测方法。首先,采用奇异谱分析(Singular Spectrum A... 电力负荷的变化不仅具有潜在周期性特征,外部气象等因素对负荷变化同样具有较大的影响,为提高负荷预测精度,提出一种基于Transformer-CNN融合内部周期性特征和外部气象特征的短期负荷预测方法。首先,采用奇异谱分析(Singular Spectrum Analysis,SSA)对历史负荷序列进行周期性重构,采用快速傅里叶变换(Fast Fourier Transform,FFT)提取典型序列周期,同时采用改进的灰色关联度法计算外部多种气象因素与历史负荷关联度,提取负荷内部7种周期性特征和外部4种气象特征,建立特征集;其次,设计一种多特征融合神经网络,基于CNN的多特征融合网络捕获特征集中潜藏特征与隐藏信息,基于Transformer的时序网络捕获历史负荷数据的时变特性,最终经隐式特征融合网络实现网络融合和短期负荷预测。实验结果表明,提取负荷内外双重特征能够有效提高模型预测精度,对节假日等特殊日期负荷预测的精度提高尤为明显。 展开更多
关键词 短期负荷预测 特征融合 气象因素 transformER 自注意力机制
在线阅读 下载PDF
基于C-Transformer的光伏负荷预测方法
6
作者 王腾飞 杨力 +1 位作者 孙龙 章东平 《微电子学与计算机》 2025年第6期67-74,共8页
光伏负荷作为可再生能源,是家庭或园区电力来源的一部分,较高精度的光伏负荷预测可以为电力的调度带来便利。光伏负荷受外界条件影响较大,使得光伏负荷产生不确定性,增加了长期预测的难度。提出一种名为C-Transformer(Convolution-Trans... 光伏负荷作为可再生能源,是家庭或园区电力来源的一部分,较高精度的光伏负荷预测可以为电力的调度带来便利。光伏负荷受外界条件影响较大,使得光伏负荷产生不确定性,增加了长期预测的难度。提出一种名为C-Transformer(Convolution-Transformer)的基于Transformer的预测模型,旨在提高光伏发电功率的长期预测准确性。该模型利用Self-attention机制捕捉电负荷的短期依赖关系,并通过编码器-解码器结构捕捉其长期依赖特征。通过对某东部园区提供的光伏数据进行训练,C-Transformer模型展现了较高的预测精度。实验结果进一步验证了模型的有效性,预测精度得到了提高,验证了C-Transformer模型在光伏负荷长期预测方面的应用价值。 展开更多
关键词 光伏负荷预测 transformER Self-attention 长期依赖
在线阅读 下载PDF
结合Transformer与TimeGAN的智慧电厂电力负荷预测方法
7
作者 李柏杰 朱贤伟 +1 位作者 王伟 王崇如 《国外电子测量技术》 2025年第4期211-216,共6页
在实际应用过程中,电力负荷预测技术的准确性会受到天气变化、人口迁移、行业用电模式等多种因素影响。提出一种结合Transformer与时间序列生成对抗网络(TimeGAN)的智慧电厂电力负荷预测方法。由均方误差可知,随着轮次的增加,预测时长... 在实际应用过程中,电力负荷预测技术的准确性会受到天气变化、人口迁移、行业用电模式等多种因素影响。提出一种结合Transformer与时间序列生成对抗网络(TimeGAN)的智慧电厂电力负荷预测方法。由均方误差可知,随着轮次的增加,预测时长为24、48、168、512 h的电力负荷预测精度误差分别在0.12~0.125、0.13~0.14、0.14~0.15、0.15~0.19区间,预测精度较好;由平均绝对误差可知,在轮次为10时,预测时长24 h的预测精度误差较小(0.24)且更加稳定,而预测时长为512 h的预测误差较大(0.28~0.30)且不稳定。该预测方法实现了智慧电厂电力负荷的高效、准确预测。 展开更多
关键词 电力负荷预测 transformer模型 TimeGAN 智慧电厂
原文传递
Transformation Matrix for Combined Loads Applied to Thin-Walled Structures
8
作者 Abdelraouf M. Sami Alsheikh David William Alan Rees 《World Journal of Mechanics》 2022年第6期65-78,共14页
This paper transforms combined loads, applied at an arbitrary point of a thin-walled open section beam, to the shear centre of the cross-section of the beam. Therein, a generalized transformation matrix for loads with... This paper transforms combined loads, applied at an arbitrary point of a thin-walled open section beam, to the shear centre of the cross-section of the beam. Therein, a generalized transformation matrix for loads with respect to the shear centre is derived, this accounting for the bimoments that develop due to the way the combined loads are applied. This and the authors’ earlier paper (World Journal of Mechanics 2021, 11, 205-236) provide a full solution to the theory of thin-walled, open-section structures bearing combined loading. The earlier work identified