Background Interconnection of different power systems has a major effect on system stability.This study aims to design an optimal load frequency control(LFC)system based on a proportional-integral(PI)controller for a ...Background Interconnection of different power systems has a major effect on system stability.This study aims to design an optimal load frequency control(LFC)system based on a proportional-integral(PI)controller for a two-area power system.Methods Two areas were connected through an AC tie line in parallel with a DC link to stabilize the frequency of oscillations in both areas.The PI parameters were tuned using the cuckoo search algorithm(CSA)to minimize the integral absolute error(IAE).A state matrix was provided,and the stability of the system was verified by calculating the eigenvalues.The frequency response was investigated for load variation,changes in the generator rate constraint,the turbine time constant,and the governor time constant.Results The CSA was compared with particle swarm optimization algorithm(PSO)under identical conditions.The system was modeled based on a state-space mathematical representation and simulated using MATLAB.The results demonstrated the effectiveness of the proposed controller based on both algorithms and,it is clear that CSA is superior to PSO.Conclusion The CSA algorithm smoothens the system response,reduces ripples,decreases overshooting and settling time,and improves the overall system performance under different disturbances.展开更多
With the increasing penetration of renewable energy resources in power systems,conventional timescale separated load frequency control(LFC)and economic dispatch may degrade frequency performance and reduce economic ef...With the increasing penetration of renewable energy resources in power systems,conventional timescale separated load frequency control(LFC)and economic dispatch may degrade frequency performance and reduce economic efficiency.This paper proposes a novel data-driven adaptive distributed optimal disturbance rejection control(DODRC)method for real-time economic LFC problem in nonlinear power systems.Firstly,a basic DODRC method is proposed by integrating the active disturbance rejection control method and the partial primal–dual algorithm.Then,to deal with the tie-line power flow constraints,the logarithmic barrier function is employed to reconstruct the Lagrange function to obtain the constrained DODRC method.By analyzing the sensitivity of the uncertain parameters of power systems,a data-driven adaptive DODRC method is finally proposed with a neural network.The effectiveness of the proposed method is demonstrated by experimental results using real-time equipment.展开更多
As the development of new power systems progresses,the inherent inertia of power systems continues to diminish.Centralized frequency regulation,which relies on rapid communication and real-time control,can enable inve...As the development of new power systems progresses,the inherent inertia of power systems continues to diminish.Centralized frequency regulation,which relies on rapid communication and real-time control,can enable inverter-based thermostatically controlled load(ITCL)clusters to provide virtual inertia support to the power grid.However,ITCL clusters exhibit significant discrete response characteristics,which precludes the direct integration of load-side inertia support into the synchronous unit side.To address this issue,this paper elaborates on the existing technical framework and analyzes the underlying causes of the problem.It proposes a timestamp allocation mechanism for ITCL cluster control instructions,ensuring that many ITCL terminals can be triggered at staggered times,thereby allowing the load cluster power to adhere to the inertia analog control law at any moment.Building on this foundation,the paper further examines the impact of the inertia response delay of ITCL clusters,which is based on centralized frequency regulation,on the stability of the power system.A design scheme for inertia analog control parameters is proposed,taking into account dual constraints,frequency stability and load cluster regulation capacity.Finally,the feasibility and applicability of the proposed mechanism and parameter design scheme are investigated through simulations conducted via MATLAB/Simulink.展开更多
This paper presents an innovative and effective control strategy tailored for a deregulated,diversified energy system involving multiple interconnected area.Each area integrates a unique mix of power generation techno...This paper presents an innovative and effective control strategy tailored for a deregulated,diversified energy system involving multiple interconnected area.Each area integrates a unique mix of power generation technologies:Area 1 combines thermal,hydro,and distributed generation;Area 2 utilizes a blend of thermal units,distributed solar technologies(DST),and hydro power;andThird control area hosts geothermal power station alongside thermal power generation unit and hydropower units.The suggested control system employs a multi-layered approach,featuring a blended methodology utilizing the Tilted Integral Derivative controller(TID)and the Fractional-Order Integral method to enhance performance and stability.The parameters of this hybrid TID-FOI controller are finely tuned using an advanced optimization method known as the Walrus Optimization Algorithm(WaOA).Performance analysis reveals that the combined TID-FOI controller significantly outperforms the TID and PID controllers when comparing their dynamic response across various system configurations.The study also incorporates investigation of redox flow batteries within the broader scope of energy storage applications to assess their impact on system performance.In addition,the research explores the controller’s effectiveness under different power exchange scenarios in a deregulated market,accounting for restrictions on generation ramp rates and governor hysteresis effects in dynamic control.To ensure the reliability and resilience of the presented methodology,the system transitions and develops across a broad range of varying parameters and stochastic load fluctuation.To wrap up,the study offers a pioneering control approach-a hybrid TID-FOI controller optimized via the Walrus Optimization Algorithm(WaOA)-designed for enhanced stability and performance in a complex,three-region hybrid energy system functioning within a deregulated framework.展开更多
