期刊文献+
共找到5,412篇文章
< 1 2 250 >
每页显示 20 50 100
A systematic study of carbon-free oxide-based lining for preventing submerged entry nozzle clogging in continuous casting of rare earth steel 被引量:2
1
作者 Fei-xiang Ma Qiang Gu +2 位作者 Guo-qi Liu Yi Zhang Hong-xia Li 《Journal of Iron and Steel Research International》 2025年第6期1584-1595,共12页
The reaction of carbon-free oxide-based(corundum,spinel,zirconia,and mullite)submerged entry nozzle(SEN)lining with rare earth inclusions and its anti-clogging effects under near working conditions were systematically... The reaction of carbon-free oxide-based(corundum,spinel,zirconia,and mullite)submerged entry nozzle(SEN)lining with rare earth inclusions and its anti-clogging effects under near working conditions were systematically studied.A variety of lining composite test methods were innovatively used to ensure the consistency of test conditions.The experimental results showed that the mullite(acidic oxide)has strong reactivity with rare earth inclusions,and the spinel(basic oxide)has stable chemical properties and weak reactivity with rare earth inclusions.Because alumina is one of the main reactants of clogging formation,corundum is not suitable for SEN lining.There are less clogs on the surface of zirconia,but it will be exsoluted and unstable.Therefore,solving the problem of zirconia exsolution will greatly strengthen its application in SEN lining. 展开更多
关键词 Submerged entry nozzle Rare earth molten steel Anti-clogging Carbon-free oxide-based lining
原文传递
Cement-mortar lining failure and metal release caused by electrochemical corrosion of ductile iron pipes in drinking water distribution systems 被引量:1
2
作者 Hao Guo Rui Wang +5 位作者 Menghan Jiang Yimei Tian Yapeng Jin Weigao Zhao Chenwan Wang Jianhua Yin 《Journal of Environmental Sciences》 2025年第6期488-502,共15页
The electrochemical corrosion of ductile pipes(DPs)in drinking water distribution systems(DWDS)has a crucial impact on cement-mortar lining(CML)failure and metal release,potentially leading to drinking water quality d... The electrochemical corrosion of ductile pipes(DPs)in drinking water distribution systems(DWDS)has a crucial impact on cement-mortar lining(CML)failure and metal release,potentially leading to drinking water quality deterioration and posing a risk to public health.An in-situ scanning vibrating electrode technique(SVET)with micron-scale resolution,microscopic scale detection and water quality analysis were used to investigate the corrosion behavior and metal release from DPs throughout the whole CML failure process.Metal pollutants release occurred at three different stages of CML failure process,and there are potential risks of water quality deterioration exceeding the maximum allowable levels set by national standards in the partial failure stage and lining peeling stage.Furthermore,the effects of water chemistry(Cl^(−),SO_(4)^(2−),NO_(3)−,and Ca^(2+))on corrosion scale growth and iron release activity,were investigated during the CML partial failure stage.Results showed that the CML failure process in DPs was accelerated by the autocatalysis of localized corrosion.Cl^(−)was found to damage the uncorroded metal surface,while SO_(4)^(2−)mainly dissolved the corrosion scale surface,increasing iron release.Both the oxidation of NO_(3)−and selective sedimentation of Ca2+were found to enhance the stability of corrosion scales and inhibit iron release. 展开更多
关键词 Water distribution system Cement mortar lining Corrosion Metal release SVET
原文传递
Carbonated water erosion characteristics and mechanism of tunnel lining cement-based materials in karst environment 被引量:1
3
作者 ZOU Min LIU Juan-hong LI Kang 《Journal of Central South University》 2025年第8期3015-3034,共20页
The study aims to investigate the carbonated water erosion mechanism of lining concrete in tunnels traversing karst environment and enhance its resistance.In this study,dynamic carbonated water erosion was simulated t... The study aims to investigate the carbonated water erosion mechanism of lining concrete in tunnels traversing karst environment and enhance its resistance.In this study,dynamic carbonated water erosion was simulated to assess erosion depth,microstructure,phase migrations,and pore structure in various tunnel lining cement-based materials.Additionally,Ca^(2+)leaching was analyzed,and impact of Ca/Si molar ratio in hydration products on erosion resistance was discussed by thermodynamic calculations.The results indicate that carbonated water erosion caused rough and porous surface on specimens,with reduced portlandite and CaCO_(3) content,increased porosity,and an enlargement of pore size.The thermodynamic calculations indicate that the erosion is spontaneous,driven by physical dissolution and chemical reactions dominated by Gibbs free energy.And the erosion reactions proceed more spontaneously and extensively when Ca/Si molar ratio in hydration products was higher.Therefore,cement-based materials with higher portlandite content exhibit weaker erosion resistance.Model-building concrete,with C-S-H gel and portlandite as primary hydration products,has greater erosion susceptibility than shotcrete with ettringite as main hydration product.Moreover,adding silicon-rich mineral admixtures can enhance the erosion resistance.This research offers theory and tech insights to boost cement-based material resistance against carbonated water erosion in karst tunnel engineering. 展开更多
