A relationship was discovered between the amplification factor and the number of load increments that are needed to limit the relative error to one percent in second-order elastic analyses with a predictor-corrector s...A relationship was discovered between the amplification factor and the number of load increments that are needed to limit the relative error to one percent in second-order elastic analyses with a predictor-corrector solution scheme.Previous research by the authors proposed a design equation to determine the required minimum number of load increments based on an evaluation of the elastic critical buckling load ratio.Further research has shown that an approximate amplification factor equation that is based on the B2 multiplier equation produces similar results when the amplification factor is less than approximately four.Eleven moment frames are used to verify the use of the new approximate amplification factor in the proposed design equation.展开更多
Glass-ceramics have many excellent properties and are widely used in various fields. During the grinding process,the workpiece surface is typically subject to material removal by grit of incremental heights, which has...Glass-ceramics have many excellent properties and are widely used in various fields. During the grinding process,the workpiece surface is typically subject to material removal by grit of incremental heights, which has rarely been the focus of research. As such, it is necessary to study the material removal mechanism of glass-ceramics under consecutive incremental loading, which more closely reflects the actual grinding process. In this paper,to analyze the plastic deformation and residual stress of lithium aluminosilicate(LAS) glass-ceramics, a finite element model is established based on the Drucker–Prager yield criterion for ductile regimes. A nano-scratch test was also conducted and the test results show that both the residual depth and residual stress increase with an increase in the number of increments, and that consecutive incremental loading promotes the plastic deformation of glass-ceramics and increases the residual stress of the material in the ductile-regime process. These findings provide guidance for achieving higher dimensional accuracy in the actual grinding of glass-ceramics parts.展开更多
Three groups of dynamic triaxial tests were performed for saturated Nanjing fine sand subjected to uniform cyclic loading. The tested curves of the excess pore water pressure (EPWP) ratio variation with the ratio of...Three groups of dynamic triaxial tests were performed for saturated Nanjing fine sand subjected to uniform cyclic loading. The tested curves of the excess pore water pressure (EPWP) ratio variation with the ratio of the number of cycles are provided. The concept of the EPWP increment ratio is introduced and two new concepts of the effective dynamic shear stress ratio and the log decrement of effective stress are defined. It is found that the development of the EPWP increment ratio can be divided into three stages: descending, stable and ascending. Furthermore, at the stable and ascending stages, a satisfactory linear relationship is obtained between the accumulative EPWP increment ratio and natural logarithm of the effective dynamic shear stress ratio. Accordingly, the EPWP increment ratio at the number of cycles N has been deduced that is proportional to the log decrement of effective stress at the cycle number N-l, but is independent of the cyclic stress amplitude. Based on the analysis, a new EPWP increment model for saturated Nanjing fine sand is developed from tested data fitting, which provides a better prediction of the curves of EPWP generation, the number of cycles required for initial liquefaction and the liquefaction resistance.展开更多
A new adaptive(automatic)time stepping algorithm,called RCA(Rate of Convergence Algorithm)is presented.The new algorithm was applied in nonlinear finite element analysis of path-dependent problems.The step size is adj...A new adaptive(automatic)time stepping algorithm,called RCA(Rate of Convergence Algorithm)is presented.The new algorithm was applied in nonlinear finite element analysis of path-dependent problems.The step size is adjusted by monitoring the estimated convergence rate of the nonlinear iterative process.The RCA algorithm is relatively simple to implement,robust and its performance is comparable to,and in some cases better than,the automatic load incrementaion algorithm existent in commercial codes.Discussions about the convergence rate of nonlinear iterative processes,an estimation of the rate and a study of the parameters of the RCA algorithm are presented.To show the capacity of the algorithm to adjust the increment size,detailed discussions based on results for different limit load analyses are presented.The results obtained by RCA algorithm are compared with those by ABAQUS?,one of the most powerful nonlinear FEA(Finite Element Analysis)commercial software,in order to verify the capability of RCA algorithm to adjust the increment size along nonlinear analyses.展开更多
Along with the increasing importance of sustainable energy, the optimization of load assignment to boilers in an industrial boiler plant becomes one of the major projects for the optimal operation of boiler plants. Op...Along with the increasing importance of sustainable energy, the optimization of load assignment to boilers in an industrial boiler plant becomes one of the major projects for the optimal operation of boiler plants. Optimal load assignment for power systems has been a long-lasting subject, while it is quite new for industrial boiler plants. The existing methods of optimal load assignment for boiler plants are explained and analyzed briefly in the paper. They all need the fuel cost curves of boilers. Thanks to some special features of the curves for industrial boilers, a new model referred to as minimized departure model (MDM) of optimization of load assignment for boiler plants is developed and proposed in the paper. It merely relies upon the accessible data of two typical working conditions to build the model, viz. the working conditions with the highest efficiency of a boiler and with no-load. Explanation of the algorithm of computer program is given, and effort is made so as to determine in advance how many and which boilers are going to work. Comparison between the results using MDM and the results reported in references is carried out, which proves that MDM is preferable and practicable.展开更多
J ep -integral is derived for characterizing the frac- ture behavior of elastic-plastic materials. The J ep -integral differs from Rice’s J-integral in that the free energy density rather than the stress working dens...J ep -integral is derived for characterizing the frac- ture behavior of elastic-plastic materials. The J ep -integral differs from Rice’s J-integral in that the free energy density rather than the stress working density is employed to define energy-momentum tensor. The J ep -integral is proved to be path-dependent regardless of incremental plasticity and deformation plasticity. The J epintegral possesses clearly clear physical meaning: (1) the value J ep tip evaluated on the infinitely small contour surrounding the crack tip represents the crack tip energy dissipation; (2) when the global steadystate crack growth condition is approached, the value of J ep farss calculated along the boundary contour equals to the sum of crack tip dissipation and bulk dissipation of plastic zone. The theoretical results are verified by simulating mode I crack problems.展开更多
文摘A relationship was discovered between the amplification factor and the number of load increments that are needed to limit the relative error to one percent in second-order elastic analyses with a predictor-corrector solution scheme.Previous research by the authors proposed a design equation to determine the required minimum number of load increments based on an evaluation of the elastic critical buckling load ratio.Further research has shown that an approximate amplification factor equation that is based on the B2 multiplier equation produces similar results when the amplification factor is less than approximately four.Eleven moment frames are used to verify the use of the new approximate amplification factor in the proposed design equation.