This paper designs a decentralized resilient H_(∞)load frequency control(LFC)scheme for multi-area cyber-physical power systems(CPPSs).Under the network-based control framework,the sampled measurements are transmitte...This paper designs a decentralized resilient H_(∞)load frequency control(LFC)scheme for multi-area cyber-physical power systems(CPPSs).Under the network-based control framework,the sampled measurements are transmitted through the communication networks,which may be attacked by energylimited denial-of-service(DoS)attacks with a characterization of the maximum count of continuous data losses(resilience index).Each area is controlled in a decentralized mode,and the impacts on one area from other areas via their interconnections are regarded as the additional load disturbance of this area.Then,the closed-loop LFC system of each area under DoS attacks is modeled as an aperiodic sampled-data control system with external disturbances.Under this modeling,a decentralized resilient H_(∞)scheme is presented to design the state-feedback controllers with guaranteed H∞performance and resilience index based on a novel transmission interval-dependent loop functional method.When given the controllers,the proposed scheme can obtain a less conservative H_(∞)performance and resilience index that the LFC system can tolerate.The effectiveness of the proposed LFC scheme is evaluated on a one-area CPPS and two three-area CPPSs under DoS attacks.展开更多
The primary factor contributing to frequency instability in microgrids is the inherent intermittency of renewable energy sources.This paper introduces novel dual-backup controllers utilizing advanced fractional order ...The primary factor contributing to frequency instability in microgrids is the inherent intermittency of renewable energy sources.This paper introduces novel dual-backup controllers utilizing advanced fractional order proportional integral derivative(FOPID)controllers to enhance frequency and tie-line power stability in microgrids amid increasing renewable energy integration.To improve load frequency control,the proposed controllers are applied to a two-area interconnectedmicrogrid system incorporating diverse energy sources,such as wind turbines,photovoltaic cells,diesel generators,and various storage technologies.A novelmeta-heuristic algorithm is adopted to select the optimal parameters of the proposed controllers.The efficacy of the advanced FOPID controllers is demonstrated through comparative analyses against traditional proportional integral derivative(PID)and FOPID controllers,showcasing superior performance inmanaging systemfluctuations.The optimization algorithm is also evaluated against other artificial intelligent methods for parameter optimization,affirming the proposed solution’s efficiency.The robustness of the intelligent controllers against system uncertainties is further validated under extensive power disturbances,proving their capability to maintain grid stability.The dual-controller configuration ensures redundancy,allowing them to operate as mutual backups,enhancing system reliability.This research underlines the importance of sophisticated control strategies for future-proofing microgrid operations against the backdrop of evolving energy landscapes.展开更多
The deregulation of the electricity market made the open communication infrastructure an exigent need for future power system. In this scenario dedicated communication links are replaced by shared networks. These shar...The deregulation of the electricity market made the open communication infrastructure an exigent need for future power system. In this scenario dedicated communication links are replaced by shared networks. These shared networks are characterized by random time delay and data loss. The random time delay and data loss may lead to system instability if they are not considered during the controller design stage. Load frequency control systems used to rely on dedicated communication links. To meet future power system challenges these dedicated networks are replaced by open communication links which makes the system stochastic. In this paper, the stochastic stabilization of load frequency control system under networked environment is investigated. The shared network is represented by three states which are governed by Markov chains. A controller synthesis method based on the stochastic stability criteria is presented in the paper. A one-area load frequency control system is chosen as case study. The effectiveness of the proposed method for the controller synthesis is tested through simulation. The derived proportion integration (PI) controller proves to be optimum where it is a compromise between compensating the random time delay effects and degrading the system dynamic performance. The range of the PI controller gains that guarantee the stochastic stability is determined. Also the range of the PI controller gains that achieve the robust stochastic stability is determined where the decay rate is used to measure the robustness of the system.展开更多
Based on the pressure regulation circuit adopting electro-hydraulic proportional relief valve to control tension, a new type of electro-hydraulic compound control circuit with throttle control unit is presented, which...Based on the pressure regulation circuit adopting electro-hydraulic proportional relief valve to control tension, a new type of electro-hydraulic compound control circuit with throttle control unit is presented, which can obtain optimal dynamic damping ratio through real-time altering pressure-flow gain of the throttle control unit, improve the dynamic characteristic of tension follow-up control for the tension system with high inertia loads. Moreover, the characteristic when the cable linear velocity variation causes change of tension is investigated, and a compound control strategy is proposed. The theoretical analysis and experimental results show that the electro-hydraulic compound control circuit is effective and the characteristic of the compound control strategy is satisfactory.展开更多