arbitrary loading with the section’s area properties that are necessary to axial and shear stress calculations within the structure’s thin walls. In the previous paper attention is paid to the relevant axes of loading and to the transformations of loading required between axes for stress calculations arising from tension/compression, bending, torsion and shear. The derivation of the general transformation matrix applies to all types of loadings including, axial tensile and compression forces, transverse shear, longitudinal bending. One application, representing all these load cases, is given of a simple channel cantilever with an eccentrically located end load. 展开更多
关键词 Thin-Walled Structure Open Sections transformation Matrix load transformation Combined load transformation Shear Centre WARPING BIMOMENT Sectorial Area Properties
在线阅读 下载PDF
基于WTT-iTransformer时序预测的容器群伸缩策略研究
9
作者 陈奇超 叶楠 曹炳尧 《电子测量技术》 北大核心 2025年第12期88-98,共11页
Kubernetes默认的HPA策略因其特有的响应性机制而存在扩缩容滞后的局限。为了提高资源的响应性能和资源利用率,本文引入了基于时序资源负载预测的弹性伸缩策略,预测部分创新得提出了WTT-iTransformer模型对集群资源进行预测。已知iTrans... Kubernetes默认的HPA策略因其特有的响应性机制而存在扩缩容滞后的局限。为了提高资源的响应性能和资源利用率,本文引入了基于时序资源负载预测的弹性伸缩策略,预测部分创新得提出了WTT-iTransformer模型对集群资源进行预测。已知iTransformer不仅在长期序列预测表现优异,还可通过变量序列作为token嵌入获取了多变量间的关联性。本文通过增加了小波变换卷积层WTConv2d和多尺度时间卷积网络的WTT-iTransformer模型可以更精确地从时、频域两方面提取资源时间序列的长期特征与依赖关系,更符合容器使用特征的预测。基于该模型的负载变化预测,能够实现高、低流量发生的初期进行快速扩缩容,以解决反应滞后和资源利用率低的问题。实验结果表明,WTT-iTransformer在训练过程中表现出更好的稳定性和更低的训练误差,能够较为准确地预测集群负载的变化趋势,改进的弹性伸缩策略与Kubernetes传统的HPA相比更加智能、稳定,在负载特征明显、突发性负载较多的场景展现出显著提升,具有广泛的应用潜力。 展开更多
关键词 Kubernetes 时序预测模型WTT-itransformer 负载预测 混合弹性伸缩策略 小波变换卷积 时间卷积网络 itransformer模型
原文传递
基于Transformer模型的页岩气井积液预测方法
10
作者 刘军 任静思 +4 位作者 胡南 李琴 段洋 孔德蔚然 罗昱暄 《天然气勘探与开发》 2025年第6期104-117,共14页
为了解决页岩气田井数众多、单井积液频繁导致的精细化生产管理难题,提高积液预测的时效性与准确性,以四川盆地南部地区页岩气井为研究对象,基于Transformer模型,整合生产时序数据与地质工程参数,建立了一种由“数据降维—特征融合—阈... 为了解决页岩气田井数众多、单井积液频繁导致的精细化生产管理难题,提高积液预测的时效性与准确性,以四川盆地南部地区页岩气井为研究对象,基于Transformer模型,整合生产时序数据与地质工程参数,建立了一种由“数据降维—特征融合—阈值重构”构成的三重注意力机制预测方法;利用川南长宁区块页岩气藏44口井数据训练模型,并采用14口井数据进行验证。研究结果表明:①较之于传统临界携液模型,Transformer模型能更好地捕捉页岩气井多年生产时序数据中的长距离依赖特征,克服了传统预测方法在时效性、准确性和便捷性等方面的局限性;②基于Encoder-Decoder架构与动态阈值重构误差的异常检测方法,可以提前10 d预测气井积液,在测试集中的准确率达83.3%;③Transformer模型展现出优良的工程应用特性,训练收敛迅速,单次推理仅需0.1 s,能满足大规模井群管理需求;④采用“云—边协同构架”,可以实现生产数据的实时处理与模型计算,具备工业化推广条件。结论认为,基于Transformer模型的页岩气井积液预测方法,为川南页岩气田规模上产后积液跟踪预警、精细化采气管理提供了一种新的技术途径。 展开更多
关键词 页岩气井 积液 时序数据 机器学习 transformer 精细化采气管理
在线阅读 下载PDF
基于模态分解与CNN-Transformer的居民区充电桩充电负荷预测方法
11
作者 陈倩楠 李璟 +3 位作者 李灵至 赵紫玉 裘枭敏 焦田利 《中国计量大学学报》 2025年第1期53-60,共8页