关键词 tunnel lining cement-based materials carbonated water erosion phase analysis pore structure Ca/Si molar ratio
在线阅读 下载PDF
Status and Development of Refractory Materials for Blast Furnace Inner Lining
4
作者 SUN Saiyang MA Xiaoqing +1 位作者 ZHANG Ronghui CHENG Minghui 《China's Refractories》 2025年第3期36-42,共7页
The lining materials for blast furnaces have evolved from brick masonry to monolithic refractory materials.Monolithic castables are widely used in various industrial furnaces.The rapid development of silica sol materi... The lining materials for blast furnaces have evolved from brick masonry to monolithic refractory materials.Monolithic castables are widely used in various industrial furnaces.The rapid development of silica sol materials,combined with the commonly used construction methods of casting and spraying,offers greater flexibility,efficiency,environmental friendliness,and a longer lifespan.Typical monolithic refractory technologies,such as the integral casting technique for the furnace hearth,the pre-applied slag coating technique for the furnace belly and waist,and the inner lining gunning technique,are grounded in scientific theory and practice,thereby advancing the development of refractory materials and enhancing the operational quality of blast furnaces. 展开更多
关键词 blast furnace lining bricklaying CASTING SPRAYING silica sol science and longevity
在线阅读 下载PDF
Research on the strength detection methods of railway tunnel linings
5
作者 Weiyi Yang 《Railway Sciences》 2025年第5期638-646,共9页
Purpose–For the commonly used concrete mix for railway tunnel linings,concrete model specimens were made,and springback and core drilling tests were conducted at different ages.The springback strength was measured to... Purpose–For the commonly used concrete mix for railway tunnel linings,concrete model specimens were made,and springback and core drilling tests were conducted at different ages.The springback strength was measured to the compressive strength of the core sample with a diameter of 100mm and a height-to-diameter ratio of 1:1.By comparing the measured strength values,the relationship between the measured values under different strength measurement methods was analyzed.Design/methodology/approach–A comparative test of the core drilling method and the rebound method was conducted on the side walls of tunnel linings in some under-construction railways to study the feasibility of the rebound method in engineering quality supervision and inspection.Findings–Tests showed that the rebound strength was positively correlated with the core drill strength.The core drill test strength was significantly higher than the rebound test strength,and the strength still increased after 56 days of age.The rebound method is suitable for the general survey of concrete strength during the construction process and is not suitable for direct supervision and inspection.Originality/value–By studying the correlation of test strength of tunnel lining concrete using two methods,the differences in test results of different methods are proposed to provide a reference for the test and evaluation of tunnel lining strength in railway engineering. 展开更多
关键词 Tunnel lining CONCRETE STRENGTH Rebound method Core drilling method
在线阅读 下载PDF
Design and Finite Element Analysis of a New Type of Skeleton-Free,Traversing Secondary Lining Trolley
6
作者 Liang He 《Journal of Architectural Research and Development》 2025年第3期150-158,共9页
To effectively address the challenge where the speed of tunnel lining construction struggles to match that of tunnel face and inverted arch construction,and to enhance the quality of secondary lining,a new type of ske... To effectively address the challenge where the speed of tunnel lining construction struggles to match that of tunnel face and inverted arch construction,and to enhance the quality of secondary lining,a new type of skeleton-free,traversing secondary lining trolley has been developed.This trolley features a set of gantries paired with two sets of formwork.The formwork adopts a multi-segment hinged and strengthened design,ensuring its own strength can meet the requirements of secondary lining concrete pouring without relying on the support of the gantries.When retracted,the formwork can be transported by the gantries through another set of formwork in the supporting state,enabling early formwork support,effectively accelerating the construction progress of the tunnel’s secondary lining,and extending the maintenance time of the secondary lining with the formwork.Finite element software modeling was used for simulation calculations,and the results indicate that the structural strength,stiffness,and other performance parameters of the new secondary lining trolley meet the design requirements,verifying the rationality of the design. 展开更多
