To address the vibration issues of wind turbine towers,this paper proposes a bidirectional tuned bellow liquid column damper(BTBLCD).The configuration of the proposed BTBLCD is first described in detail,and its energy...To address the vibration issues of wind turbine towers,this paper proposes a bidirectional tuned bellow liquid column damper(BTBLCD).The configuration of the proposed BTBLCD is first described in detail,and its energy dissipation mechanism is derived through theoretical analysis.A refined dynamic model of the wind turbine tower equipped with the BTBLCD is then developed.The vibration energy dissipation performance of the BTBLCD in multiple directions is evaluated through two-way fluid-structure coupling numerical simulations.Finally,a 1/10 scaled model of the wind turbine tower is constructed,and the energy dissipation performance of the BTBLCD is validated using a shaking table test.The results show that the vibration energy dissipation performance of the BTBLCD outperforms that of the bidirectional tuned liquid column damper(BTLCD)in multiple directions.The shaking table test and dynamic response analysis demonstrate a maximum reduction of 61.0%in acceleration and 47.9%in displacement response.Furthermore,the vibration control and energy dissipation performance of the BTBLCD are influenced by the direction and amplitude of vibrations.This study contributes to the development of more effective and versatile vibration mitigation strategies for wind turbine tower structures in various engineering scenarios.展开更多
This study investigates the seismic response mitigation of an offshore jacket platform via a novel damping system,the bidirectional tuned liquid column gas damper(BTLCGD).To efficiently model the complex platform stru...This study investigates the seismic response mitigation of an offshore jacket platform via a novel damping system,the bidirectional tuned liquid column gas damper(BTLCGD).To efficiently model the complex platform structure,an equivalent single degree of freedom approach was employed.Since the mass contribution of the first mode of the platform is more than 90%,this simplification significantly reduces the computational burden while maintaining accuracy.Therefore,this structure was modeled and analyzed on a scale of 1 to 36 using the Froudian law.To address the limitations of conventional tuned liquid column gas dampers(TLCGDs),which are susceptible to the directionality of seismic excitations,BTLCGD was proposed.This innovative damper is designed to operate effectively in two orthogonal directions,thereby improving seismic performance.Through numerical simulations,the performance of both TLCGD and BTLCGD was evaluated under seismic loading.The results demonstrated that BTLCGD significantly outperforms TLCGD in terms of reducing structural responses,particularly in the direction where TLCGD is ineffective.Furthermore,BTLCGD offers advantages in terms of installation and space requirements.The results of this research offer valuable perspectives into the design and implementation of effective damping systems for offshore structures,contributing to enhanced structural integrity and safety.展开更多
The main intention of the present study is to reduce wind, wave, and seismic induced vibrations of jacket- type offshore wind turbines (JOWTs) through a newly developed vibration absorber, called tuned liquid column...The main intention of the present study is to reduce wind, wave, and seismic induced vibrations of jacket- type offshore wind turbines (JOWTs) through a newly developed vibration absorber, called tuned liquid column gas damper (TLCGD). Using a Simulink-based model, an analytical model is developed to simulate global behavior of JOWTs under different dynamic excitations. The study is followed by a parametric study to explore efficiency of the TLCGD in terms of nacelle acceleration reduction under wind, wave, and earthquake loads. Study results indicate that optimum frequency of the TLCGD is rather insensitive to excitation type. In addition, while the gain in vibration control from TLCGDs with higher mass ratios is generally more pronounced, heavy TLCGDs are more sensitive to their tuned frequency such that ill-regulated TLCGD with high mass ratio can lead to destructive results. It is revealed that a well regulated TLCGD has noticeable contribution to the dynamic response of the JOWT under any excitation.展开更多
In this study, the effectiveness of a tuned liquid column-gas damper, TLCGD, on the.suppression of seismic-induced vibrations of steel jacket platforms is evaluated. TLCGD is an interesting choice in the case of jacke...In this study, the effectiveness of a tuned liquid column-gas damper, TLCGD, on the.suppression of seismic-induced vibrations of steel jacket platforms is evaluated. TLCGD is an interesting choice in the case of jacket platforms because it is possible to use the structural elements as the horizontal column of the TLCGD. The objective here is to find the optimum geometric parameters, namely orientation and configuration of vertical columns, length ratio, and area ratio of the TLCGD, considering nonlinear damping of the TLCGD and water-structure interaction between the jacket platform and sea water. The effects of different characteristics of ground motion such as PGA and frequency content on the optimum geometry are also investigated and it is observed that these features have some influence on the optimum area ratio. Finally it is observed that pulse arrangement of ground acceleration is one of the most important parameters affecting the efficiency of a TLCGD. In other words, it is found that the TLCGD's capability to reduce the RMS responses depends only on the frequency content of the ground acceleration, but its capability to reduce the maximum responses depends on both the frequency content and the pulse arrangement of the ground acceleration.展开更多
