期刊文献+
共找到157,954篇文章
< 1 2 250 >
每页显示 20 50 100
Load of the Small-Scale Vertical Cylinder in a Wave-Current Field
1
作者 Mingjie Li Binbin Zhao Wengyang Duan 《哈尔滨工程大学学报(英文版)》 2026年第1期82-94,共13页
Studies of wave-current interactions are vital for the safe design of structures.Regular waves in the presence of uniform,linear shear,and quadratic shear currents are explored by the High-Level Green-Naghdi model in ... Studies of wave-current interactions are vital for the safe design of structures.Regular waves in the presence of uniform,linear shear,and quadratic shear currents are explored by the High-Level Green-Naghdi model in this paper.The five-point central difference method is used for spatial discretization,and the fourth-order Adams predictor-corrector scheme is employed for marching in time.The domain-decomposition method is applied for the wave-current generation and absorption.The effects of currents on the wave profile and velocity field are examined under two conditions:the same velocity of currents at the still-water level and the constant flow volume of currents.Wave profiles and velocity fields demonstrate substantial differences in three types of currents owing to the diverse vertical distribution of current velocity and vorticity.Then,loads on small-scale vertical cylinders subjected to regular waves and three types of background currents with the same flow volume are investigated.The maximum load intensity and load fluctuation amplitude in uniform,linear shear,and quadratic shear currents increase sequentially.The stretched superposition method overestimates the maximum load intensity and load fluctuation amplitude in opposing currents and underestimates these values in following currents.The stretched superposition method obtains a poor approximation for strong nonlinear waves,particularly in the case of the opposing quadratic shear current. 展开更多
关键词 Wave-current interaction Cylinder load HLGN model Morison equation Regular waves
在线阅读 下载PDF
Preliminary study on a quantification method and standardization for aquatic microbial loads based on microbial diversity absolute quantitative sequencing
2
作者 Wen Li Jing Libin +4 位作者 Li Xiawei Lu Jing Jin Haowei Yang Yongqi Li Xueling 《China Standardization》 2026年第1期68-73,共6页
This study establishes and validates a method for the precise quantification of aquatic microbial loads using microbial diversity absolute quantitative sequencing.By adding synthetic spike-in DNA to water samples from... This study establishes and validates a method for the precise quantification of aquatic microbial loads using microbial diversity absolute quantitative sequencing.By adding synthetic spike-in DNA to water samples from the Dahei River prior to DNA extraction and 16S rRNA gene sequencing,it generates standard curves to convert sequencing data into absolute microbial copy numbers.The method,which is proved highly accurate(R^(2)>0.99),reveals a clear contrast between the river sites:the upstream community has not only a significantly higher total microbial load but also a completely different makeup of species compared to the downstream site.This approach effectively overcomes the limitations of relative abundance analysis,providing a powerful tool for environmental monitoring,and proposes key steps for future standardization to ensure data comparability and integration. 展开更多
关键词 absolute quantification microbial load 16S rRNA sequencing spike-in STANDARDIZATION aquatic microbes
原文传递
A 3-Dimensional Cargo Loading Algorithm for the Conveyor-Type Loading System
3
作者 Hyeonbin Jeong Young Tae Ryu +1 位作者 Byung Duk Song Sang-Duck Lee 《Computer Modeling in Engineering & Sciences》 2025年第3期2739-2769,共31页
This paper proposes a novel cargo loading algorithm applicable to automated conveyor-type loading systems.The algorithm offers improvements in computational efficiency and robustness by utilizing the concept of discre... This paper proposes a novel cargo loading algorithm applicable to automated conveyor-type loading systems.The algorithm offers improvements in computational efficiency and robustness by utilizing the concept of discrete derivatives and introducing logistics-related constraints.Optional consideration of the rotation of the cargoes was made to further enhance the optimality of the solutions,if possible to be physically implemented.Evaluation metrics were developed for accurate evaluation and enhancement of the algorithm’s ability to efficiently utilize the loading space and provide a high level of dynamic stability.Experimental results demonstrate the extensive robustness of the proposed algorithm to the diversity of cargoes present in Business-to-Consumer environments.This study contributes practical advancements in both cargo loading optimization and automation of the logistics industry,with potential applications in last-mile delivery services,warehousing,and supply chain management. 展开更多
