Numerical simulations on focused wave propagation are carried out by using three types of numerical models,including the linear potential flow,the nonlinear potential flow and the viscous fluid flow models.The wave-wa...Numerical simulations on focused wave propagation are carried out by using three types of numerical models,including the linear potential flow,the nonlinear potential flow and the viscous fluid flow models.The wave-wave interaction of the focused wave group with different frequency bands and input wave amplitudes is examined,by which the influence of free surface nonlinearity and fluid viscosity on the related phenomenon of focused wave is investigated.The significant influence of free surface nonlinearity on the characteristics of focused wave can be observed,including the increased focused wave crest,delayed focused time and downstream shift of focused position with the increase of input amplitude.It can plot the evident difference between the results of the nonlinear potential flow and linear potential flow models.However,only a little discrepancy between the nonlinear potential flow and viscous fluid flow models can be observed,implying the insignificant effect of fluid viscosity on focused wave behavior.Therefore,the nonlinear potential flow model is recommended for simulating the non-breaking focused wave problem in this study.展开更多
Using the momentum space representation, we solve the Klein--Gordon equation in one spatial dimension for the case of mixed scalar and vector linear potentials in the context of deformed quantum mechanics characterize...Using the momentum space representation, we solve the Klein--Gordon equation in one spatial dimension for the case of mixed scalar and vector linear potentials in the context of deformed quantum mechanics characterized by a finite minimal uncertainty in position. The expressions of bound state energies and the associated wave functions are exactly obtained.展开更多
Biomolecular motors are tiny engines that transport materials at the microscopic level within biological cells. In recent years, Elston and Peskin et al have investigated the effect of the elastic properties of the te...Biomolecular motors are tiny engines that transport materials at the microscopic level within biological cells. In recent years, Elston and Peskin et al have investigated the effect of the elastic properties of the tether that connects the motor to its cargo at the speed of the motor. In this paper we extend their work and present a tether in the form of symmetric linear potential. Our results show that when the driving mechanism is an imperfect Brownian ratchet, the average speed decreases as the stiffness of the tether increases in the limit of large motor diffusion coefficient, which is similar to the results of Elston and Peskin. However, a threshold for the stiffness of the tether connecting the motor to its cargo is found in our model. Only when the tether is stiffer than the threshold can the motor and its cargo function co-operatively, otherwise, the motor and its cargo depart from each other. This result is more realistic than that of the spring model of Elston and Peskin.展开更多
In this paper the one-dimensional Dirac equation with linear potential has been solved by the method of canonical transformation. The bound-state wavefunctions and the corresponding energy spectrum have been obtained ...In this paper the one-dimensional Dirac equation with linear potential has been solved by the method of canonical transformation. The bound-state wavefunctions and the corresponding energy spectrum have been obtained for all bound states.展开更多
Sloshing-induced force and moment may affect the dynamic property of the liquid-contained system.Analytically presented linear Stokes-Joukowski potentials of fluid are usually needed for analytical study of sloshing i...Sloshing-induced force and moment may affect the dynamic property of the liquid-contained system.Analytically presented linear Stokes-Joukowski potentials of fluid are usually needed for analytical study of sloshing in liquid-filled tank under rotational(e.g.,pitching)excitations.To obtain the analytically approximate linear Stokes-Joukowski potentials of fluid in the rigid baffled tanks,a variational domain-decomposition scheme is proposed.This scheme includes three steps:(i)dividing the hydrostatic baffled fluid domain into simple sub-domains based on the positions of the baffles(i.e.,using the baffle as part of the boundaries of the sub-domain)by introducing artificial interfaces and densities of fluids in the different sub-domains or auxiliary normal fluid velocity functions on the artificial interfaces;(ii)expressing the solution for linear Stokes-Joukowski potential of each sub-domain as a linear combination of a class of harmonic functions with undetermined coefficients,and expressing the auxiliary normal fluid velocity functions on the artificial in terfaces as Fourier-type series with undetermined coefficients;(iii)solving the undetermined coefficients by the Trefftz method and the proposed variational formulations.The obtained semi-analytical linear Stokes-Joukowski potential agrees well with that published in literature or given by finite element method(FEM),and its applicability to study nonlinear sloshing problem is verified by applying it to a two-dimensional partially fluid-filled rectangular tank with a T-shaped baffle under pitching excitation.The present semi-analytical result is compared with that given by computational fluid dynamics(CFD)software or literature.展开更多