The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator cont...The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator control scheme. To this end, we consider a nonlinear interconnected model for multiarea power systems which also include uncertainties and timevarying communication delays. The design procedure is formulated using semi-definite programming and linear matrix inequality(LMI) method. The solution of the proposed LMIs returns necessary parameters for the tracking controllers such that the impact of model uncertainty and load disturbances are minimized. The proposed controllers are capable of receiving all or part of subsystems information, whereas the outputs of each controller are local. These controllers are designed such that the resilient stability of the overall closed-loop system is guaranteed. Simulation results are provided to verify the effectiveness of the proposed scheme. Simulation results quantify that the distributed(and decentralized) controlled system behaves well in presence of large parameter perturbations and random disturbances on the power system.展开更多
Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force...Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness.展开更多
The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to ...The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to achieving controllable stress-strain rate loading.In this study,we have,for the first time,combined one-dimensional fluid computational software with machine learning methods.We first elucidated the mechanisms by which GDI structures control stress and strain rates.Subsequently,we constructed a machine learning model to create a structure-property response surface.The results show that altering the loading velocity and interlayer thickness has a pronounced regulatory effect on stress and strain rates.In contrast,the impedance distribution index and target thickness have less significant effects on stress regulation,although there is a matching relationship between target thickness and interlayer thickness.Compared with traditional design methods,the machine learning approach offers a10^(4)—10^(5)times increase in efficiency and the potential to achieve a global optimum,holding promise for guiding the design of GDI.展开更多
An active disturbance rejection controller (ADRC) is developed for load frequency control (LFC) and voltage regulation respectively in a power system. For LFC, the ADRC is constructed on a three-area interconnecte...An active disturbance rejection controller (ADRC) is developed for load frequency control (LFC) and voltage regulation respectively in a power system. For LFC, the ADRC is constructed on a three-area interconnected power system. The control goal is to maintain the frequency at nominal value (60Hz in North America) and keep tie-line power flow at scheduled value. For voltage regulation, the ADRC is applied to a static var compensator (SVC) as a supplementary controller. It is utilized to maintain the voltages at nearby buses within the ANSI C84.1 limits (or +5% tolerance). Particularly, an alternative ADRC with smaller controller gains than classic ADRC is originally designed on the SVC system. From power generation and transmission to its distribution, both voltage and frequency regulating systems are subject to large and small disturbances caused by sudden load changes, transmission faults, and equipment loss/malfunction etc. The simulation results and theoretical analyses demonstrate the effectiveness of the ADRCs in compensating the disturbances and achieving the control goals.展开更多
increasing penetration of renewable energy sources with a wide range of operating conditions causing power system uncertainties, conventional controllers are incapable of providing proper performance to keep the syste...increasing penetration of renewable energy sources with a wide range of operating conditions causing power system uncertainties, conventional controllers are incapable of providing proper performance to keep the system stable. However, controllable or dispatchable loads such as electric vehicles (EVs) and heat pumps (HPs) can be utilized for supplementary frequency control. This paper shows the ability of plug-in hybrid EVs, HPs, and batteries (BTs) to contribute in the frequency control of an isolated power system. Moreover, we propose a new online intelligent approach by using a coefficient diagram method (CDM) to enhance the system performance and robustness against uncertainties. The performance of the proposed intelligent CDM control has been compared with the proportional-integral (PI) controller and the superiority of the proposed scheme has been verified in Matiab/Simulink programs.展开更多
This paper concentrates on the aeroelasticity analysis of rotor blade and rotor control systems. A new multi-body dynamics model is established to predict both rotor pitch link loads and swashplate servo loads. Two he...This paper concentrates on the aeroelasticity analysis of rotor blade and rotor control systems. A new multi-body dynamics model is established to predict both rotor pitch link loads and swashplate servo loads. Two helicopter rotors of UH-60A and SA349/2, both operating in two critical flight conditions, high-speed flight and high-thrust flight, are studied. The analysis shows good agreements with the flight test data and the calculation results using CAMRAD II. The mechanisms of rotor control loads are then analyzed in details based on the present predictions and the flight test data. In high-speed conditions, the pitch link loads are dominated by the integral of blade pitching moments, which are generated by cyclic pitch control. In high-thrust conditions, the positive pitching loads in the advancing side are caused by high collective pitch angle, and dynamic stall in the retreating side excites high-frequency responses. The swashplate servo loads are predominated by the rotor pitch link loads, and the inertia of the swashplate has significant effects on high-frequency harmonics of the servo loads.展开更多