关键词 3-dimensional loading automated loading system B2C logistics cargo loading algorithm conveyortype loading
在线阅读 下载PDF
A Review of Ice Deformation and Breaking Under Flexural–Gravity Waves Induced by Moving Loads 被引量:1
4
作者 Baoyu Ni Hang Xiong +3 位作者 Duanfeng Han Lingdong Zeng Linhua Sun Hao Tan 《哈尔滨工程大学学报(英文版)》 2025年第1期35-52,共18页
Ice-breaking methods have become increasingly significant with the ongoing development of the polar regions.Among many ice-breaking methods,ice-breaking that utilizes a moving load is unique compared with the common c... Ice-breaking methods have become increasingly significant with the ongoing development of the polar regions.Among many ice-breaking methods,ice-breaking that utilizes a moving load is unique compared with the common collision or impact methods.A moving load can generate flexural-gravity waves(FGWs),under the influence of which the ice sheet undergoes deformation and may even experience structural damage.Moving loads can be divided into above-ice loads and underwater loads.For the above-ice loads,we discuss the characteristics of the FGWs generated by a moving load acting on a complete ice sheet,an ice sheet with a crack,and an ice sheet with a lead of open water.For underwater loads,we discuss the influence on the ice-breaking characteristics of FGWs of the mode of motion,the geometrical features,and the trajectory of motion of the load.In addition to discussing the status of current research and the technical challenges of ice-breaking by moving loads,this paper also looks ahead to future research prospects and presents some preliminary ideas for consideration. 展开更多
关键词 ICE-BREAKING Moving load Flexural-gravity wave Ice sheet Above-ice load Underwater load
在线阅读 下载PDF
Safety Evaluation of Bridge underMoving Abnormal Indivisible Load Based on Fusing Bridge Inspection Data and Load Test Data
5
作者 He Zhang He-Qing Mu +2 位作者 Xiao Zhang He Zhang Yuedong Yang 《Structural Durability & Health Monitoring》 2025年第3期499-530,共32页
Safety evaluation of a bridge under Moving Abnormal Indivisible Loads(MAILs)directly relates to whether an oversized and/or overweight Large-Cargo Transportation(LCT)vehicle is permitted to pass the bridge.Safety eval... Safety evaluation of a bridge under Moving Abnormal Indivisible Loads(MAILs)directly relates to whether an oversized and/or overweight Large-Cargo Transportation(LCT)vehicle is permitted to pass the bridge.Safety evaluation can be updated by fusing bridge inspection data and load test data,but there are two fundamental difficulties in updating.The first difficulty is to develop an updating scheme to utilize the unstructured inspection data.The second difficulty is to develop a successive updating scheme using load test data based on the previous updating results of the inspection data.This paper proposed a framework,consisting of three modules,to tackle these two fundamental difficulties of updating.Module one is the updating of Finite Element Model(FEM)and resistance of the bridge based on fusing bridge inspection data and load test data.The first difficulty in utilizing the unstructured inspection data is tackled by introducing updating guidelines using the unstructured inspection data.The second difficulty in conducting a successively updating scheme using load test data based on previous updating results is tackled by Bayesian updating.Module two is the simulation of a bridge under a MAIL,updating the ProbabilityDensity Functions(PDFs)of Load Effects(LEs)of critical sections of critical components based on the updated FEM and the givenMAIL.Module three is the safety evaluation of the bridge based on the load-bearing capacity index and reliability index,updating indices based on the updated resistance and LE.Theillustrative examples consist of a simulated example and an engineering example,demonstrating the effectiveness of the proposed framework.The simulated example is the safety evaluation of a bridge under a MAIL,and the engineering example is the safety evaluation of the Anning River Bridge of the Yazhong-Jiangxi Ultra-High-Voltage Direct Current(UHVDC)MAIL project.The results show that it is crucial to fuse bridge inspection data and load test data for updating the safety evaluation of bridges under MAILs. 展开更多
关键词 Moving loads moving abnormal indivisible load large-cargo transportation vehicle load-bearing capacity bridge reliability bridge safety evaluation reliability updating
在线阅读 下载PDF
Experimental investigation and life prediction for the load spectrum with flight mission characteristics on a P/M superalloy
6