基金supported by the National Key Research and Development Program of China (No. 2018YFB1107602)the National Natural Science Foundation of China (Nos. 51875405 & 51375336)。
文摘Glass-ceramics have many excellent properties and are widely used in various fields. During the grinding process,the workpiece surface is typically subject to material removal by grit of incremental heights, which has rarely been the focus of research. As such, it is necessary to study the material removal mechanism of glass-ceramics under consecutive incremental loading, which more closely reflects the actual grinding process. In this paper,to analyze the plastic deformation and residual stress of lithium aluminosilicate(LAS) glass-ceramics, a finite element model is established based on the Drucker–Prager yield criterion for ductile regimes. A nano-scratch test was also conducted and the test results show that both the residual depth and residual stress increase with an increase in the number of increments, and that consecutive incremental loading promotes the plastic deformation of glass-ceramics and increases the residual stress of the material in the ductile-regime process. These findings provide guidance for achieving higher dimensional accuracy in the actual grinding of glass-ceramics parts.
基金Key Research Project of National Natural Science Foundation of China Under Grant No.90715018National Basic Research Program of China Under Grant No.2007CB714200the Special Fund for the Commonweal Industry of China Under Grant No.200808022
文摘Three groups of dynamic triaxial tests were performed for saturated Nanjing fine sand subjected to uniform cyclic loading. The tested curves of the excess pore water pressure (EPWP) ratio variation with the ratio of the number of cycles are provided. The concept of the EPWP increment ratio is introduced and two new concepts of the effective dynamic shear stress ratio and the log decrement of effective stress are defined. It is found that the development of the EPWP increment ratio can be divided into three stages: descending, stable and ascending. Furthermore, at the stable and ascending stages, a satisfactory linear relationship is obtained between the accumulative EPWP increment ratio and natural logarithm of the effective dynamic shear stress ratio. Accordingly, the EPWP increment ratio at the number of cycles N has been deduced that is proportional to the log decrement of effective stress at the cycle number N-l, but is independent of the cyclic stress amplitude. Based on the analysis, a new EPWP increment model for saturated Nanjing fine sand is developed from tested data fitting, which provides a better prediction of the curves of EPWP generation, the number of cycles required for initial liquefaction and the liquefaction resistance.
文摘A new adaptive(automatic)time stepping algorithm,called RCA(Rate of Convergence Algorithm)is presented.The new algorithm was applied in nonlinear finite element analysis of path-dependent problems.The step size is adjusted by monitoring the estimated convergence rate of the nonlinear iterative process.The RCA algorithm is relatively simple to implement,robust and its performance is comparable to,and in some cases better than,the automatic load incrementaion algorithm existent in commercial codes.Discussions about the convergence rate of nonlinear iterative processes,an estimation of the rate and a study of the parameters of the RCA algorithm are presented.To show the capacity of the algorithm to adjust the increment size,detailed discussions based on results for different limit load analyses are presented.The results obtained by RCA algorithm are compared with those by ABAQUS?,one of the most powerful nonlinear FEA(Finite Element Analysis)commercial software,in order to verify the capability of RCA algorithm to adjust the increment size along nonlinear analyses.
文摘Along with the increasing importance of sustainable energy, the optimization of load assignment to boilers in an industrial boiler plant becomes one of the major projects for the optimal operation of boiler plants. Optimal load assignment for power systems has been a long-lasting subject, while it is quite new for industrial boiler plants. The existing methods of optimal load assignment for boiler plants are explained and analyzed briefly in the paper. They all need the fuel cost curves of boilers. Thanks to some special features of the curves for industrial boilers, a new model referred to as minimized departure model (MDM) of optimization of load assignment for boiler plants is developed and proposed in the paper. It merely relies upon the accessible data of two typical working conditions to build the model, viz. the working conditions with the highest efficiency of a boiler and with no-load. Explanation of the algorithm of computer program is given, and effort is made so as to determine in advance how many and which boilers are going to work. Comparison between the results using MDM and the results reported in references is carried out, which proves that MDM is preferable and practicable.
基金supported by the Program of Excellent Team in Harbin Institute of Technology and the National Natural Science Foundation of China (10502017, 10432030)
文摘J ep -integral is derived for characterizing the frac- ture behavior of elastic-plastic materials. The J ep -integral differs from Rice’s J-integral in that the free energy density rather than the stress working density is employed to define energy-momentum tensor. The J ep -integral is proved to be path-dependent regardless of incremental plasticity and deformation plasticity. The J epintegral possesses clearly clear physical meaning: (1) the value J ep tip evaluated on the infinitely small contour surrounding the crack tip represents the crack tip energy dissipation; (2) when the global steadystate crack growth condition is approached, the value of J ep farss calculated along the boundary contour equals to the sum of crack tip dissipation and bulk dissipation of plastic zone. The theoretical results are verified by simulating mode I crack problems.