We theoretically and numerically study the propagation dynamics of a Gaussian beam modeled by the fractional Schrodinger equation with different dynamic linear potentials. For the limited case α = 1(α is the Lé...We theoretically and numerically study the propagation dynamics of a Gaussian beam modeled by the fractional Schrodinger equation with different dynamic linear potentials. For the limited case α = 1(α is the Lévy index) in the momentum space, the beam suffers a frequency shift which depends on the applied longitudinal modulation and the involved chirp. While in the real space, by precisely controlling the linear chirp, the beam will exhibit two different evolution characteristics: one is the zigzag trajectory propagation induced by multi-reflection occurring at the zeros of spatial spectrum,the other is diffraction-free propagation. Numerical simulations are in full accordance with the theoretical results. Increase of the Lévy index not only results in the drift of those turning points along the transverse direction, but also leads to the delocalization of the Gaussian beam.展开更多
We study Bose-Einstein condensation in a linear trap with a dimple potential where we model dimple potentials by Dirac δ function. Attractive and repulsive dimple potentials are taken into account. This model allows ...We study Bose-Einstein condensation in a linear trap with a dimple potential where we model dimple potentials by Dirac δ function. Attractive and repulsive dimple potentials are taken into account. This model allows simple, explicit numerical and analytical investigations of noninteracting gases. Thus, the Schrdinger equation is used instead of the Gross-Pitaevski equation. We calculate the atomic density, the chemical potential, the critical temperature and the condensate fraction. The role of the relative depth of the dimple potential with respect to the linear trap in large condensate formation at enhanced temperatures is clearly revealed. Moreover, we also present a semi-classical method for calculating various quantities such as entropy analytically. Moreover, we compare the results of this paper with the results of a previous paper in which the harmonic trap with a dimple potential in 1D is investigated.展开更多
The thermodynamic properties of linear protein solutions are discussed by a statistical me-chanics theory with a lattice model. The numerical results show that the Gibbs function of the solution decreases, and the pro...The thermodynamic properties of linear protein solutions are discussed by a statistical me-chanics theory with a lattice model. The numerical results show that the Gibbs function of the solution decreases, and the protein chemical potential is enhanced with increase of the protein concentration for dilute solutions. The influences of chain length and temperature on the Gibbs function of the solution as well as the protein chemical potential are analyzed.As an application of the theory, the chemical potentials of some mutants of type I antifreeze proteins are computed and discussed.展开更多
The immersion of large-scale tunnel elements is one of the most important working procedures in the construction of an underwater immersed tunnel. To investigate the dynamic characteristics of tunnel element in the pr...The immersion of large-scale tunnel elements is one of the most important working procedures in the construction of an underwater immersed tunnel. To investigate the dynamic characteristics of tunnel element in the process of immersion, based on the twin-barge immersing operation method, the frequency-domain analysis of the tunnel element motions under wave actions was made. The linear wave diffraction theory and the three-dimensional source distribution method were applied to calculate the wave loads and motion responses of the tunnel element under different incident wave conditions. In the study, movement of the two barges in the water was assumed to be small and was ignored. Cable tension was computed by the static method. On the basis of the above theories, a computer program was made, and two cases were taken to check the validity of the program. The results showed that wave loads acting on the immersed tunnel element are relatively large near the water surface, and they decrease with the increase of immersing depth of the tunnel element. Wave loads first increase, then decrease, with the increase of wave period. The motion responses of the tunnel element are also generally large near the water surface and decrease as the immersing depth increases.展开更多
The seakeeping performance of a luxury cruise ship was evaluated during the concept design phase.By comparing numerical predictions based on 3-D linear potential flow theory in the frequency domain with the results of...The seakeeping performance of a luxury cruise ship was evaluated during the concept design phase.By comparing numerical predictions based on 3-D linear potential flow theory in the frequency domain with the results of model tests, it was shown that the 3-D method predicted the seakeeping performance of the luxury cruise ship well.Based on the model, the seakeeping features of the luxury cruise ship were analyzed, and then the influence was seen of changes to the primary design parameters (center of gravity, inertial radius, etc.).Based on the results, suggestions were proposed to improve the choice of parameters for luxury cruise ships during the concept design phase.They should improve seakeeping performance.展开更多