作者 Renjie JIANG Xiaoguang YANG +2 位作者 Muwei CHENG Jia HUANG Duoqi SHI 《Chinese Journal of Aeronautics》 2025年第3期403-412,共10页
The service load on high temperature rotating components of aero-engines generally exhibits flight mission characteristics. The general shape of the load spectrum is that Type Ⅲ/Ⅳ cyclic loading and creep loading ar... The service load on high temperature rotating components of aero-engines generally exhibits flight mission characteristics. The general shape of the load spectrum is that Type Ⅲ/Ⅳ cyclic loading and creep loading are superimposed on Type Ⅰ cyclic loading. Meanwhile, the sequence of the Type Ⅲ/Ⅳ cyclic and creep loading varies with mission. This work performed load spectrum test with this characteristic on the Ni-based alloy FGH96. Then a life prediction method was developed based on the Chaboche fatigue damage accumulation model and a modified time fraction model. Creep followed by Fatigue (C-F) test was carried out to reveal the creep-fatigue interaction and calibrate parameters. The results show that most test results fall within the 2-fold deviation band. The sequence of creep-fatigue loading within the load spectrum exhibited a limited effect on life. Finally, simplified methods were developed to improve analysis efficiency, and cases where simplified methods could replace the proposed method were discussed. 展开更多
关键词 load spectrum Life prediction Flight mission loading sequence Niclel alloys
原文传递
Effect of loading rate on the mechanical response and energy evolution of skarn rock subjected to constant-amplitude cyclic loading
7
作者 WU Yun-feng WANG Yu +5 位作者 LI Chang-hong ZHOU Bao-kun LI Peng CAI Mei-feng SUN Chang-kun TIAN Zi-cheng 《Journal of Central South University》 2025年第3期1117-1140,共24页
This work aims to reveal the mechanical responses and energy evolution characteristics of skarn rock under constant amplitude-varied frequency loading paths.Testing results show that the fatigue lifetime,stress−strain... This work aims to reveal the mechanical responses and energy evolution characteristics of skarn rock under constant amplitude-varied frequency loading paths.Testing results show that the fatigue lifetime,stress−strain responses,deformation,energy dissipation and fracture morphology are all impacted by the loading rate.A pronounced influence of the loading rate on rock deformation is found,with slower loading rate eliciting enhanced strain development,alongside augmented energy absorption and dissipation.In addition,it is revealed that the loading rate and cyclic loading amplitude jointly influence the phase shift distribution,with accelerated rates leading to a narrower phase shift duration.It is suggested that lower loading rate leads to more significant energy dissipation.Finally,the tensile or shear failure modes were intrinsically linked to loading strategy,with cyclic loading predominantly instigating shear damage,as manifest in the increased presence of pulverized grain particles.This work would give new insights into the fortification of mining structures and the optimization of mining methodologies. 展开更多
关键词 cyclic loading loading rate constant amplitude deformation characteristics energy dissipation
在线阅读 下载PDF
Damage characteristics and energy evolution law of high static load coalrock combination under the influence of dynamic load parameters
8
作者 TANG Long TU Shi-hao +4 位作者 TU Hong-sheng MIAO Kai-jun GUO Ben-huan ZHAO Hong-bin MA Jie-yang 《Journal of Central South University》 2025年第11期4397-4416,共20页
Based on MTS Landmark 370.50 rock dynamic and static load fatigue test system and acoustic emission(AE)monitoring method,the damage characteristics and energy evolution law of high static load coal-rock combination(CR... Based on MTS Landmark 370.50 rock dynamic and static load fatigue test system and acoustic emission(AE)monitoring method,the damage characteristics and energy evolution law of high static load coal-rock combination(CRC)under the influence of dynamic load parameters were studied.The main results are as follows:1)Dynamic load increases the rheological properties and damage fracture development of CRC.With the increase of the amplitude and frequency of the dynamic load,the number of dynamic load cycles required for the failure of the CRC decreases,the irreversible strain increases,and the failure of sample accelerates;2)The AE positioning events during the loading process of the specimen decrease with the increase of the dynamic load amplitude,and increase with the increase of the dynamic load frequency;3)The fractal dimension,total energy and cumulative elastic energy of the broken particles of the CRC increase with the increase of the amplitude and frequency of the dynamic load.The fractal dimension corresponding to the increase of the dynamic load frequency is larger,and the energy and cumulative elastic energy corresponding to the increase of the dynamic load amplitude are larger. 展开更多