关键词 TUNNEL Secondary lining trolley Skeleton-free Traversing Finite element analysis
在线阅读 下载PDF
Countermeasures to Improve Thermal Shock Resistance of Refractories for Chemical Furnace Linings
7
作者 GE Yulong YU Weijian +1 位作者 GUI Kangrui ZENG Shu 《China's Refractories》 2025年第2期45-48,共4页
Currently,chemical furnaces play an important role in the chemical industry.It is necessary to ensure their quality and operation performance,so as to guarantee the efficiency of chemical production.Compared with othe... Currently,chemical furnaces play an important role in the chemical industry.It is necessary to ensure their quality and operation performance,so as to guarantee the efficiency of chemical production.Compared with other furnaces,chemical furnaces have strong particularity,which puts forward higher requirements for the thermal shock resistance of the refractories of furnace linings.This paper studied the thermal shock resistance of the refractories for chemical furnace linings,and proposed measures for improvement,providing experience and technical support for the safe production of chemical enterprises. 展开更多
关键词 chemical furnace lining REFRACTORIES thermal shock resistance particle size distribution
在线阅读 下载PDF
Structural behavior of triple-layer composite lining of a water conveyance tunnel:Insight from full-scale loading tests
8
作者 De-Yang Wang Hong-Hu Zhu +4 位作者 Xue-Hui Zhang Jing-Wu Huang Zhen-Rui Yan Dao-Yuan Tan Shao-Qun Lin 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第11期6915-6931,共17页
When constructing water conveyance shield tunnels under high internal pressure,composite linings are preferred over single-layer segmental linings due to the superior water tightness and load-bearing capacity.A triple... When constructing water conveyance shield tunnels under high internal pressure,composite linings are preferred over single-layer segmental linings due to the superior water tightness and load-bearing capacity.A triple-layer composite lining,consisting of an outer segmental lining,internal steel tube,and self-compacting concrete(SCC)filling,has recently been applied in a large-scale water conveyance tunnel project in China.However,its structural behavior under external overburden and internal water pressures remains poorly understood.This study investigates the mechanical behavior of the triple-layer composite lining through full-scale loading tests using a novel platform that simulates external and internal pressures.Results show that the composite lining remains highly elastic under combined loads with an internal pressure of 0.4 MPa.When the internal pressure increases to 0.6 MPa,cracks first appear in the SCC layer near segment joints,propagating uniformly and leading to stress redistribution.Studs on the steel tube-SCC interface strengthen bonding,reducing debonding at this interface while slightly increasing debonding at the SCC-segment interface.Despite localized SCC damage,the lining maintains excellent serviceability under cyclic pressure fluctuations.This study offers valuable insights for the design and construction of water conveyance shield tunnels with triple-layer composite linings,particularly in high-pressure environments. 展开更多
关键词 Composite lining Full-scale test INTERFACE Fiber optic sensor Mechanical behavior
在线阅读 下载PDF
Design and Finite Element Analysis of Smart Lining Trolley for Plateau Railway
9
作者 Yuan Wang 《Journal of World Architecture》 2025年第3期125-133,共9页
As a key national project,a newly built plateau railway features a large proportion of tunnels and high construction difficulty.To reduce the voids in the secondary lining of tunnels and address issues such as ineffec... As a key national project,a newly built plateau railway features a large proportion of tunnels and high construction difficulty.To reduce the voids in the secondary lining of tunnels and address issues such as ineffective vibration of the vault,vault voiding,and the inability to monitor the casting status during tunnel lining construction with ordinary lining trolleys,a new smart lining trolley with large clearance that integrates functions such as vibration,automatic casting,and pressure monitoring has been developed.This was achieved by combining the functional design of the new smart lining trolley,comparing traditional construction techniques,and introducing information-based and intelligent design concepts.Through simulation calculations using finite element software modeling,it is verified that the structural stiffness,strength,and other performance parameters of the smart lining trolley meet the technical design requirements. 展开更多