We investigate the Airy–Talbot effect of an Airy pulse train in time-dependent linear potentials.The parabolic trajectory of self-imaging depends on both the dispersion sign and the linear potential gradient.By impos...We investigate the Airy–Talbot effect of an Airy pulse train in time-dependent linear potentials.The parabolic trajectory of self-imaging depends on both the dispersion sign and the linear potential gradient.By imposing linear phase modulations on the pulse train,the Airy–Talbot effects accompanied with positive and negative refractions are realized.For an input composed of stationary Airy pulses,the self-imaging follows straight lines,and the Airy–Talbot distance can be engineered by varying the linear potential gradient.The effect is also achieved in symmetric linear potentials.The study provides opportunities to control the self-imaging of aperiodic optical fields in time dimension.展开更多
We discuss a methodology problem which is crucially important for solving the Sch?dinger equation in terms of the variational method. We present a complete analysis on the application of the hypervirial theorem for ju...We discuss a methodology problem which is crucially important for solving the Sch?dinger equation in terms of the variational method. We present a complete analysis on the application of the hypervirial theorem for judging the quality of the trial wavefunction without invoking the precise solutions.展开更多
Molecular motors are proteins or protein complexes which function as transporting engines in biological cells. This paper models the tether between motor and its cargo as a symmetric linear potential. Different from E...Molecular motors are proteins or protein complexes which function as transporting engines in biological cells. This paper models the tether between motor and its cargo as a symmetric linear potential. Different from Elston and Peskin's work for which performance of the system was discussed only in some limiting cases, this study produces analytic solutions of the problem for general cases by simplifying the transport system into two physical states, which makes it possible to discuss the dynamics of the motor--cargo system in detail. It turns out that the tether strength between motor and cargo should be greater than a threshold or the motor will fail to transport the cargo, which was not discussed by former researchers yet. Value of the threshold depends on the diffusion coefficients of cargo and motor and also on the strength of the Brownian ratchets dragging the system. The threshold approaches a finite constant when the strength of the ratchet tends to infinity.展开更多
When designing a wave power plant,reliable and fast simulation tools are required.Computational fluid dynamics(CFD)software provides high accuracy but with a very high computational cost,and in operational,moderate se...When designing a wave power plant,reliable and fast simulation tools are required.Computational fluid dynamics(CFD)software provides high accuracy but with a very high computational cost,and in operational,moderate sea states,linear potential flow theories may be sufficient to model the hydrodynamics.In this paper,a model is built in COMSOL Multiphysics to solve for the hydrodynamic parameters of a point-absorbing wave energy device.The results are compared with a linear model where the hydrodynamical parameters are computed using WAMIT,and to experimental results from the Lysekil research site.The agreement with experimental data is good for both numerical models.展开更多
Porous electrodes with three-phase reaction in low temperature fuel cells have attracted much attention by their flooding phenomena. In order to have a better understanding of the flooding phenomena inside electrode, ...Porous electrodes with three-phase reaction in low temperature fuel cells have attracted much attention by their flooding phenomena. In order to have a better understanding of the flooding phenomena inside electrode, it is important to evaluate various discharge conditions of the flooded electrodes. A model of flooded porous electrode under the influence of potential sweep was developed to evaluate the flooding conditions in-situ. The hysteresis of current density vs. time was observed at high sweep rates (1 O0 mV.sl). It was not observed at low sweep rate (0.1 mV-s~). In this study, these characteristics of flooding and hysteresis conditions were found to be markedly dependent on the potential scan rate. These dynamic behaviors are interpreted in terms of water saturation response, velocity of water movement, and evaporation rate of water.展开更多