Dear Editor,This letter is concerned with stability analysis and stabilization design for sampled-data based load frequency control(LFC) systems via a data-driven method. By describing the dynamic behavior of LFC syst...Dear Editor,This letter is concerned with stability analysis and stabilization design for sampled-data based load frequency control(LFC) systems via a data-driven method. By describing the dynamic behavior of LFC systems based on a data-based representation, a stability criterion is derived to obtain the admissible maximum sampling interval(MSI) for a given controller and a design condition of the PI-type controller is further developed to meet the required MSI. Finally, the effectiveness of the proposed methods is verified by a case study.展开更多
Modern automated generation control(AGC)is increasingly complex,requiring precise frequency control for stability and operational accuracy.Traditional PID controller optimisation methods often struggle to handle nonli...Modern automated generation control(AGC)is increasingly complex,requiring precise frequency control for stability and operational accuracy.Traditional PID controller optimisation methods often struggle to handle nonlinearities and meet robustness requirements across diverse operational scenarios.This paper introduces an enhanced strategy using a multi-objective optimisation framework and a modified non-dominated sorting genetic algorithm Ⅱ(SNSGA).The proposed model optimises the PID controller by minimising key performance metrics:integration time squared error(ITSE),integration time absolute error(ITAE),and rate of change of deviation(J).This approach balances convergence rate,overshoot,and oscillation dynamics effectively.A fuzzy-based method is employed to select the most suitable solution from the Pareto set.The comparative analysis demonstrates that the SNSGA-based approach offers superior tuning capabilities over traditional NSGA-Ⅱ and other advanced control methods.In a two-area thermal power system without reheat,the SNSGA significantly reduces settling times for frequency deviations:2.94s for Δf_(1) and 4.98s for Δf_(2),marking improvements of 31.6%and 13.4%over NSGA-Ⅱ,respectively.展开更多
This paper is devoted to investigate the robust H∞sliding mode load frequency control(SMLFC) of multi-area power system with time delay. By taking into account stochastic disturbances induced by the integration of re...This paper is devoted to investigate the robust H∞sliding mode load frequency control(SMLFC) of multi-area power system with time delay. By taking into account stochastic disturbances induced by the integration of renewable energies,a new sliding surface function is constructed to guarantee the fast response and robust performance, then the sliding mode control law is designed to guarantee the reach ability of the sliding surface in a finite-time interval. The sufficient robust frequency stabilization result for multi-area power system with time delay is presented in terms of linear matrix inequalities(LMIs). Finally,a two-area power system is provided to illustrate the usefulness and effectiveness of the obtained results.展开更多
Load frequency is an important issue in power system operation and control. In this paper, load frequency control for suppression frequency deviation in an interconnected power system with nonlinearities using SMC (s...Load frequency is an important issue in power system operation and control. In this paper, load frequency control for suppression frequency deviation in an interconnected power system with nonlinearities using SMC (sliding mode control) is studied. The governor dead band and GRC (generation rate constraint) is considered in this article. Digit simulations for both two areas and three areas power system with non-reheat turbines are provided to validate the effectiveness of the proposed scheme. The results show that, the robustness of the control method under parameters variation and different load disturbances with the SMC technique.展开更多
Gust load alleviation (GLA) tests are widely conducted to study the effectiveness of the control laws and methods. The physical parameters of models in these tests are aeroelastic scaled, while the scaling of GLA co...Gust load alleviation (GLA) tests are widely conducted to study the effectiveness of the control laws and methods. The physical parameters of models in these tests are aeroelastic scaled, while the scaling of GLA control system is always unreached. This paper concentrates on studying the scaling laws of GLA control system. Through theoretical demonstration, the scaling criterion of a classical PID control system has been come up and a scaling methodology is provided and veri- fied. By adopting the scaling laws in this paper, gust response of the scaled model could be directly related to the full-scale aircraft theoretically under both open-loop and closed-loop conditions. Also, the influences of different scaling choices of an important non-dimensional parameter, the Froude number, have been studied in this paper. Furthermore for practical application, a compen- sating method is given when the theoretical scaled actuators or sensors cannot be obtained. Also, the scaling laws of some non-linear elements in control system such as the rate and amplitude sat- urations in actuator have been studied and examined by a numerical simulation.展开更多
基金Supported by the Russian Science Foundation(Agreement 23-41-10001,https://rscf.ru/project/23-41-10001/).