关键词 New lining trolley Smart casting Finite element INFORMATIZATION
在线阅读 下载PDF
Study of entropy Weight-Grey theory-BP Network life prediction Model of unit silica fume concrete lining under the influence of carbonation-sulfate freeze-thaw cycle erosion
10
作者 ZhiMin Chen MingYang Yi +9 位作者 Meng Zhang ZhiQiang Yang JunHui Liu QianLong Yuan DianQiang Wang Hui Long HaoYong Zhang PengJi Zheng HongYan Shang ShengYi Xie 《Research in Cold and Arid Regions》 2025年第2期127-135,共9页
To address the challenges posed by tunnel construction in the alpine region,silica fume mixed concrete is commonly used as a construction material.The correlation between silica fume content and the lining life requir... To address the challenges posed by tunnel construction in the alpine region,silica fume mixed concrete is commonly used as a construction material.The correlation between silica fume content and the lining life requires immediate investigation.In view of this phenomenon,the durability of unit lining concrete is predicted by analyzing three key indicators:carbonation depth,relative dynamic elastic modulus,and residual quality.This prediction is achieved by integrating the Entropy Weight Method,Grey theory life prediction model and BP artificial neural networks using data from tests and predictions of these indicators.Then,the Entropy Weight-Grey theory-BP Network Model is compared with other methods to analyze the predicted life.Finally,verify the sci-entificity of this model,and the optimum silica fume content of unit concrete lining is verified.The results showed,1)The addition of silica fume will accelerate the carbonization of unit concrete lining,and slow down the freeze-thaw cycle and sulfate erosion.2)The utilization of artificial neural networks is essential for enhancing the realism of the data,as it emphasizes the significance of silica fume content.3)Silica fume content of 10%results in the longest life and is the most suitable for lining construction.4)A comparison between single-factor and multi-factor predictions indicates that the multi-factor approach yields a longer maximum life.This improvement can be attributed to the inclusion of additional factors,such as freeze-thaw cycles and carbonation,which enhance the predicted life when employing these methods.In conclusion,the Entropy Weight-Grey Theory-BP Network life prediction Model is well-suited for tunnel lining in the alpine sulfate area of northwest China. 展开更多
关键词 lining life prediction Carbonation depth Relative dynamic elastic modulus Freeze-thaw cycle erosion Residual mass Sulfate attack
在线阅读 下载PDF
Numerical study on the failure characteristics and reinforcement effects of shield segmental linings subjected to localized overload
11
作者 Long ZHOU Zhiguo YAN Mengqi ZHU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第10期950-966,共17页
When only a portion of the shield lining structures in a full-line tunnel are overloaded,their bearing and failure characteristics are significantly different from those in the full-line overloaded case.In existing st... When only a portion of the shield lining structures in a full-line tunnel are overloaded,their bearing and failure characteristics are significantly different from those in the full-line overloaded case.In existing studies,one or several segmental lining rings have been studied,with overload applied to selected lining rings to analyze the performance evolution of the lining structures;however,this approach fails to reveal the bearing and failure characteristics of shield lining rings under localized overload.To address this research gap,we employ 3D finite element modeling to investigate the mechanical performance and failure mechanisms of shield segmental linings under localized overload conditions,and compare the results with full-line overload scenarios.Additionally,the impact of reinforcing shield segmental linings with steel rings is studied to address issues arising from localized overloads.The results indicate that localized overloads lead to significant ring joint dislocation and higher stress on longitudinal bolts,potentially causing longitudinal bolt failure.Furthermore,the overall deformation of lining rings,segmental joint opening,and stress in circumferential bolts and steel bars is lower compared to full-line overloads.For the same overload level,the convergence deformation of the lining under full-line overload is 1.5 to 2.0 times higher than that under localized overload.For localized overload situations,a reinforcement scheme with steel rings spanning across two adjacent lining rings is more effective than installing steel rings within individual lining rings.This spanning ring reinforcement strategy not only enhances the structural rigidity of each ring,but also limits joint dislocation and reduces stress on longitudinal bolts,with the reduction in maximum ring joint dislocation ranging from 70%to 82%and the reduction in maximum longitudinal bolt stress ranging from 19%to 57%compared to reinforcement within rings. 展开更多