关键词 dynamic-static load dynamic load parameters coal-rock combination damage and failure energy evolution
在线阅读 下载PDF
Damage evolution and failure behavior of coal-rock combination subjected to different cyclic loading paths and loading rates: Insights from energy-driven effects
9
作者 WANG Kai ZUO Xiao-huan +4 位作者 DU Feng SUN Jia-zhi JU Yang SHU Long-yong CAI Yong-bo 《Journal of Central South University》 2025年第9期3447-3469,共23页
In this study,a uniaxial cyclic compression test is conducted on coal-rock composite structures under two cyclic loads using MTSE45.104 testing apparatus to investigate the macro-mesoscopic deformation,damage behavior... In this study,a uniaxial cyclic compression test is conducted on coal-rock composite structures under two cyclic loads using MTSE45.104 testing apparatus to investigate the macro-mesoscopic deformation,damage behavior,and energy evolution characteristics of these structures under different cyclic stress disturbances.Three loading and unloading rates(LURs)are tested to examine the damage behaviors and energy-driven characteristics of the composites.The findings reveal that the energy-driven behavior,mechanical properties,and macro-micro degradation characteristics of the composites are significantly influenced by the loading rate.Under the gradual cyclic loading and unloading(CLU)path with a constant lower limit(path I)and the CLU path with variable upper and lower boundaries(path II),an increase in LURs from 0.05 to 0.15 mm/min reduces the average loading time by 32.39%and 48.60%,respectively.Consequently,the total number of cracks in the samples increases by 1.66-fold for path I and 1.41-fold for path II.As LURs further increase,the energy storage limit of samples expands,leading to a higher proportion of transmatrix and shear cracks.Under both cyclic loading conditions,a broader cyclic stress range promotes energy dissipation and the formation of internal fractures.Notably,at higher loading rates,cracks tend to propagate along primary weak surfaces,leading to an increased incidence of intermatrix fractures.This behavior indicates a microscopic feature of the failure mechanisms in composite structures.These results provide a theoretical basis for elucidating the damage and failure characteristics of coal-rock composite structures under cyclic stress disturbances. 展开更多
关键词 coal-rock composite samples cyclic loading loading and unloading rates RA-AF correlation macro-micro damage features failure behavior
在线阅读 下载PDF
TRLLD:Load Level Detection Algorithm Based on Threshold Recognition for Load Time Series
10
作者 Qingqing Song Shaoliang Xia Zhen Wu 《Computers, Materials & Continua》 2025年第5期2619-2642,共24页
Load time series analysis is critical for resource management and optimization decisions,especially automated analysis techniques.Existing research has insufficiently interpreted the overall characteristics of samples... Load time series analysis is critical for resource management and optimization decisions,especially automated analysis techniques.Existing research has insufficiently interpreted the overall characteristics of samples,leading to significant differences in load level detection conclusions for samples with different characteristics(trend,seasonality,cyclicality).Achieving automated,feature-adaptive,and quantifiable analysis methods remains a challenge.This paper proposes a Threshold Recognition-based Load Level Detection Algorithm(TRLLD),which effectively identifies different load level regions in samples of arbitrary size and distribution type based on sample characteristics.By utilizing distribution density uniformity,the algorithm classifies data points and ultimately obtains normalized load values.In the feature recognition step,the algorithm employs the Density Uniformity Index Based on Differences(DUID),High Load Level Concentration(HLLC),and Low Load Level Concentration(LLLC)to assess sample characteristics,which are independent of specific load values,providing a standardized perspective on features,ensuring high efficiency and strong interpretability.Compared to traditional methods,the proposed approach demonstrates better adaptive and real-time analysis capabilities.Experimental results indicate that it can effectively identify high load and low load regions in 16 groups of time series samples with different load characteristics,yielding highly interpretable results.The correlation between the DUID and sample density distribution uniformity reaches 98.08%.When introducing 10% MAD intensity noise,the maximum relative error is 4.72%,showcasing high robustness.Notably,it exhibits significant advantages in general and low sample scenarios. 展开更多