The potential application of tuned liquid column damper (TLCD) for suppressing wind-induced vibration of long span bridges is explored in this paper.By installing the TLCD in the bridge deck,a mathematical model for t...The potential application of tuned liquid column damper (TLCD) for suppressing wind-induced vibration of long span bridges is explored in this paper.By installing the TLCD in the bridge deck,a mathematical model for the bridge-TLCD system is established.The governing equations of the system are developed by considering all three displacement components of the deck in vertical,lateral,and torsional vibrations,in which the interactions between the bridge deck,the TLCD,the aeroelastic forces,and the aerodynamic forces are fully reflected.Both buffeting and flutter analyses are carried out.The buffeting analysis is performed through random vibration approach,and a critical flutter condition is identified from flutter analysis.A numerical example is presented to demonstrate the control effectiveness of the damper and it is shown that the TLCD can be an effective device for suppressing wind-induced vibration of long span bridges,either for reducing the buffeting response or increasing the critical flutter wind velocity of the bridge.展开更多
In this paper, the control performance is investigated of Circular Tuned Liquid Column Dampers (CTLCD) over torsional response of offshore platform structures excited by ground motions. Based on the equation of motion...In this paper, the control performance is investigated of Circular Tuned Liquid Column Dampers (CTLCD) over torsional response of offshore platform structures excited by ground motions. Based on the equation of motion for the CTLCD-structure system, the optimal control parameters of CTLCD are given through some derivations on the supposition that the ground motion is a stochastic process. The influence of systematic parameters on the equivalent damping ratio of the structures is analyzed with purely torsional vibration and translational-torsional coupled vibration, respectively. The results show that the Circular Tuned Liquid Column Damper (CTLCD) is an effective torsional response control device.展开更多
Various types of passive control systems have been used to suppress the seismic response of structures in recent years. Among these systems, Tuned Liquid Column Dampers (TLCDs) dissipate the input earthquake energy ...Various types of passive control systems have been used to suppress the seismic response of structures in recent years. Among these systems, Tuned Liquid Column Dampers (TLCDs) dissipate the input earthquake energy by combining the effects of the movement of the liquid mass in the container, the restoring force on the liquid due to the gravity loads and the damping due to the liquid movement through orifices. In this study, the effects of seismic excitation characteristics such as frequency content and soil condition on the seismic performance of TLCDs are investigated using nonlinear time-history analyses. In this regard, among the past earthquake ground motion records of Iran, 16 records with different parameters were selected. In the structural model developed, the attached TLCD is simulated as a Tuned Mass Damper (TMD) having the same vibration period and damping ratio as the original TLCD. The numerical results show that the seismic excitation characteristics have a substantial role on the displacement reduction capability of TLCDs and they should be considered accordingly in the design of TLCDs.展开更多
Tuned liquid damper (TLD) and tuned liquid column damper (TLCD) are two types of passive control devices that are widely used in structural control. In this study, a real-time hybrid simulation (RTHS) technique is emp...Tuned liquid damper (TLD) and tuned liquid column damper (TLCD) are two types of passive control devices that are widely used in structural control. In this study, a real-time hybrid simulation (RTHS) technique is employed to investigate the diff erence in control performance between TLD and TLCD. A series of RTHSs is presented with the premise of the same liquid length, mass ratio, and structural parameters. Herein, TLD and TLCD are physically experimented, and controlled structures are numerically simulated. Then, parametric studies are performed to further evaluate the diff erent performance between TLD and TLCD. Experimental results demonstrate that TLD is more eff ective than TLCD under diff erent amplitude excitations.展开更多
A water-gas flow injected by a close coupled atomizer was studied via High Speed Photography and Phase Doppler Anemometry. The formation of a wave disturbance on the surface of the water column was confirmed. The flow...A water-gas flow injected by a close coupled atomizer was studied via High Speed Photography and Phase Doppler Anemometry. The formation of a wave disturbance on the surface of the water column was confirmed. The flow converged within an area approximately 3 mm in diameter, independent of atomization conditions. The particle size distribution across the spray suggested a trend of decreasing particle sizes and particle velocities with increasing distance from the spray axis of symmetry.展开更多
The control of suitable and stable height of liquid column is the crucial point to operate the electromagnetic casting(EMC) process and to obtain ingots with desirable shape and dimensional accuracy. But due to the co...The control of suitable and stable height of liquid column is the crucial point to operate the electromagnetic casting(EMC) process and to obtain ingots with desirable shape and dimensional accuracy. But due to the complicated interact parameters and special circumstances, the measure and control of liquid column are quite difficult. A fuzzy neural network was used to help control the liquid column by predicting its height on line. The results show that the stabilization of the height of liquid column and surface quality of the ingot are remarkably improved by using the neural network based control system.展开更多