关键词 Shield segmental lining Localized overload Failure characteristics Steel ring reinforcement
原文传递
Analyzing the strengthening effect of steel-ultra high performance concrete composite on segmental linings
12
作者 Renpeng CHEN Meng FAN +4 位作者 Hongzhan CHENG Huaina WU Yang ZHANG Bingyong GAO Shiqiang RUAN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第6期558-572,共15页
This study aims to assess the comprehensive strengthening effect of a steel-ultra high performance concrete(UHPC)composite strengthening method.The axial force-moment interaction curve(N-M curve)was calculated in a no... This study aims to assess the comprehensive strengthening effect of a steel-ultra high performance concrete(UHPC)composite strengthening method.The axial force-moment interaction curve(N-M curve)was calculated in a novel way,using cross-sectional strains at ultimate states as well as real-time stress measurements for each material.The enclosed area of the N-M curve was defined as a comprehensive performance index for the system.We validate our approach with comparisons to numerical modeling and full-scale four-point bending experiments.Additionally,strengthening effects were compared for different sagging and hogging moments based on material stress responses,and the impact of various strengthening parameters was analyzed.We find that the N-M curve of the strengthened cross-section envelops that of the un-strengthened cross-section.Notably,improvements in flexural capacity are greater under sagging moments during the large eccentric failure stage,and greater under hogging moments during the small eccentric failure stage.This discrepancy is attributed to the strength utilization of strengthening materials.These findings provide a reference for understanding the strengthening effects and parameters of steel-UHPC composite. 展开更多
关键词 Strengthening effects Steel-ultra high performance concrete(UHPC)composite Axial force-moment interaction curve Shield segmental linings
原文传递
Case Study on Synchronous Construction Technology for Secondary Lining of Large-diameter Single track Shiel Shield-bored ored Tunnel
13
作者 WANG Zhenfei ZHAI Jinying(Translated) 《Chinese Railways》 2023年第2期29-34,共6页
The synchronous construction of the secondary lining during the boring of large-diameter shield faces challenges such as the design of the lining jumbo,the high requirements on the performance for the lining jumbo,the... The synchronous construction of the secondary lining during the boring of large-diameter shield faces challenges such as the design of the lining jumbo,the high requirements on the performance for the lining jumbo,the organization of the construction activities in the small and confined area,the horizontal transportation for shield boring and high safety management requirements.A super-long invert lining construction jumbo,as well as the matching California switch,is developed,which provides solution for the confliction between the invert lining construction and the horizontal transportation.The procedure and method for the synchronous operation of the shield boring and the secondary lining are developed by referring to the synchronous construction of the secondary lining during the boring of the TBMs in hard rocks.Due to the adoption of the synchronous operation of the shield boring and the secondary lining,the construction period is shortened and the construction cost is reduced.The paper can provide reference for the synchronous construction of the secondary lining in similar projects in the future. 展开更多
关键词 large-diameter shield-bored tunnel synchronous construction of secondary lining super-long invert lining construction jumbo California switch "arch+side wall"lining jumbo
原文传递
Load laws of composite lining in mountain tunnel model tests and numerical simulation validation 被引量:1
14
作者 ZHOU Jian YANG Xin-an CHU Zheng 《Journal of Mountain Science》 SCIE CSCD 2023年第7期2041-2057,共17页