关键词 load time series load level detection threshold recognition density uniformity index outlier detection management systems engineering
在线阅读 下载PDF
An estimating methodology for the load of train axle box bearings
11
作者 Zhenqian Li Maoru Chi +1 位作者 Wubin Cai Yabo Zhou 《High-Speed Railway》 2025年第4期267-280,共14页
Axle box bearings serve as crucial components within the transmission system of high-speed trains.Their failure can directly impact the operational safety of these trains.Accurately determining the dynamic load experi... Axle box bearings serve as crucial components within the transmission system of high-speed trains.Their failure can directly impact the operational safety of these trains.Accurately determining the dynamic load experienced by bearings during the operation of high-speed trains can provide valuable boundary inputs for the study of bearing fatigue life and service performance,thereby holding significant engineering implications.In this study,we propose a high-speed train axle box bearing load estimation method(FMCC-DKF).This method is founded on the Kalman filtering technique of the Maximum Correntropy Criterion(MCC)and employs dummy measurement technology to enhance the stability of estimated loads.We develop a kernel size update algorithm to address the challenges associated with obtaining the key parameter,kernel size of MCC.Comparative analysis of the vertical and lateral loads of the axle box bearing obtained using FMCC-DKF,DKF,and AMCC-DKF,under both measurement noise-free and non-Gaussian noise conditions,is conducted to demonstrate the superiority of the proposed estimation method.The results indicate that the proposed FMCC-DKF method exhibits high estimation accuracy under both measurement noise-free and non-Gaussian noise interference,and maintains its high estimation accuracy despite changes in train speed.The proposed load estimation method demonstrates reliable performance within the low-frequency domain below 70 Hz. 展开更多
关键词 Axle box bearing load load estimation Maximum correntropy criterion Non-Gaussian noise High-speed train
在线阅读 下载PDF
Cyclic shear responses of rough-walled rock joints subjected to dynamic normal loads
12
作者 Qiang Zhu Qian Yin +1 位作者 Zhigang Tao Manchao He 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期3289-3297,共9页
In rock engineering,the cyclic shear characteristics of rough joints under dynamic disturbances are still insufficiently studied.This study conducted cyclic shear experiments on rough joints under dynamic normal loads... In rock engineering,the cyclic shear characteristics of rough joints under dynamic disturbances are still insufficiently studied.This study conducted cyclic shear experiments on rough joints under dynamic normal loads to assess the impact of shear frequency(f_(h))and shear displacement amplitude(u_(d))on the frictional properties of the joint.The results reveal that within a single shearing cycle,the normal displacement negatively correlates with the dynamic normal force.As the shear cycle number increases,the joint surface undergoes progressive wear,resulting in an exponential decrease in the peak normal displacement.In the cyclic shearing procedure,the forward peak values of shear force and friction coefficient display larger fluctuations at either lower or higher shear frequencies.However,under moderate shear frequency conditions,the changes in the shear strength of the joint surface are smaller,and the degree of degradation post-shearing is relatively limited.As the shear displacement amplitude increases,the range of normal deformation within the joint widens.Furthermore,after shearing,the corresponding joint roughness coefficient trend shows a gradual decrease with an increasing shear displacement amplitude,while varying with the shearing frequency in a pattern that initially rises and then falls,with a turning point at 0.05 Hz.The findings of this research contribute to a profound comprehension of the cyclic frictional properties of rock joints under dynamic disturbances. 展开更多
关键词 Dynamic normal load Dynamic shear load Rough joints Friction mechanisms
在线阅读 下载PDF
Unsupervised machine learning methodologies for identification of transversal imbalanced loads in freight railway vehicles
13
作者 Cássio Bragança Ruben Silva +2 位作者 Edson Florentino de Souza Diogo Ribeiro Túlio Nogueira Bittencourt 《Railway Engineering Science》 2025年第4期581-613,共33页