In this study, the concept of a new seawater desalination method and equipment using liquid columns of seawater and desalinated fresh water, decompression boiling and evaporation, condensation, and recovery of condens...In this study, the concept of a new seawater desalination method and equipment using liquid columns of seawater and desalinated fresh water, decompression boiling and evaporation, condensation, and recovery of condensation latent heat are proposed. The equipment consists of seawater and freshwater columns approximately 10 m high with top spaces. The pressure of the top space, the evaporation and condensation area, of the seawater column, for example, is reduced approximately 30 mmHg (abs.) using the seawater column, after which it is heated from the general seawater temperature of 25°C to 30°C to boil and evaporate the seawater. The vapor is cooled by the seawater at approximately 25°C in a heat exchanger, and then, it is condensed and sent to the fresh water column. At this time, the condensation latent heat is recovered to preheat the newly flowing seawater. The evaporation or condensation rate, namely, the production rate of freshwater, by the new desalination equipment is also estimated by the results of the existing quadruplex effect vacuum evaporator used in the salt production industry. This new desalination method and its associated equipment also can be used to purify polluted water and waste water.展开更多
The application of investment casting auto-pouring system can improve the efficiency of manual-pouring system to a certain extent.The judgment of start-stop time depends on the preprocessing of original image collecte...The application of investment casting auto-pouring system can improve the efficiency of manual-pouring system to a certain extent.The judgment of start-stop time depends on the preprocessing of original image collected by the CCD camera.Several methods are presented to denoise the liquid column image.The method of morphological image processing is feasible in theory,and it is important whether to choose the structural element or not.The method of pouring image projection is less affected the image of spure cup.The complexity of image window algorithm is minimal.展开更多
A method for rapid and simultaneous determination of imidazolium and pyridinium ionic liquid cations by ion-pair chromatography with ultraviolet detection was developed. Chromatographic separations were performed on a...A method for rapid and simultaneous determination of imidazolium and pyridinium ionic liquid cations by ion-pair chromatography with ultraviolet detection was developed. Chromatographic separations were performed on a reversed-phase silica-based monolithic column using 1-heptanesulfonic acid sodium-acetonitrile as mobile phase. The effects of ion-pair reagent and acetonitrile concentration on retention of the cations were investigated. The retention times of the cations accord with carbon number rule. The method has been successfully applied to the determination of four ionic liquids synthesized by organic chemistry laboratory.展开更多
A simplified turbulent model and a modified k-Σ two equation model are proposed todescribe the liquid velocity profiles in a bubble column taking into consideration of the effect of gasdrag force and gas hold-up.In t...A simplified turbulent model and a modified k-Σ two equation model are proposed todescribe the liquid velocity profiles in a bubble column taking into consideration of the effect of gasdrag force and gas hold-up.In the simplified mode1 the Reynolds equation of motion was adoptedand the turbulent viscosity was calculated from an empirical correlation which was deduced fromour experimental data.The calculated liquid velocity profiles were compared between the proposedmodel and the standard k-Σ two equation model as well as experimental data.The result shows thatthe proposed model simulates and predicts the liquid velocity field most satisfactorily and in goodagreement with the experimental measurement.展开更多
A novel on-line system composed of supercritical fluid extraction(SFE), dilution line and reverse phase liquid chromatography/mass spectrometry(RPLC/MS) was constructed for on-line extraction and reverse phase separat...A novel on-line system composed of supercritical fluid extraction(SFE), dilution line and reverse phase liquid chromatography/mass spectrometry(RPLC/MS) was constructed for on-line extraction and reverse phase separation of some fat-soluble components in foods. Three columns including a trap column,concentration column and analytical column were used for trapping the fat-soluble components, on-line enrichment and reverse phase separation, respectively. Capsaicinoids were on-line extracted by a CO_2 supercritical fluid, then concentrated and separated by using the C_(18) columns, finally detected by mass spectrometry(MS). Capsaicin eluted at 10.1 min and limit of detection(LOD, S/N=3) for the standard solution is 0.55pg. The linearity was calculated with a value of coefficient of determination(R^2)≥0.998 in the range of 1.1–8.5 ng. Concentrations of capsaicin in the green, yellow, and red bell peppers were determined to be 60.33 ng/g, 31.79 ng/g, 35.38ng/g, respectively.展开更多
基金support for the research,authorship,and/or publication of this paper:This study is supported by the National Science Foundation of China(Grant No.52368074)the Science Fund for Distinguished Young Scholars of Gansu Province(No.21JR7RA267)Hongliu Outstanding Young Talents Program of Lanzhou University of Technology.