文摘Background Interconnection of different power systems has a major effect on system stability.This study aims to design an optimal load frequency control(LFC)system based on a proportional-integral(PI)controller for a two-area power system.Methods Two areas were connected through an AC tie line in parallel with a DC link to stabilize the frequency of oscillations in both areas.The PI parameters were tuned using the cuckoo search algorithm(CSA)to minimize the integral absolute error(IAE).A state matrix was provided,and the stability of the system was verified by calculating the eigenvalues.The frequency response was investigated for load variation,changes in the generator rate constraint,the turbine time constant,and the governor time constant.Results The CSA was compared with particle swarm optimization algorithm(PSO)under identical conditions.The system was modeled based on a state-space mathematical representation and simulated using MATLAB.The results demonstrated the effectiveness of the proposed controller based on both algorithms and,it is clear that CSA is superior to PSO.Conclusion The CSA algorithm smoothens the system response,reduces ripples,decreases overshooting and settling time,and improves the overall system performance under different disturbances.
基金supported in part by the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources under Grant LAPS24009in part by the Guangdong Basic and Applied Basic Research Foundation under Grant 2021A1515110016in part by the National Natural Science Foundation of China under Grant 52206009.
文摘With the increasing penetration of renewable energy resources in power systems,conventional timescale separated load frequency control(LFC)and economic dispatch may degrade frequency performance and reduce economic efficiency.This paper proposes a novel data-driven adaptive distributed optimal disturbance rejection control(DODRC)method for real-time economic LFC problem in nonlinear power systems.Firstly,a basic DODRC method is proposed by integrating the active disturbance rejection control method and the partial primal–dual algorithm.Then,to deal with the tie-line power flow constraints,the logarithmic barrier function is employed to reconstruct the Lagrange function to obtain the constrained DODRC method.By analyzing the sensitivity of the uncertain parameters of power systems,a data-driven adaptive DODRC method is finally proposed with a neural network.The effectiveness of the proposed method is demonstrated by experimental results using real-time equipment.
基金supported by the Key Scientific and Technological Projects(2024KJGG27)of Tianfu Yongxing Laboratorythe Experimental Platform Open Innovation Funding(209042025003)of Sichuan Energy Internet Research Institute,Tsinghua University.
文摘As the development of new power systems progresses,the inherent inertia of power systems continues to diminish.Centralized frequency regulation,which relies on rapid communication and real-time control,can enable inverter-based thermostatically controlled load(ITCL)clusters to provide virtual inertia support to the power grid.However,ITCL clusters exhibit significant discrete response characteristics,which precludes the direct integration of load-side inertia support into the synchronous unit side.To address this issue,this paper elaborates on the existing technical framework and analyzes the underlying causes of the problem.It proposes a timestamp allocation mechanism for ITCL cluster control instructions,ensuring that many ITCL terminals can be triggered at staggered times,thereby allowing the load cluster power to adhere to the inertia analog control law at any moment.Building on this foundation,the paper further examines the impact of the inertia response delay of ITCL clusters,which is based on centralized frequency regulation,on the stability of the power system.A design scheme for inertia analog control parameters is proposed,taking into account dual constraints,frequency stability and load cluster regulation capacity.Finally,the feasibility and applicability of the proposed mechanism and parameter design scheme are investigated through simulations conducted via MATLAB/Simulink.
文摘This paper presents an innovative and effective control strategy tailored for a deregulated,diversified energy system involving multiple interconnected area.Each area integrates a unique mix of power generation technologies:Area 1 combines thermal,hydro,and distributed generation;Area 2 utilizes a blend of thermal units,distributed solar technologies(DST),and hydro power;andThird control area hosts geothermal power station alongside thermal power generation unit and hydropower units.The suggested control system employs a multi-layered approach,featuring a blended methodology utilizing the Tilted Integral Derivative controller(TID)and the Fractional-Order Integral method to enhance performance and stability.The parameters of this hybrid TID-FOI controller are finely tuned using an advanced optimization method known as the Walrus Optimization Algorithm(WaOA).Performance analysis reveals that the combined TID-FOI controller significantly outperforms the TID and PID controllers when comparing their dynamic response across various system configurations.The study also incorporates investigation of redox flow batteries within the broader scope of energy storage applications to assess their impact on system performance.In addition,the research explores the controller’s effectiveness under different power exchange scenarios in a deregulated market,accounting for restrictions on generation ramp rates and governor hysteresis effects in dynamic control.To ensure the reliability and resilience of the presented methodology,the system transitions and develops across a broad range of varying parameters and stochastic load fluctuation.To wrap up,the study offers a pioneering control approach-a hybrid TID-FOI controller optimized via the Walrus Optimization Algorithm(WaOA)-designed for enhanced stability and performance in a complex,three-region hybrid energy system functioning within a deregulated framework.