The effect of Cd impurity on the electronic structure and magnetic properties of hydrogen-terminated AlN nanoribbons with zigzag edges (ZAINNRs) was in- vestigate using the band structure results obtained through th...The effect of Cd impurity on the electronic structure and magnetic properties of hydrogen-terminated AlN nanoribbons with zigzag edges (ZAINNRs) was in- vestigate using the band structure results obtained through the full potential linearized augmented plane wave (FP- LAPW) method within the density functional theory (DFT). The exchange correlation potential was treated by the generalized gradient approximation within the Perdew scheme. The calculated results show that the H-terminated zigzag AlN nanoribbon is semiconducting and nonmag- netic material with a direct band gap of about 2.78 eV, while the Cd-doped H-terminated ZAlNNR structures show complete (100 %) spin polarization very close to the Fermi level, which will result in spin-anisotropic transport. The charge transport is totally dominated by Cd spin down electrons in the H-terminated ZAlNNR. These results suggest potential applications for the development of using the A1N nanoribbons in nanoelectronics and magnetoelec-tronic devices as a base.展开更多
In this paper, we investigated the structural, electronic and optical properties of InAs, InN and InP binary compounds and their related ternary and quaternary alloys by using the full potential linearized augmented p...In this paper, we investigated the structural, electronic and optical properties of InAs, InN and InP binary compounds and their related ternary and quaternary alloys by using the full potential linearized augmented plane wave(FP-LAPW)method based on density functional theory(DFT). The total energies, the lattice parameters, and the bulk modulus and its first pressure derivative were calculated using different exchange correlation approximations. The local density approach(LDA) and Tran–Blaha modified Becke–Johnson(TB-m BJ) approximations were used to calculate the band structure.Nonlinear variations of the lattice parameters, the bulk modulus and the band gap with compositions x and y are found.Furthermore, the optical properties and the dielectric function, refractive index and loss energy were computed. Our results are in good agreement with the validated experimental and theoretical data found in the literature.展开更多
The molecular dynamics simulations are performed to show that in aque- ous environments, a short single-walled carbon nanotube (SWCNT) guided by a long SWCNT, either inside or outside the longer tube, is capable of ...The molecular dynamics simulations are performed to show that in aque- ous environments, a short single-walled carbon nanotube (SWCNT) guided by a long SWCNT, either inside or outside the longer tube, is capable of moving along the nanotube axis unidirectionally in an electric field perpendicular to the carbon nanotube (CNT) axis with the linear gradient. The design suggests a new way of molecule transportation or mass delivery. To reveal the mechanism behind this phenomenon, the free energy profiles of the system are calculated by the method of the potential of mean force (PMF).展开更多
This article is concerned with the growth of energy of disturbances in a baroclinic flow within a finite time period. The implicit difference scheme was applied to the linearized vorticity equation, and the disturbanc...This article is concerned with the growth of energy of disturbances in a baroclinic flow within a finite time period. The implicit difference scheme was applied to the linearized vorticity equation, and the disturbance energy was computed for three kinds of vertical shears. It turns out that all the disturbance energy rapidly increases initially, and during the succeeding period there are several stages of growth and decay of energy of disturbances, and from a certain time on, all the disturbance energy begins to decrease.展开更多
基金the National Natural Science Foundation of China(Grant Nos.51909027 and 51679035),the Project of Educational Commission of Liaoning Province(Grant No.L201601),the High-Level Innovation and Entrepreneurship Team of Liaoning Province(Grant No.XLYC1908027),the Fundamental Research Funds for the Central Universities(Grant No.DUT2017TB05).
文摘Numerical simulations on focused wave propagation are carried out by using three types of numerical models,including the linear potential flow,the nonlinear potential flow and the viscous fluid flow models.The wave-wave interaction of the focused wave group with different frequency bands and input wave amplitudes is examined,by which the influence of free surface nonlinearity and fluid viscosity on the related phenomenon of focused wave is investigated.The significant influence of free surface nonlinearity on the characteristics of focused wave can be observed,including the increased focused wave crest,delayed focused time and downstream shift of focused position with the increase of input amplitude.It can plot the evident difference between the results of the nonlinear potential flow and linear potential flow models.However,only a little discrepancy between the nonlinear potential flow and viscous fluid flow models can be observed,implying the insignificant effect of fluid viscosity on focused wave behavior.Therefore,the nonlinear potential flow model is recommended for simulating the non-breaking focused wave problem in this study.
文摘Using the momentum space representation, we solve the Klein--Gordon equation in one spatial dimension for the case of mixed scalar and vector linear potentials in the context of deformed quantum mechanics characterized by a finite minimal uncertainty in position. The expressions of bound state energies and the associated wave functions are exactly obtained.
基金Project supported by the National Natural Science Foundation of China (Grant No 39970217).