文摘To address the vibration issues of wind turbine towers,this paper proposes a bidirectional tuned bellow liquid column damper(BTBLCD).The configuration of the proposed BTBLCD is first described in detail,and its energy dissipation mechanism is derived through theoretical analysis.A refined dynamic model of the wind turbine tower equipped with the BTBLCD is then developed.The vibration energy dissipation performance of the BTBLCD in multiple directions is evaluated through two-way fluid-structure coupling numerical simulations.Finally,a 1/10 scaled model of the wind turbine tower is constructed,and the energy dissipation performance of the BTBLCD is validated using a shaking table test.The results show that the vibration energy dissipation performance of the BTBLCD outperforms that of the bidirectional tuned liquid column damper(BTLCD)in multiple directions.The shaking table test and dynamic response analysis demonstrate a maximum reduction of 61.0%in acceleration and 47.9%in displacement response.Furthermore,the vibration control and energy dissipation performance of the BTBLCD are influenced by the direction and amplitude of vibrations.This study contributes to the development of more effective and versatile vibration mitigation strategies for wind turbine tower structures in various engineering scenarios.
文摘This study investigates the seismic response mitigation of an offshore jacket platform via a novel damping system,the bidirectional tuned liquid column gas damper(BTLCGD).To efficiently model the complex platform structure,an equivalent single degree of freedom approach was employed.Since the mass contribution of the first mode of the platform is more than 90%,this simplification significantly reduces the computational burden while maintaining accuracy.Therefore,this structure was modeled and analyzed on a scale of 1 to 36 using the Froudian law.To address the limitations of conventional tuned liquid column gas dampers(TLCGDs),which are susceptible to the directionality of seismic excitations,BTLCGD was proposed.This innovative damper is designed to operate effectively in two orthogonal directions,thereby improving seismic performance.Through numerical simulations,the performance of both TLCGD and BTLCGD was evaluated under seismic loading.The results demonstrated that BTLCGD significantly outperforms TLCGD in terms of reducing structural responses,particularly in the direction where TLCGD is ineffective.Furthermore,BTLCGD offers advantages in terms of installation and space requirements.The results of this research offer valuable perspectives into the design and implementation of effective damping systems for offshore structures,contributing to enhanced structural integrity and safety.
文摘The main intention of the present study is to reduce wind, wave, and seismic induced vibrations of jacket- type offshore wind turbines (JOWTs) through a newly developed vibration absorber, called tuned liquid column gas damper (TLCGD). Using a Simulink-based model, an analytical model is developed to simulate global behavior of JOWTs under different dynamic excitations. The study is followed by a parametric study to explore efficiency of the TLCGD in terms of nacelle acceleration reduction under wind, wave, and earthquake loads. Study results indicate that optimum frequency of the TLCGD is rather insensitive to excitation type. In addition, while the gain in vibration control from TLCGDs with higher mass ratios is generally more pronounced, heavy TLCGDs are more sensitive to their tuned frequency such that ill-regulated TLCGD with high mass ratio can lead to destructive results. It is revealed that a well regulated TLCGD has noticeable contribution to the dynamic response of the JOWT under any excitation.