Imbalanced loads in freight railway vehicles pose significant risks to vehicle running safety as well as track integrity,increasing the likelihood of derailments and increasing track wear rate.This study presents a ro... Imbalanced loads in freight railway vehicles pose significant risks to vehicle running safety as well as track integrity,increasing the likelihood of derailments and increasing track wear rate.This study presents a robust machine learning-based methodology designed to detect and classify transverse imbalances in freight vehicles using dynamic rail responses.The proposed approach employs wayside monitoring systems with accelerometers and strain gauges,integrating advanced feature extraction methods,including principal component analysis,log-mel spectrograms,and multi-feature-based techniques.The methodology enhances detection accuracy by normalizing features to eliminate environmental and operational variations and employing data fusion for sensitive index creation.It is capable of distinguishing between different severity levels of imbalanced loads across various wagon types.By simulating scenarios with typical European freight wagons,the study demonstrates the effectiveness of the approach,offering a valuable tool for railway infrastructure managers to mitigate risks associated with imbalanced loads.This research contributes to the field by providing a scalable,non-invasive solution for real-time monitoring and safety enhancement in freight rail operations. 展开更多
关键词 Freight traffic loads Imbalanced vertical loads Wayside condition monitoring Train-track interaction Artificial intelligence
在线阅读 下载PDF
A approach for the identification and localization of dynamic loads in time-varying systems
14
作者 Yixiao Li Fang Zhang Jinhui Jiang 《Acta Mechanica Sinica》 2025年第9期216-230,共15页
This paper establishes a method for identifying and locating dynamic loads in time-varying systems.The proposed method linearizes time-varying parameters within small time units and uses the Wilson-θ inverse analysis... This paper establishes a method for identifying and locating dynamic loads in time-varying systems.The proposed method linearizes time-varying parameters within small time units and uses the Wilson-θ inverse analysis method to solve modal loads of each order at each time step.It then uses an exhaustive method to determine the load position.Finally,it calculates the time history of the load.Simulation examples demonstrate how the number of measuring points and step size affect load identi-fication accuracy,verifying that this algorithm achieves good identification accuracy for loads under resonance conditions.Additionally,it explores how noise affects load position and recognition accuracy,while providing a solution.Simulation examples and experimental results demonstrate that the proposed method can identify both the time history and position of loads simultaneously with high identification accuracy. 展开更多
关键词 Time-varying system Dynamic load identification Dynamic load localization Short-time linearization Wilson-θinverse analysis method
原文传递
Effect of residual fatigue quality on fatigue damage accumulated by VHCF loads in variable-amplitude loads
15
作者 Songsong LU Tao LIANG +1 位作者 Rui BAO Binchao LIU 《Chinese Journal of Aeronautics》 2025年第12期180-191,共12页
Current fatigue damage analysis of various components(e.g.aircraft parts)focuses on effects of High-Cycle-Fatigue(HCF)loads while overlooking effects of Very-High-Cycle-Fatigue(VHCF)loads,thereby introducing a substan... Current fatigue damage analysis of various components(e.g.aircraft parts)focuses on effects of High-Cycle-Fatigue(HCF)loads while overlooking effects of Very-High-Cycle-Fatigue(VHCF)loads,thereby introducing a substantial bias.The crux of decreasing this bias lies in how to reasonably consider the threshold effect and nonlinear effect of VHCF loads'fatigue damage evolution.This problem is addressed in this paper from the perspective of Residual Fatigue Quality(RFQ,represent residual S-N^(*)curve and residual fatigue limitσ_(-1)^(*)).Fatigue tests were conducted on AA2024-T4 under various constant/variable-amplitude loads to reveal the evolution characteristics of RFQ and measure the equivalent fatigue damage of VHCF loads block loaded with various number of pre-loading HCF loads.Corresponding mechanisms were analysed in view of evolution of extrusions/intrusions along persistent slip bands.Theoretical analysis was conducted to reveal the relationship between RFQ and fatigue damage of VHCF loads block.Based on the above results,an isodamage curve-based fatigue damage analysis method was proposed,where bilinear-isodamage curves(consist of S-N^(*)curves intersecting at a point and corresponding_(σ-1)^(*))were adopted to consider the RFQ degeneration and its effect.This method reduces analysis bias to 1/3 of previous methods for typical variable-amplitude loads in HCF and HCF-VHCF regime. 展开更多
关键词 Fatigue damage Fatigue quality High cycle fatigue loads Isodamage curves Very high cycle fatigue loads