基金supported by National Natural Science Foundation of China(61533013,61273144)Scientific Technology Research and Development Plan Project of Tangshan(13130298B)Scientific Technology Research and Development Plan Project of Hebei(z2014070)
基金supported by the National Natural Science Foundation(NNSF)of China(62003037,61873303)。
文摘This paper designs a decentralized resilient H_(∞)load frequency control(LFC)scheme for multi-area cyber-physical power systems(CPPSs).Under the network-based control framework,the sampled measurements are transmitted through the communication networks,which may be attacked by energylimited denial-of-service(DoS)attacks with a characterization of the maximum count of continuous data losses(resilience index).Each area is controlled in a decentralized mode,and the impacts on one area from other areas via their interconnections are regarded as the additional load disturbance of this area.Then,the closed-loop LFC system of each area under DoS attacks is modeled as an aperiodic sampled-data control system with external disturbances.Under this modeling,a decentralized resilient H_(∞)scheme is presented to design the state-feedback controllers with guaranteed H∞performance and resilience index based on a novel transmission interval-dependent loop functional method.When given the controllers,the proposed scheme can obtain a less conservative H_(∞)performance and resilience index that the LFC system can tolerate.The effectiveness of the proposed LFC scheme is evaluated on a one-area CPPS and two three-area CPPSs under DoS attacks.
文摘The primary factor contributing to frequency instability in microgrids is the inherent intermittency of renewable energy sources.This paper introduces novel dual-backup controllers utilizing advanced fractional order proportional integral derivative(FOPID)controllers to enhance frequency and tie-line power stability in microgrids amid increasing renewable energy integration.To improve load frequency control,the proposed controllers are applied to a two-area interconnectedmicrogrid system incorporating diverse energy sources,such as wind turbines,photovoltaic cells,diesel generators,and various storage technologies.A novelmeta-heuristic algorithm is adopted to select the optimal parameters of the proposed controllers.The efficacy of the advanced FOPID controllers is demonstrated through comparative analyses against traditional proportional integral derivative(PID)and FOPID controllers,showcasing superior performance inmanaging systemfluctuations.The optimization algorithm is also evaluated against other artificial intelligent methods for parameter optimization,affirming the proposed solution’s efficiency.The robustness of the intelligent controllers against system uncertainties is further validated under extensive power disturbances,proving their capability to maintain grid stability.The dual-controller configuration ensures redundancy,allowing them to operate as mutual backups,enhancing system reliability.This research underlines the importance of sophisticated control strategies for future-proofing microgrid operations against the backdrop of evolving energy landscapes.
文摘The deregulation of the electricity market made the open communication infrastructure an exigent need for future power system. In this scenario dedicated communication links are replaced by shared networks. These shared networks are characterized by random time delay and data loss. The random time delay and data loss may lead to system instability if they are not considered during the controller design stage. Load frequency control systems used to rely on dedicated communication links. To meet future power system challenges these dedicated networks are replaced by open communication links which makes the system stochastic. In this paper, the stochastic stabilization of load frequency control system under networked environment is investigated. The shared network is represented by three states which are governed by Markov chains. A controller synthesis method based on the stochastic stability criteria is presented in the paper. A one-area load frequency control system is chosen as case study. The effectiveness of the proposed method for the controller synthesis is tested through simulation. The derived proportion integration (PI) controller proves to be optimum where it is a compromise between compensating the random time delay effects and degrading the system dynamic performance. The range of the PI controller gains that guarantee the stochastic stability is determined. Also the range of the PI controller gains that achieve the robust stochastic stability is determined where the decay rate is used to measure the robustness of the system.
基金This project is supported by National Natural Science Foundation of China (No.50475105).
文摘Based on the pressure regulation circuit adopting electro-hydraulic proportional relief valve to control tension, a new type of electro-hydraulic compound control circuit with throttle control unit is presented, which can obtain optimal dynamic damping ratio through real-time altering pressure-flow gain of the throttle control unit, improve the dynamic characteristic of tension follow-up control for the tension system with high inertia loads. Moreover, the characteristic when the cable linear velocity variation causes change of tension is investigated, and a compound control strategy is proposed. The theoretical analysis and experimental results show that the electro-hydraulic compound control circuit is effective and the characteristic of the compound control strategy is satisfactory.