基金Pardis College of Engineering at the Univ. of Tehran Under Project No.8108020/1/01Sabok Sazan Sarie Co
文摘In this study, the effectiveness of a tuned liquid column-gas damper, TLCGD, on the.suppression of seismic-induced vibrations of steel jacket platforms is evaluated. TLCGD is an interesting choice in the case of jacket platforms because it is possible to use the structural elements as the horizontal column of the TLCGD. The objective here is to find the optimum geometric parameters, namely orientation and configuration of vertical columns, length ratio, and area ratio of the TLCGD, considering nonlinear damping of the TLCGD and water-structure interaction between the jacket platform and sea water. The effects of different characteristics of ground motion such as PGA and frequency content on the optimum geometry are also investigated and it is observed that these features have some influence on the optimum area ratio. Finally it is observed that pulse arrangement of ground acceleration is one of the most important parameters affecting the efficiency of a TLCGD. In other words, it is found that the TLCGD's capability to reduce the RMS responses depends only on the frequency content of the ground acceleration, but its capability to reduce the maximum responses depends on both the frequency content and the pulse arrangement of the ground acceleration.
基金the Hong Kong Polytechnic University and the Hong Kong Research Grant Council.
文摘The potential application of tuned liquid column damper (TLCD) for suppressing wind-induced vibration of long span bridges is explored in this paper.By installing the TLCD in the bridge deck,a mathematical model for the bridge-TLCD system is established.The governing equations of the system are developed by considering all three displacement components of the deck in vertical,lateral,and torsional vibrations,in which the interactions between the bridge deck,the TLCD,the aeroelastic forces,and the aerodynamic forces are fully reflected.Both buffeting and flutter analyses are carried out.The buffeting analysis is performed through random vibration approach,and a critical flutter condition is identified from flutter analysis.A numerical example is presented to demonstrate the control effectiveness of the damper and it is shown that the TLCD can be an effective device for suppressing wind-induced vibration of long span bridges,either for reducing the buffeting response or increasing the critical flutter wind velocity of the bridge.
文摘In this paper, the control performance is investigated of Circular Tuned Liquid Column Dampers (CTLCD) over torsional response of offshore platform structures excited by ground motions. Based on the equation of motion for the CTLCD-structure system, the optimal control parameters of CTLCD are given through some derivations on the supposition that the ground motion is a stochastic process. The influence of systematic parameters on the equivalent damping ratio of the structures is analyzed with purely torsional vibration and translational-torsional coupled vibration, respectively. The results show that the Circular Tuned Liquid Column Damper (CTLCD) is an effective torsional response control device.
文摘Various types of passive control systems have been used to suppress the seismic response of structures in recent years. Among these systems, Tuned Liquid Column Dampers (TLCDs) dissipate the input earthquake energy by combining the effects of the movement of the liquid mass in the container, the restoring force on the liquid due to the gravity loads and the damping due to the liquid movement through orifices. In this study, the effects of seismic excitation characteristics such as frequency content and soil condition on the seismic performance of TLCDs are investigated using nonlinear time-history analyses. In this regard, among the past earthquake ground motion records of Iran, 16 records with different parameters were selected. In the structural model developed, the attached TLCD is simulated as a Tuned Mass Damper (TMD) having the same vibration period and damping ratio as the original TLCD. The numerical results show that the seismic excitation characteristics have a substantial role on the displacement reduction capability of TLCDs and they should be considered accordingly in the design of TLCDs.
基金National Natural Science Foundation of China under Grant Nos.51725901 and 51639006
文摘Tuned liquid damper (TLD) and tuned liquid column damper (TLCD) are two types of passive control devices that are widely used in structural control. In this study, a real-time hybrid simulation (RTHS) technique is employed to investigate the diff erence in control performance between TLD and TLCD. A series of RTHSs is presented with the premise of the same liquid length, mass ratio, and structural parameters. Herein, TLD and TLCD are physically experimented, and controlled structures are numerically simulated. Then, parametric studies are performed to further evaluate the diff erent performance between TLD and TLCD. Experimental results demonstrate that TLD is more eff ective than TLCD under diff erent amplitude excitations.
文摘A water-gas flow injected by a close coupled atomizer was studied via High Speed Photography and Phase Doppler Anemometry. The formation of a wave disturbance on the surface of the water column was confirmed. The flow converged within an area approximately 3 mm in diameter, independent of atomization conditions. The particle size distribution across the spray suggested a trend of decreasing particle sizes and particle velocities with increasing distance from the spray axis of symmetry.