Currently,model tests are increasingly being used to simulate the construction of mountain tunnels,but the support structure of the model tests does not show the composite lining,and the force laws of the composite li... Currently,model tests are increasingly being used to simulate the construction of mountain tunnels,but the support structure of the model tests does not show the composite lining,and the force laws of the composite lining are not yet clear.In this research,the force variation of composite lining under three cases in model tests of deep-buried tunnels were carried out with the surrounding rock grade and installation time as the variation factors.The test results reveal that:(1)The suitable method to reduce the contact load between the secondary lining and primary support is to enhance the primary support in the soft and weak surrounding rock.Correspondingly,for ClassⅢsurrounding rock and better quality of surrounding rock,the primary support can lag behind the excavation face a certain distance.(2)The axial forces of the bolts tend to rise with concentration of 0.4 kN-0.7 kN after the secondary lining was installed.(3)With or without two to three excavation cycles delayed,the load sharing ratio of the secondary lining of the Class III surrounding rock is less than 10%.Finally,the numerical simulation verifies the feasibility of the model tests. 展开更多
关键词 Mountain tunnel Composite lining Surrounding rock grade Force variation Primary support Secondary lining
原文传递
Study on Crack Propagation Parameters of Tunnel Lining Structure Based on Peridynamics
15
作者 Zhihui Xiong Xiaohui Zhou +2 位作者 Jinjie Zhao Hao Cui Bo Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期2449-2478,共30页
The numerical simulation results utilizing the Peridynamics(PD)method reveal that the initial crack and crack propagation of the tunnel concrete lining structure agree with the experimental data compared to the Japane... The numerical simulation results utilizing the Peridynamics(PD)method reveal that the initial crack and crack propagation of the tunnel concrete lining structure agree with the experimental data compared to the Japanese prototype lining test.The load structure model takes into account the cracking process and distribution of the lining segment under the influence of local bias pressure and lining thickness.In addition,the influence of preset cracks and lining section formon the crack propagation of the concrete lining model is studied.This study evaluates the stability and sustainability of tunnel structure by the Peridynamics method,which provides a reference for the analysis of the causes of lining cracks,and also lays a foundation for the prevention,reinforcement and repair of tunnel lining cracks. 展开更多
关键词 PERIDYNAMICS lining crack crack propagation local bias pressure lining thickness preset crack
在线阅读 下载PDF
Insulating Permanent Lining of Calcium Hexaluminate Based Castable for 300t Ladle in Baosteel
16
作者 GAN Feifang GUO Zongqi +1 位作者 GAO Jianying GAO Hua 《China's Refractories》 CAS 2021年第1期35-40,共6页
Minimizing of heat loss of liquid steel through the ladle lining led to the integration of increasing insulation function of the permanent lining and high-quality insulating layer between the permanent lining and the ... Minimizing of heat loss of liquid steel through the ladle lining led to the integration of increasing insulation function of the permanent lining and high-quality insulating layer between the permanent lining and the ladle steel shell.In this paper,a study was made on physical and thermomechanical properties and corrosion resistance of calcium hexaluminate based castables.The chemical and physical properties of CA6 based castables fabricated in this work can fulfill general requirements of the permanent lining in ladle.The permanent linings of CA6 based castables offer superb thermal insulation and corrosion resistance,compared to conventional refractory systems of 300t ladle in Baosteel.Both functions of insulation and safety work effectively in whole process of ladle operation. 展开更多
关键词 insulating lining LADLE calcium hexaluminate permanent lining CASTABLES
在线阅读 下载PDF
BAODING GARMENT INTERLINING FACTORY
17
《中国经贸》 2019年第15期142-143,共2页
Established in 1988, and put integrity, pragmatic, win-win as principle to guide the products’ research and development, production and sales which enjoys high reputation all over the world. Based on domestic and imp... Established in 1988, and put integrity, pragmatic, win-win as principle to guide the products’ research and development, production and sales which enjoys high reputation all over the world. Based on domestic and imported from Germany interlining production line, we have the specialized strong technical force, advanced detection system to guarantee the stability of the product quality Our goods are varied and with complete specifications. The main products as following: shirt fusible interlining, outwear fusible interlining, fashion fusible interlining, fur coating interlining, resin interlining, interlining used for shoes, caps and bags, all kinds of fabric and pocket cloth. 展开更多
关键词 BAODING GARMENT INTERlining FACTORY GERMANY interlining production LINE PRODUCT QUALITY
在线阅读 下载PDF
Recovery of carbon and cryolite from spent pot lining of aluminium reduction cells by chemical leaching 被引量:33
18
作者 SHI Zhong-ning LI Wei +3 位作者 HU Xian-wei REN Bi-jun GAO Bing-liang WANG Zhao-wen 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第1期222-227,共6页