文摘Biomolecular motors are tiny engines that transport materials at the microscopic level within biological cells. In recent years, Elston and Peskin et al have investigated the effect of the elastic properties of the tether that connects the motor to its cargo at the speed of the motor. In this paper we extend their work and present a tether in the form of symmetric linear potential. Our results show that when the driving mechanism is an imperfect Brownian ratchet, the average speed decreases as the stiffness of the tether increases in the limit of large motor diffusion coefficient, which is similar to the results of Elston and Peskin. However, a threshold for the stiffness of the tether connecting the motor to its cargo is found in our model. Only when the tether is stiffer than the threshold can the motor and its cargo function co-operatively, otherwise, the motor and its cargo depart from each other. This result is more realistic than that of the spring model of Elston and Peskin.
基金Project supported by the National Natural Science Foundation (Grant No 10347003, 50375031) and the Natural Science Foundation of Guizhou Province.
文摘In this paper the one-dimensional Dirac equation with linear potential has been solved by the method of canonical transformation. The bound-state wavefunctions and the corresponding energy spectrum have been obtained for all bound states.
基金the National Natural Science Foundation of China(Grant Nos.11572018 and 11772020).
文摘Sloshing-induced force and moment may affect the dynamic property of the liquid-contained system.Analytically presented linear Stokes-Joukowski potentials of fluid are usually needed for analytical study of sloshing in liquid-filled tank under rotational(e.g.,pitching)excitations.To obtain the analytically approximate linear Stokes-Joukowski potentials of fluid in the rigid baffled tanks,a variational domain-decomposition scheme is proposed.This scheme includes three steps:(i)dividing the hydrostatic baffled fluid domain into simple sub-domains based on the positions of the baffles(i.e.,using the baffle as part of the boundaries of the sub-domain)by introducing artificial interfaces and densities of fluids in the different sub-domains or auxiliary normal fluid velocity functions on the artificial interfaces;(ii)expressing the solution for linear Stokes-Joukowski potential of each sub-domain as a linear combination of a class of harmonic functions with undetermined coefficients,and expressing the auxiliary normal fluid velocity functions on the artificial in terfaces as Fourier-type series with undetermined coefficients;(iii)solving the undetermined coefficients by the Trefftz method and the proposed variational formulations.The obtained semi-analytical linear Stokes-Joukowski potential agrees well with that published in literature or given by finite element method(FEM),and its applicability to study nonlinear sloshing problem is verified by applying it to a two-dimensional partially fluid-filled rectangular tank with a T-shaped baffle under pitching excitation.The present semi-analytical result is compared with that given by computational fluid dynamics(CFD)software or literature.
基金Project supported by the Natural Science Research Project of Anhui Provincal Education Department of China(Grant Nos.KJHS2018B01 and KJ2018A0407)the National Natural Science Foundation of China(Grant No.11804112)+1 种基金the Natural Science Foundation of Anhui Province of China(Grant No.1808085QA22)Start-up Fund of Huangshan University,China(Grant No.2015xkjq001).
文摘We theoretically and numerically study the propagation dynamics of a Gaussian beam modeled by the fractional Schrodinger equation with different dynamic linear potentials. For the limited case α = 1(α is the Lévy index) in the momentum space, the beam suffers a frequency shift which depends on the applied longitudinal modulation and the involved chirp. While in the real space, by precisely controlling the linear chirp, the beam will exhibit two different evolution characteristics: one is the zigzag trajectory propagation induced by multi-reflection occurring at the zeros of spatial spectrum,the other is diffraction-free propagation. Numerical simulations are in full accordance with the theoretical results. Increase of the Lévy index not only results in the drift of those turning points along the transverse direction, but also leads to the delocalization of the Gaussian beam.
文摘We study Bose-Einstein condensation in a linear trap with a dimple potential where we model dimple potentials by Dirac δ function. Attractive and repulsive dimple potentials are taken into account. This model allows simple, explicit numerical and analytical investigations of noninteracting gases. Thus, the Schrdinger equation is used instead of the Gross-Pitaevski equation. We calculate the atomic density, the chemical potential, the critical temperature and the condensate fraction. The role of the relative depth of the dimple potential with respect to the linear trap in large condensate formation at enhanced temperatures is clearly revealed. Moreover, we also present a semi-classical method for calculating various quantities such as entropy analytically. Moreover, we compare the results of this paper with the results of a previous paper in which the harmonic trap with a dimple potential in 1D is investigated.