原文传递
SP-RF-ARIMA:A sparse random forest and ARIMA hybrid model for electric load forecasting
16
作者 Kamran Hassanpouri Baesmat Farhad Shokoohi Zeinab Farrokhi 《Global Energy Interconnection》 2025年第3期486-496,共11页
Accurate Electric Load Forecasting(ELF)is crucial for optimizing production capacity,improving operational efficiency,and managing energy resources effectively.Moreover,precise ELF contributes to a smaller environment... Accurate Electric Load Forecasting(ELF)is crucial for optimizing production capacity,improving operational efficiency,and managing energy resources effectively.Moreover,precise ELF contributes to a smaller environmental footprint by reducing the risks of disruption,downtime,and waste.However,with increasingly complex energy consumption patterns driven by renewable energy integration and changing consumer behaviors,no single approach has emerged as universally effective.In response,this research presents a hybrid modeling framework that combines the strengths of Random Forest(RF)and Autoregressive Integrated Moving Average(ARIMA)models,enhanced with advanced feature selection—Minimum Redundancy Maximum Relevancy and Maximum Synergy(MRMRMS)method—to produce a sparse model.Additionally,the residual patterns are analyzed to enhance forecast accuracy.High-resolution weather data from Weather Underground and historical energy consumption data from PJM for Duke Energy Ohio and Kentucky(DEO&K)are used in this application.This methodology,termed SP-RF-ARIMA,is evaluated against existing approaches;it demonstrates more than 40%reduction in mean absolute error and root mean square error compared to the second-best method. 展开更多
关键词 optimizing production capacityimproving operational efficiencyand sparse random forest hybrid model electric load forecasting accurate electric load forecasting elf renewable energy integration ARIMA feature selection
在线阅读 下载PDF
Reliability analysis of modular charge swinging-loading positioning accuracy under new failure criterion based on spatial geometric relationship
17
作者 Zihan Wang Linfang Qian +3 位作者 Liu Yang Taisu Liu Weiwei Chen Haolin Zhang 《Defence Technology(防务技术)》 2025年第6期115-130,共16页
The swinging-loading process is essential for automatic artillery loading systems.This study focuses on the problems of reliability analysis that affect swinging-loading positioning accuracy.A dynamic model for a mult... The swinging-loading process is essential for automatic artillery loading systems.This study focuses on the problems of reliability analysis that affect swinging-loading positioning accuracy.A dynamic model for a multi degree-of-freedom swinging-loading-integrated rigid-flexible coupling system is established.This model is based on the identification of key parameters and platform experiments.Based on the spatial geometric relationship between the breech and loader during modular charge transfer and the possible maximum interference depth of the modular charge,a new failure criterion for estimating the reliability of swinging-loading positioning accuracy is proposed.Considering the uncertainties in the operation of the pendulum loader,the direct probability integration method is introduced to analyze the reliability of the swinging-loading positioning accuracy under three different charge numbers.The results indicate that under two and four charges,the swinging-loading process shows outstanding reliability.However,an unstable stage appears when the swinging motion occurred under six charges,with a maximum positioning failure probability of 0.0712.A comparison between the results obtained under the conventional and proposed criteria further reveals the effectiveness and necessity of the proposed criterion. 展开更多
关键词 Artillery loading system Pendulum loader Dynamic model Failure criterion Reliability analysis
在线阅读 下载PDF
Mechanical responses of sandstone exposed to triaxial differential cyclic loading with distinct unloading rates of confining stress:A lab scale investigation
18
作者 Z.Y.Song W.H.Zhang +3 位作者 Z.Yu Y.Zhao M.Zhang W.G.Dang 《International Journal of Coal Science & Technology》 2025年第4期133-159,共27页
