Temperature prediction plays an important role in ring die granulator control,which can influence the quantity and quality of production. Temperature prediction modeling is a complicated problem with its MIMO, nonline...Temperature prediction plays an important role in ring die granulator control,which can influence the quantity and quality of production. Temperature prediction modeling is a complicated problem with its MIMO, nonlinear, and large time-delay characteristics. Support vector machine( SVM) has been successfully based on small data. But its accuracy is not high,in contrast,if the number of data and dimension of feature increase,the training time of model will increase dramatically. In this paper,a linear SVM was applied combing with cyclic coordinate descent( CCD) to solving big data regression. It was mathematically strictly proved and validated by simulation. Meanwhile,real data were conducted to prove the linear SVM model's effect. Compared with other methods for big data in simulation, this algorithm has apparent advantage not only in fast modeling but also in high fitness.展开更多
随着工业过程日趋复杂,系统安全及产品质量的在线监控也变得日益重要。针对化工过程的非线性特点,提出了一种新的基于局部线性嵌入(locally linear embedding,LLE)流形学习算法和支持向量数据描述(sup-port vector data description,SV...随着工业过程日趋复杂,系统安全及产品质量的在线监控也变得日益重要。针对化工过程的非线性特点,提出了一种新的基于局部线性嵌入(locally linear embedding,LLE)流形学习算法和支持向量数据描述(sup-port vector data description,SVDD)的故障检测方法。首先,使用LLE提取高维数据的低维子流形,进行维数约减,以保存更多原有系统的非线性特性,通过局部线性回归得到高维数据空间到低维特征空间的映射矩阵,保证了算法的实时性;然后,为了避免数据噪声的累加对传统统计量的影响,引入SVDD直接根据特征空间建立SVDD模型,构造统计量并确定其控制限;最后,通过数字仿真及Tennessee Eastman(TE)过程仿真研究验证了本文方法的有效性。展开更多
在制造过程中,存在一类过程输出与一个或多个独立变量之间有线性函数关系的情况,称为线性轮廓(Linear profile)。针对线性轮廓控制的问题,提出了基于支持向量数据描述(Support Vector Data Description,SVDD)的线性轮廓控制图,并分析了S...在制造过程中,存在一类过程输出与一个或多个独立变量之间有线性函数关系的情况,称为线性轮廓(Linear profile)。针对线性轮廓控制的问题,提出了基于支持向量数据描述(Support Vector Data Description,SVDD)的线性轮廓控制图,并分析了SVDD参数对分类器性能的影响及控制图参数的确定方法。仿真结果表明,基于SVDD的线性轮廓控制图在监控截距和残差变异时比T2控制图性能更好,而监控斜率的变异时,T2控制图性能更好。展开更多
基金Nantong Research Program of Application Foundation,China(No.BK2012030)Key Project of Science and Technology Commission of Shanghai Municipality,China(No.10JC1405000)
文摘Temperature prediction plays an important role in ring die granulator control,which can influence the quantity and quality of production. Temperature prediction modeling is a complicated problem with its MIMO, nonlinear, and large time-delay characteristics. Support vector machine( SVM) has been successfully based on small data. But its accuracy is not high,in contrast,if the number of data and dimension of feature increase,the training time of model will increase dramatically. In this paper,a linear SVM was applied combing with cyclic coordinate descent( CCD) to solving big data regression. It was mathematically strictly proved and validated by simulation. Meanwhile,real data were conducted to prove the linear SVM model's effect. Compared with other methods for big data in simulation, this algorithm has apparent advantage not only in fast modeling but also in high fitness.
文摘随着工业过程日趋复杂,系统安全及产品质量的在线监控也变得日益重要。针对化工过程的非线性特点,提出了一种新的基于局部线性嵌入(locally linear embedding,LLE)流形学习算法和支持向量数据描述(sup-port vector data description,SVDD)的故障检测方法。首先,使用LLE提取高维数据的低维子流形,进行维数约减,以保存更多原有系统的非线性特性,通过局部线性回归得到高维数据空间到低维特征空间的映射矩阵,保证了算法的实时性;然后,为了避免数据噪声的累加对传统统计量的影响,引入SVDD直接根据特征空间建立SVDD模型,构造统计量并确定其控制限;最后,通过数字仿真及Tennessee Eastman(TE)过程仿真研究验证了本文方法的有效性。
文摘在制造过程中,存在一类过程输出与一个或多个独立变量之间有线性函数关系的情况,称为线性轮廓(Linear profile)。针对线性轮廓控制的问题,提出了基于支持向量数据描述(Support Vector Data Description,SVDD)的线性轮廓控制图,并分析了SVDD参数对分类器性能的影响及控制图参数的确定方法。仿真结果表明,基于SVDD的线性轮廓控制图在监控截距和残差变异时比T2控制图性能更好,而监控斜率的变异时,T2控制图性能更好。