目的:对居民区充电桩充电负荷进行精准化的预测。方法:首先基于皮尔逊相关系数(Person)筛选预测模型的输入特征,并采用滑动窗口法构建输入矩阵;然后利用集合经验模态分解(ensemble empirical mode decomposition,EEMD)将原始充电负荷序... 目的:对居民区充电桩充电负荷进行精准化的预测。方法:首先基于皮尔逊相关系数(Person)筛选预测模型的输入特征,并采用滑动窗口法构建输入矩阵;然后利用集合经验模态分解(ensemble empirical mode decomposition,EEMD)将原始充电负荷序列分解为多个稳定、有规律的时序模态函数(intrinsic mode function,IMF),突出负荷数据的时序特征;最后针对每个IMF分别构建CNN-Transformer模型,对各个模型的预测结果进行加权得到最终充电负荷预测值。结果:基于某居民区的实际充电负荷数据进行算例分析,本研究所提模型与Transformer相比,均方根误差(root mean square error,RMSE)降低22.90%,预测效果显著提升。结论:实验对比证明,采用EEMD分解和卷积神经网络模块能够更有效地提升模型捕捉负荷数据中时序、局部特征的能力,本研究所提预测方法可以准确预测居民区的充电需求,为充电桩未来规划提供可靠的理论依据。 展开更多
关键词 负荷预测 居民充电桩 模态分解 卷积神经网络 transformer模型
在线阅读 下载PDF
基于改进Transformer的电力负载预测 被引量:2
12
作者 秦喜文 唐英杰 +1 位作者 董小刚 朱妍霏 《长春工业大学学报》 CAS 2024年第5期445-451,共7页
针对电力负载预测任务,提出了一种改进的Transformer模型。使用全连接层替换原来的解码器结构,在降低模型复杂度的同时使模型更加契合电力负载数据,使用AdamW方法优化了深度学习中普遍存在的权重衰减处理上的缺陷。实验结果表明,在洛杉... 针对电力负载预测任务,提出了一种改进的Transformer模型。使用全连接层替换原来的解码器结构,在降低模型复杂度的同时使模型更加契合电力负载数据,使用AdamW方法优化了深度学习中普遍存在的权重衰减处理上的缺陷。实验结果表明,在洛杉矶、纽约和萨克拉门托三个城市的真实电力负载数据集上,相较于ELM、RNN、LSTM和传统的Transformer模型,改进的Transformer模型可以更准确地进行电力负载预测。 展开更多
关键词 transformER 自注意力机制 电力负载预测 位置编码
在线阅读 下载PDF
Effect of Thermal Cycling under Load on Martensite Transformation and Two-way Shape Memory Effect in a TiNi Alloy 被引量:1
13
作者 Liming WANG, Yufeng ZHENG, Wei CAI, Xianglong MENG and Liancheng ZHAO School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第2期263-266,共4页
The effect of thermal cycling under loading on martensitic transformation and two-way shape memory effect was investigated for Ti-49.8 at, pet Ni alloy. It is shown that M(s), and M(f) temperature increase with increa... The effect of thermal cycling under loading on martensitic transformation and two-way shape memory effect was investigated for Ti-49.8 at, pet Ni alloy. It is shown that M(s), and M(f) temperature increase with increasing the number of cycles, while A(s) and A(f) temperature decrease during thermal cycling. The total strain at and permanent strain epsilon (p) increase with increasing applied stress and number of cycles. The two-way shape memory effect can be improved by proper thermal cycling training under loading, while excessively high applied stress results in the deterioration of TWSME. The reason for the changes in martensitic transformation characteristics and two-way shape memory effect during thermal cycling under loading is discussed based on the analysis of microstructure by TEM observations. 展开更多
关键词 TINI Effect of Thermal Cycling under load on Martensite transformation and Two-way Shape Memory Effect in a TiNi Alloy
在线阅读 下载PDF
基于变量选择与Transformer模型的中长期电力负荷预测方法 被引量:12
14
作者 黄文琦 梁凌宇 +3 位作者 王鑫 赵翔宇 宗珂 孙凌云 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2024年第4期483-491,500,共10页