A two-step alkaline-acidic leaching process was conducted to separate the cryolite from spent pot lining and to purify the carbon. The influencing factors of temperature, time, and the ratio of liquid to solid in alka... A two-step alkaline-acidic leaching process was conducted to separate the cryolite from spent pot lining and to purify the carbon. The influencing factors of temperature, time, and the ratio of liquid to solid in alkaline and acidic leaching were investigated. The results show that the recovery of soluble compounds of Na3AlF6 and Al2O3 dissolving into the solution during the NaOH leaching is 65.0%,and the purity of carbon reaches 72.7%. During the next step of HCl leaching, the recovery of soluble compounds of CaF2 and NaAl11O17 dissolving into the HCl solution is 96.2%, and the carbon purity increases to 96.4%. By mixing the acidic leaching solution and the alkaline leaching solution, the cryolite precipitates under a suitable conditions of pH value 9 at 70 °C for 2 h. The cryolite precipitating rate is 95.6%, and the purity of Na3AlF6 obtained is 96.4%. 展开更多
关键词 spent pot lining RECOVERY chemical leaching aluminium electrolysis
在线阅读 下载PDF
Simulation Study on Reinforcing Overburden to Prevent and Cure the Rupture of Shaft Lining 被引量:13
19
作者 周国庆 崔广心 +5 位作者 吕恒林 黄家会 陈先德 曹祖民 于远成 王以全 《International Journal of Mining Science and Technology》 SCIE EI 1999年第1期1-7,共7页
For preventing and curing the rupture disaster of shaft lining effectively, according to the additional force theory of shaft lining fracture, more than forty tests were carried out on the large scale test rig on the ... For preventing and curing the rupture disaster of shaft lining effectively, according to the additional force theory of shaft lining fracture, more than forty tests were carried out on the large scale test rig on the basis of simulating theory. The influence of the position of aquifer, the reinforcing scope of aquifer, reinforcing distance and the strength of grouting cemented mixture on the value and variation law of the axial additional force on shaft lining is studied. The relationships between the reinforcing parameters and the axial additional force on shaft lining are obtained, which provides the theoretic foundation and construction design parameters for the method of reinforcing strata by grouting to prevent and cure tbe rupture disaster of shart lining. 展开更多
关键词 treatment of the RUPTURE of SHAFT lining reinforcing STRATUM simulated test reinforing parameters
在线阅读 下载PDF
Dynamic mass variation and multiphase interaction among steel, slag, lining refractory and nonmetallic inclusions: Laboratory experiments and mathematical prediction 被引量:10
20
作者 Ju-jin Wang Li-feng Zhang +2 位作者 Gong Cheng Qiang Ren Ying Ren 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第8期1298-1308,共11页
The mass transfer among the multiphase interactions among the steel, slag, lining refractory, and nonmetallic inclusions during the refining process of a bearing steel was studied using laboratory experiments and nume... The mass transfer among the multiphase interactions among the steel, slag, lining refractory, and nonmetallic inclusions during the refining process of a bearing steel was studied using laboratory experiments and numerical kinetic prediction. Experiments on the system with and without the slag phase were carried out to evaluate the influence of the refractory and the slag on the mass transfer. A mathematical model coupled the ion and molecule coexistence theory, coupled-reaction model, and the surface renewal theory was established to predict the dynamic mass transfer and composition transformation of the steel, the slag, and nonmetallic inclusions in the steel. During the refining process,Al_(2)O_(3) inclusions transformed into Mg O inclusions owing to the mass transfer of [Mg] at the steel/refractory interface and(Mg O) at the slag/refractory interface. Most of the aluminum involved in the transport entered the slag and a small part of the aluminum transferred to lining refractory, forming the Al_(2)O_(3) or Mg O·Al_(2)O_(3). The slag had a significant acceleration effect on the mass transfer. The mass transfer rate(or the reaction rate) of the system with the slag was approximately 5 times larger than that of the system without the slag. In the first 20 min of the refining, rates of magnesium mass transfer at the steel/inclusion interface, steel/refractory interface, and steel/slag interface were x, 1.1 x, and 2.2 x,respectively. The composition transformation of inclusions and the mass transfer of magnesium and aluminum in the steel were predicted with an acceptable accuracy using the established kinetic model. 展开更多
关键词 mass transfer STEEL SLAG lining refractory nonmetallic inclusions kinetic model
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部