文摘The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator control scheme. To this end, we consider a nonlinear interconnected model for multiarea power systems which also include uncertainties and timevarying communication delays. The design procedure is formulated using semi-definite programming and linear matrix inequality(LMI) method. The solution of the proposed LMIs returns necessary parameters for the tracking controllers such that the impact of model uncertainty and load disturbances are minimized. The proposed controllers are capable of receiving all or part of subsystems information, whereas the outputs of each controller are local. These controllers are designed such that the resilient stability of the overall closed-loop system is guaranteed. Simulation results are provided to verify the effectiveness of the proposed scheme. Simulation results quantify that the distributed(and decentralized) controlled system behaves well in presence of large parameter perturbations and random disturbances on the power system.
基金Supported by National Key Basic Research Program of China(973 Program,Grant No.2014CB046405)State Key Laboratory of Fluid Power and Mechatronic Systems(Zhejiang University)Open Fund Project(Grant No.GZKF-201502)Hebei Military and Civilian Industry Development Funds Projects of China(Grant No.2015B060)
文摘Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2021B0301030001)the National Key Research and Development Program of China(Grant No.2021YFB3802300)the Foundation of National Key Laboratory of Shock Wave and Detonation Physics(Grant No.JCKYS2022212004)。
文摘The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to achieving controllable stress-strain rate loading.In this study,we have,for the first time,combined one-dimensional fluid computational software with machine learning methods.We first elucidated the mechanisms by which GDI structures control stress and strain rates.Subsequently,we constructed a machine learning model to create a structure-property response surface.The results show that altering the loading velocity and interlayer thickness has a pronounced regulatory effect on stress and strain rates.In contrast,the impedance distribution index and target thickness have less significant effects on stress regulation,although there is a matching relationship between target thickness and interlayer thickness.Compared with traditional design methods,the machine learning approach offers a10^(4)—10^(5)times increase in efficiency and the potential to achieve a global optimum,holding promise for guiding the design of GDI.
文摘An active disturbance rejection controller (ADRC) is developed for load frequency control (LFC) and voltage regulation respectively in a power system. For LFC, the ADRC is constructed on a three-area interconnected power system. The control goal is to maintain the frequency at nominal value (60Hz in North America) and keep tie-line power flow at scheduled value. For voltage regulation, the ADRC is applied to a static var compensator (SVC) as a supplementary controller. It is utilized to maintain the voltages at nearby buses within the ANSI C84.1 limits (or +5% tolerance). Particularly, an alternative ADRC with smaller controller gains than classic ADRC is originally designed on the SVC system. From power generation and transmission to its distribution, both voltage and frequency regulating systems are subject to large and small disturbances caused by sudden load changes, transmission faults, and equipment loss/malfunction etc. The simulation results and theoretical analyses demonstrate the effectiveness of the ADRCs in compensating the disturbances and achieving the control goals.
文摘increasing penetration of renewable energy sources with a wide range of operating conditions causing power system uncertainties, conventional controllers are incapable of providing proper performance to keep the system stable. However, controllable or dispatchable loads such as electric vehicles (EVs) and heat pumps (HPs) can be utilized for supplementary frequency control. This paper shows the ability of plug-in hybrid EVs, HPs, and batteries (BTs) to contribute in the frequency control of an isolated power system. Moreover, we propose a new online intelligent approach by using a coefficient diagram method (CDM) to enhance the system performance and robustness against uncertainties. The performance of the proposed intelligent CDM control has been compared with the proportional-integral (PI) controller and the superiority of the proposed scheme has been verified in Matiab/Simulink programs.
文摘This paper concentrates on the aeroelasticity analysis of rotor blade and rotor control systems. A new multi-body dynamics model is established to predict both rotor pitch link loads and swashplate servo loads. Two helicopter rotors of UH-60A and SA349/2, both operating in two critical flight conditions, high-speed flight and high-thrust flight, are studied. The analysis shows good agreements with the flight test data and the calculation results using CAMRAD II. The mechanisms of rotor control loads are then analyzed in details based on the present predictions and the flight test data. In high-speed conditions, the pitch link loads are dominated by the integral of blade pitching moments, which are generated by cyclic pitch control. In high-thrust conditions, the positive pitching loads in the advancing side are caused by high collective pitch angle, and dynamic stall in the retreating side excites high-frequency responses. The swashplate servo loads are predominated by the rotor pitch link loads, and the inertia of the swashplate has significant effects on high-frequency harmonics of the servo loads.