准确且有效的负荷预测对于电力系统的实时运行和调度非常重要。提出了一种融合变量选择与稀疏Transformer模型的预测方法,将静态变量和时序变量作为输入,充分发挥静态变量在全局时间范围内的信息增强作用,基于门控机制设计变量分权组件... 准确且有效的负荷预测对于电力系统的实时运行和调度非常重要。提出了一种融合变量选择与稀疏Transformer模型的预测方法,将静态变量和时序变量作为输入,充分发挥静态变量在全局时间范围内的信息增强作用,基于门控机制设计变量分权组件,根据变量与预测结果的相关性,赋予变量不同的权重。设计了双层编码结构,进行时序特征提取,对注意力进行稀疏处理,通过多变量输入对未来时刻负荷进行预测。基于真实电力负荷数据的实验表明,本文模型能够提高中长期负荷预测精度和效率。 展开更多
关键词 电力时序数据 transformER 中长期负荷预测 多变量 变量选择
在线阅读 下载PDF
基于生成对抗Transformer的电力负荷数据异常检测 被引量:14
15
作者 陆旦宏 范文尧 +3 位作者 杨婷 倪敏珏 李思琦 朱晓 《电力工程技术》 北大核心 2024年第1期157-164,共8页
电力负荷异常数据将给电力系统规划、负荷预测以及用能分析等带来较大的负面影响,因此亟须对负荷数据异常进行检测与识别。首先,针对电力负荷数据异常分类、原因及其特征开展分析。其次,改进传统Transformer编码器结构,采用多头注意力... 电力负荷异常数据将给电力系统规划、负荷预测以及用能分析等带来较大的负面影响,因此亟须对负荷数据异常进行检测与识别。首先,针对电力负荷数据异常分类、原因及其特征开展分析。其次,改进传统Transformer编码器结构,采用多头注意力层代替掩码多头注意力层,同时移除前馈网络,以提高模型对负荷时序序列的全局注意力。基于生成对抗网络(generative adversarial networks,GAN)生成器与判别器的博弈结构,提出一种改进的GAN-Transformer模型,以更好地捕捉趋势性特征并加速模型收敛。然后,引入多阶段映射与训练方法,综合焦点分数打分机制,通过分阶段负荷序列重构帮助模型更好地提取负荷数据异常特征。最后,算例分析结果表明,GAN-Transformer模型在负荷数据异常检测精确率、召回率、F_(1)值以及训练时间方面均具有更优的性能,验证了所提方法的有效性和优越性。文中研究工作为基于深度学习进一步实现电力负荷数据异常分类与数据修复提供了有益参考。 展开更多
关键词 电力负荷数据 数据异常检测 生成对抗网络(GAN)-transformer 多阶段训练与映射 焦点分数 序列重构
在线阅读 下载PDF
Phase Transformations in ZrO_2 after Shock Loading
16
作者 Sergey N.Kulkov Alexander G.Melnikov 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1993年第1期32-36,共5页
The effects of shock loading on the morphology,grain growth during heating and phase transforma- tion of ZrO_2 have been investigated.It is shown that shock loading may be efficiently used to modify submicron ceramic ... The effects of shock loading on the morphology,grain growth during heating and phase transforma- tion of ZrO_2 have been investigated.It is shown that shock loading may be efficiently used to modify submicron ceramic powders with nanocrystalline structure.After shock loading,the critical diameter of ZrO_2 particles transformed from tetragonal to monoclinic decreased due to stored strain energy. Annealing of powders resulted in reversible transformation to the tetragonal without considerable grain growth up to 1200℃. 展开更多
关键词 submicron ceramics NANOCRYSTALLINE shock loading phase transformation
在线阅读 下载PDF
Design of Non-contact On-load Automatic Regulating Voltage Transformer 被引量:5
17
作者 Zhao Qi 《Journal of Northeast Agricultural University(English Edition)》 CAS 2015年第3期91-96,共6页
At present, an automatic-mechanic contact tap-changer is widely used in power system, but it can not frequently operate. In addition, arc will occur when the switch changes. In order to solve these two problems, this ... At present, an automatic-mechanic contact tap-changer is widely used in power system, but it can not frequently operate. In addition, arc will occur when the switch changes. In order to solve these two problems, this