This article investigates the mechanical responses and acoustic emission(AE)characteristics of sandstone under the triaxial differential cyclic loading(DCL)at different unloading rates of confining stress.The test res... This article investigates the mechanical responses and acoustic emission(AE)characteristics of sandstone under the triaxial differential cyclic loading(DCL)at different unloading rates of confining stress.The test results indicate that strength of rock specimens under different stress paths of triaxial unloading confining stress-differential cyclic loading(TUCS-DCL)can be fitted by the Mohr–Coulomb,Hoek–Brown,and Bieniawski criteria.The confining stress unloading rate can dominate the radial strain rate,while the axial DCL pattern has an unpronounced effect.The confining stress unloading rate affects the energy evolution in radial and axial directions of specimens,with the ratio of radially released energy to axially consumed energy fluctuating more significantly during the fast unloading of confining stress,the valley value of the ratio can serve as a precursor for failure.The confining stress unloading rate has no significant effect on stress–strain phase shift,while axial rapid-loading-slow-unloading can correspond to a larger magnitude of phase shift.AE signals begin to significantly increase after the confining stress is unloaded to zero,and a notable Kaiser effect is observed during cyclic loading preceding the failure. 展开更多
关键词 Differential cyclic loading(DCL) Unloading rate Energy dissipation Phase shift Acoustic emission
在线阅读 下载PDF
Numerical simulation research on response characteristics of surrounding rock for deep super-large section chamber under dynamic and static combined loading condition 被引量:17
19
作者 FAN De-yuan LIU Xue-sheng +3 位作者 TAN Yun-liang SONG Shi-lin NING Jian-guo MA Qing 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第12期3544-3566,共23页
The stability control of surrounding rock for large or super-large section chamber is a difficult technical problem in deep mining condition.Based on the in-site geological conditions of Longgu coal mine,this paper us... The stability control of surrounding rock for large or super-large section chamber is a difficult technical problem in deep mining condition.Based on the in-site geological conditions of Longgu coal mine,this paper used the dynamic module of FLAC3D to study the response characteristics of deep super-large section chamber under dynamic and static combined loading condition.Results showed that under the static loading condition,the maximum vertical stress,deformation and failure range are large,where the stress concentration coefficient is 1.64.The maximum roof-to-floor and two-sides deformations are 54.6 mm and 53.1 mm,respectively.Then,under the dynamic and static combined loading condition:(1)The influence of dynamic load frequency on the two-sides is more obvious;(2)The dynamic load amplitude has the greatest influence on the stress concentration degree,and the plastic failure tends to develop to the deeper;(3)With the dynamic load source distance increase,the response of surrounding rock is gradually attenuated.On this basis,empirical equations for each dynamic load conditions were obtained by using regression analysis method,and all correlation coefficients are greater than 0.99.This research provided reference for the supporting design of deep super-large section chamber under same or similar conditions. 展开更多
关键词 deep mining super-larger section chamber static load dynamic load frequency dynamic load amplitude dynamic load source distance
在线阅读 下载PDF
Review:Recent Developments in Dynamic Load Identification for Aerospace Vehicles Considering Multi⁃source Uncertainties 被引量:10
20
作者 WANG Lei LIU Yaru XU Hanying 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第2期271-287,共17页
The determination of the dynamic load is one of the indispensable technologies for structure design and health monitoring for aerospace vehicles.However,it is a significant challenge to measure the external excitation... The determination of the dynamic load is one of the indispensable technologies for structure design and health monitoring for aerospace vehicles.However,it is a significant challenge to measure the external excitation directly.By contrast,the technique of dynamic load identification based on the dynamic model and the response information is a feasible access to obtain the dynamic load indirectly.Furthermore,there are multi-source uncertainties which cannot be neglected for complex systems in the load identification process,especially for aerospace vehicles.In this paper,recent developments in the dynamic load identification field for aerospace vehicles considering multi-source uncertainties are reviewed,including the deterministic dynamic load identification and uncertain dynamic load identification.The inversion methods with different principles of concentrated and distributed loads,and the quantification and propagation analysis for multi-source uncertainties are discussed.Eventually,several possibilities remaining to be explored are illustrated in brief. 展开更多
关键词 dynamic load identification concentrated dynamic load distributed dynamic load stochastic load probabilistic uncertainties non-probabilistic uncertainties
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部