基金supported in part by the National Natural Science Foundation of China(62373337,62373333)the 111 Project(B17040)State Key Laboratory of Advanced Electromagnetic Technology(2024KF002)
文摘Dear Editor,This letter is concerned with stability analysis and stabilization design for sampled-data based load frequency control(LFC) systems via a data-driven method. By describing the dynamic behavior of LFC systems based on a data-based representation, a stability criterion is derived to obtain the admissible maximum sampling interval(MSI) for a given controller and a design condition of the PI-type controller is further developed to meet the required MSI. Finally, the effectiveness of the proposed methods is verified by a case study.
基金supported in part by the Science and Technology Innovation Program of Hunan Province under Grant 2022RC4028in part by the National Natural Science Foundation of China under Grant 62473204+3 种基金in part by the Chunhui Program Collaborative Scientific Research Project under Grant 202202004in part by the Natural Science Foundation of Nanjing University of Posts and Telecommunications under Grants NY221082,NY222144,and NY223075in part by the Huali Program for Excellent Talents in Nanjing University of Posts and Telecommunicationsin part by the Postgraduate Research and Practice Innovation Program of Jiangsu Province under Grant KYCX24_1215.
文摘Modern automated generation control(AGC)is increasingly complex,requiring precise frequency control for stability and operational accuracy.Traditional PID controller optimisation methods often struggle to handle nonlinearities and meet robustness requirements across diverse operational scenarios.This paper introduces an enhanced strategy using a multi-objective optimisation framework and a modified non-dominated sorting genetic algorithm Ⅱ(SNSGA).The proposed model optimises the PID controller by minimising key performance metrics:integration time squared error(ITSE),integration time absolute error(ITAE),and rate of change of deviation(J).This approach balances convergence rate,overshoot,and oscillation dynamics effectively.A fuzzy-based method is employed to select the most suitable solution from the Pareto set.The comparative analysis demonstrates that the SNSGA-based approach offers superior tuning capabilities over traditional NSGA-Ⅱ and other advanced control methods.In a two-area thermal power system without reheat,the SNSGA significantly reduces settling times for frequency deviations:2.94s for Δf_(1) and 4.98s for Δf_(2),marking improvements of 31.6%and 13.4%over NSGA-Ⅱ,respectively.
基金supported in part by the National Natural Science Foundation of China(61673161)the Natural Science Foundation of Jiangsu Province of China(BK20161510)+2 种基金the Fundamental Research Funds for the Central Universities of China(2017B13914)the 111 Project(B14022)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘This paper is devoted to investigate the robust H∞sliding mode load frequency control(SMLFC) of multi-area power system with time delay. By taking into account stochastic disturbances induced by the integration of renewable energies,a new sliding surface function is constructed to guarantee the fast response and robust performance, then the sliding mode control law is designed to guarantee the reach ability of the sliding surface in a finite-time interval. The sufficient robust frequency stabilization result for multi-area power system with time delay is presented in terms of linear matrix inequalities(LMIs). Finally,a two-area power system is provided to illustrate the usefulness and effectiveness of the obtained results.
文摘Load frequency is an important issue in power system operation and control. In this paper, load frequency control for suppression frequency deviation in an interconnected power system with nonlinearities using SMC (sliding mode control) is studied. The governor dead band and GRC (generation rate constraint) is considered in this article. Digit simulations for both two areas and three areas power system with non-reheat turbines are provided to validate the effectiveness of the proposed scheme. The results show that, the robustness of the control method under parameters variation and different load disturbances with the SMC technique.
基金supported by the National Natural Science Foundation of China(Nos.11372023 and 11402013)
文摘Gust load alleviation (GLA) tests are widely conducted to study the effectiveness of the control laws and methods. The physical parameters of models in these tests are aeroelastic scaled, while the scaling of GLA control system is always unreached. This paper concentrates on studying the scaling laws of GLA control system. Through theoretical demonstration, the scaling criterion of a classical PID control system has been come up and a scaling methodology is provided and veri- fied. By adopting the scaling laws in this paper, gust response of the scaled model could be directly related to the full-scale aircraft theoretically under both open-loop and closed-loop conditions. Also, the influences of different scaling choices of an important non-dimensional parameter, the Froude number, have been studied in this paper. Furthermore for practical application, a compen- sating method is given when the theoretical scaled actuators or sensors cannot be obtained. Also, the scaling laws of some non-linear elements in control system such as the rate and amplitude sat- urations in actuator have been studied and examined by a numerical simulation.