paper presented an automatic on-load voltage-regulating distributing transformer which employed non-contact solid-state relay as tap-changer, and mainly introduced its structure, basic principal, design method of each key link and experimental results. Laboratory simulation experiments informed that the scheme was feasible. It was a smooth and effective experiment device, which was practical in application. 展开更多
关键词 solid-state relay on-load tap-changer NON-CONTACT distributing transformer design
在线阅读 下载PDF
Space Transformation-Based Interdependency Modelling for Probabilistic Load Flow Analysis of Power Systems
18
作者 李雪 陈豪杰 +1 位作者 路攀 杜大军 《Journal of Donghua University(English Edition)》 EI CAS 2016年第5期734-739,共6页
Dependence among random input variables affects importantly the results of probabilistic load flow(PLF),system economic operation,and system security.To solve this problem,the main objectiveness of the paper is to ana... Dependence among random input variables affects importantly the results of probabilistic load flow(PLF),system economic operation,and system security.To solve this problem,the main objectiveness of the paper is to analyze the performance of several schemes for simulating correlated variables combined with the point estimate method(PEM).Unlike the existing works that considering one single scheme combined with Monte Carlo simulation(MCS) or PEM,by neglecting the correlation among random input variables,four schemes were presented for disposing the dependence of correlated random variables,including Nataf transformation /polynomial normal transformation(PINT) combined with orthogonal transformation(OT) / elementary transformation(ET).Combining with the 2m+1 approach of PEM,a space transformation-based formulation was proposed and adopted for solving the PLF.The proposed approach is applied in the modified IEEE 30-bus system while considering correlated wind generations and load demands.Numerical results show the effectiveness of the proposed approach compared with those obtained from the MCS.Results also show that the scheme of combining Nataf transformation and ET with PEM provides the best performance. 展开更多
关键词 transformation probabilistic considering polynomial elementary transformed formulation applying instance simulating
在线阅读 下载PDF
Management of Charging Load of Electric Vehicles for Optimal Capacity Utilisation of Distribution Transformers
19
作者 Rilwan Olaolu Oliyide Liana M. Cipcigan 《Journal of Power and Energy Engineering》 2021年第11期60-79,共20页