文摘The control of suitable and stable height of liquid column is the crucial point to operate the electromagnetic casting(EMC) process and to obtain ingots with desirable shape and dimensional accuracy. But due to the complicated interact parameters and special circumstances, the measure and control of liquid column are quite difficult. A fuzzy neural network was used to help control the liquid column by predicting its height on line. The results show that the stabilization of the height of liquid column and surface quality of the ingot are remarkably improved by using the neural network based control system.
文摘In this study, the concept of a new seawater desalination method and equipment using liquid columns of seawater and desalinated fresh water, decompression boiling and evaporation, condensation, and recovery of condensation latent heat are proposed. The equipment consists of seawater and freshwater columns approximately 10 m high with top spaces. The pressure of the top space, the evaporation and condensation area, of the seawater column, for example, is reduced approximately 30 mmHg (abs.) using the seawater column, after which it is heated from the general seawater temperature of 25°C to 30°C to boil and evaporate the seawater. The vapor is cooled by the seawater at approximately 25°C in a heat exchanger, and then, it is condensed and sent to the fresh water column. At this time, the condensation latent heat is recovered to preheat the newly flowing seawater. The evaporation or condensation rate, namely, the production rate of freshwater, by the new desalination equipment is also estimated by the results of the existing quadruplex effect vacuum evaporator used in the salt production industry. This new desalination method and its associated equipment also can be used to purify polluted water and waste water.
文摘The application of investment casting auto-pouring system can improve the efficiency of manual-pouring system to a certain extent.The judgment of start-stop time depends on the preprocessing of original image collected by the CCD camera.Several methods are presented to denoise the liquid column image.The method of morphological image processing is feasible in theory,and it is important whether to choose the structural element or not.The method of pouring image projection is less affected the image of spure cup.The complexity of image window algorithm is minimal.
基金supported by the Natural Science Foundation of Heilongjiang Province(No.B200909)the Program for Scientific and Technological Innovation Team Construction in Universities of Heilongjiang Province(No. 2011TD010)
文摘A method for rapid and simultaneous determination of imidazolium and pyridinium ionic liquid cations by ion-pair chromatography with ultraviolet detection was developed. Chromatographic separations were performed on a reversed-phase silica-based monolithic column using 1-heptanesulfonic acid sodium-acetonitrile as mobile phase. The effects of ion-pair reagent and acetonitrile concentration on retention of the cations were investigated. The retention times of the cations accord with carbon number rule. The method has been successfully applied to the determination of four ionic liquids synthesized by organic chemistry laboratory.
基金Supported by the National Natural Science Foundation of China(No.29376253)and the Foundation of State Key Laboratory of Chemical Engineering.
文摘A simplified turbulent model and a modified k-Σ two equation model are proposed todescribe the liquid velocity profiles in a bubble column taking into consideration of the effect of gasdrag force and gas hold-up.In the simplified mode1 the Reynolds equation of motion was adoptedand the turbulent viscosity was calculated from an empirical correlation which was deduced fromour experimental data.The calculated liquid velocity profiles were compared between the proposedmodel and the standard k-Σ two equation model as well as experimental data.The result shows thatthe proposed model simulates and predicts the liquid velocity field most satisfactorily and in goodagreement with the experimental measurement.
基金supported by the National Natural Science Foundation of China (No. 21621003)
文摘A novel on-line system composed of supercritical fluid extraction(SFE), dilution line and reverse phase liquid chromatography/mass spectrometry(RPLC/MS) was constructed for on-line extraction and reverse phase separation of some fat-soluble components in foods. Three columns including a trap column,concentration column and analytical column were used for trapping the fat-soluble components, on-line enrichment and reverse phase separation, respectively. Capsaicinoids were on-line extracted by a CO_2 supercritical fluid, then concentrated and separated by using the C_(18) columns, finally detected by mass spectrometry(MS). Capsaicin eluted at 10.1 min and limit of detection(LOD, S/N=3) for the standard solution is 0.55pg. The linearity was calculated with a value of coefficient of determination(R^2)≥0.998 in the range of 1.1–8.5 ng. Concentrations of capsaicin in the green, yellow, and red bell peppers were determined to be 60.33 ng/g, 31.79 ng/g, 35.38ng/g, respectively.