A de-centralised load management technique exploiting the flexibility in the charging of Electric Vehicles (EVs) is presented. Two charging regimes are assumed. The Controlled Charging Regime (CCR) between 16:30 hours... A de-centralised load management technique exploiting the flexibility in the charging of Electric Vehicles (EVs) is presented. Two charging regimes are assumed. The Controlled Charging Regime (CCR) between 16:30 hours and 06:00 hours of the next day and the Uncontrolled Charging Regime (UCR) between 06:00 hours and 16:30 hours of the same day. During the CCR, the charging of EVs is coordinated and controlled by means of a wireless two-way communication link between EV Smart Charge Controllers (EVSCCs) at EV owners’ premises and the EV Load Controller (EVLC) at the local LV distribution substation. The EVLC sorts the EVs batteries in ascending order of their states of charge (SoC) and sends command signals for charging to as many EVs as the transformer could allow at that interval based on the condition of the transformer as analysed by the Distribution Transformer Monitor (DTM). A real and typical urban LV area distribution network in Great Britain (GB) is used as the case study. The technique is applied on</span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:"">the LV area when its transformer is carrying the future load demand of the area on a typical winter weekday in the year 2050. To achieve the load management, load demand of the LV area network is decomposed into Non-EV <span>load and EV load. The load on the transformer is managed by varying the EV load in an optimisation objective function which maximises the capacity uti</span>lisation of the transformer subject to operational constraints and non-disruption of daily trips of EV owners. Results show that with the proposed load management technique, LV distribution networks could accommodate high uptake of EVs without compromising the useful normal life expectancy of distribution transformers before the need for capacity reinforcement. 展开更多
关键词 Electric Vehicles load Management EV Charge Controller EV load Controller Distribution transformer Monitor
暂未订购
考虑综合需求响应的Transformer-图神经网络综合能源系统多元负荷短期预测 被引量:10
20
作者 李云松 张智晟 《电工技术学报》 EI CSCD 北大核心 2024年第19期6119-6128,共10页
为提高在需求响应情境下,综合能源系统的多元负荷短期预测精度,基于消费者心理学、响应不确定性原理、耦合响应原理,构建了考虑综合需求响应的Transformer-图神经网络(Trans-GNN)预测模型。通过响应不确定性随电价差产生的变化规律和消... 为提高在需求响应情境下,综合能源系统的多元负荷短期预测精度,基于消费者心理学、响应不确定性原理、耦合响应原理,构建了考虑综合需求响应的Transformer-图神经网络(Trans-GNN)预测模型。通过响应不确定性随电价差产生的变化规律和消费者心理学原理,量化在不同概率条件下的电力需求响应结果。通过耦合响应原理,求解包含冷、热耦合响应的综合需求响应信号,最终利用注意力机制将综合需求响应信号引入Trans-GNN预测模型,提高网络模型在需求响应情境下的多元负荷预测能力。算例分析结果表明,该模型能有效地提高预测精度,为计及综合需求响应的多元负荷预测研究提供了一定的理论基础。 展开更多
关键词 综合能源系统 综合需求响应 耦合响应 图神经网络 transformer模型 多元负荷短期预测
在线阅读 下载PDF
上一页 1 2 146 下一页 到第
使用帮助 返回顶部