基金This work was supported by the National Natural Science Foundation of China (No.10764003 and No.30560039).
文摘The thermodynamic properties of linear protein solutions are discussed by a statistical me-chanics theory with a lattice model. The numerical results show that the Gibbs function of the solution decreases, and the protein chemical potential is enhanced with increase of the protein concentration for dilute solutions. The influences of chain length and temperature on the Gibbs function of the solution as well as the protein chemical potential are analyzed.As an application of the theory, the chemical potentials of some mutants of type I antifreeze proteins are computed and discussed.
基金Supported by the Key Program of the National Natural Science Foundation of China under Grant No.50439010the Main Program of the Ministry of Education of China under Grant No.305003
文摘The immersion of large-scale tunnel elements is one of the most important working procedures in the construction of an underwater immersed tunnel. To investigate the dynamic characteristics of tunnel element in the process of immersion, based on the twin-barge immersing operation method, the frequency-domain analysis of the tunnel element motions under wave actions was made. The linear wave diffraction theory and the three-dimensional source distribution method were applied to calculate the wave loads and motion responses of the tunnel element under different incident wave conditions. In the study, movement of the two barges in the water was assumed to be small and was ignored. Cable tension was computed by the static method. On the basis of the above theories, a computer program was made, and two cases were taken to check the validity of the program. The results showed that wave loads acting on the immersed tunnel element are relatively large near the water surface, and they decrease with the increase of immersing depth of the tunnel element. Wave loads first increase, then decrease, with the increase of wave period. The motion responses of the tunnel element are also generally large near the water surface and decrease as the immersing depth increases.
文摘The seakeeping performance of a luxury cruise ship was evaluated during the concept design phase.By comparing numerical predictions based on 3-D linear potential flow theory in the frequency domain with the results of model tests, it was shown that the 3-D method predicted the seakeeping performance of the luxury cruise ship well.Based on the model, the seakeeping features of the luxury cruise ship were analyzed, and then the influence was seen of changes to the primary design parameters (center of gravity, inertial radius, etc.).Based on the results, suggestions were proposed to improve the choice of parameters for luxury cruise ships during the concept design phase.They should improve seakeeping performance.
基金supported by the National Natural Science Foundation of China(Nos.11674117 and 11974124)。
文摘We investigate the Airy–Talbot effect of an Airy pulse train in time-dependent linear potentials.The parabolic trajectory of self-imaging depends on both the dispersion sign and the linear potential gradient.By imposing linear phase modulations on the pulse train,the Airy–Talbot effects accompanied with positive and negative refractions are realized.For an input composed of stationary Airy pulses,the self-imaging follows straight lines,and the Airy–Talbot distance can be engineered by varying the linear potential gradient.The effect is also achieved in symmetric linear potentials.The study provides opportunities to control the self-imaging of aperiodic optical fields in time dimension.
文摘We discuss a methodology problem which is crucially important for solving the Sch?dinger equation in terms of the variational method. We present a complete analysis on the application of the hypervirial theorem for judging the quality of the trial wavefunction without invoking the precise solutions.
基金supported by the National Natural Science Foundation of China (Grant No. 30600121)Doctoral Foundation of Shandong Province of China (Grant No. 2007BS09002)
文摘Molecular motors are proteins or protein complexes which function as transporting engines in biological cells. This paper models the tether between motor and its cargo as a symmetric linear potential. Different from Elston and Peskin's work for which performance of the system was discussed only in some limiting cases, this study produces analytic solutions of the problem for general cases by simplifying the transport system into two physical states, which makes it possible to discuss the dynamics of the motor--cargo system in detail. It turns out that the tether strength between motor and cargo should be greater than a threshold or the motor will fail to transport the cargo, which was not discussed by former researchers yet. Value of the threshold depends on the diffusion coefficients of cargo and motor and also on the strength of the Brownian ratchets dragging the system. The threshold approaches a finite constant when the strength of the ratchet tends to infinity.
基金supported by the Center for Natural Disaster Science(CNDS)the Swedish Research Council(VR,Grant Number 2015-04657)+1 种基金Lars Hiertas FoundationBengt Ingestrms scholarship fund
文摘When designing a wave power plant,reliable and fast simulation tools are required.Computational fluid dynamics(CFD)software provides high accuracy but with a very high computational cost,and in operational,moderate sea states,linear potential flow theories may be sufficient to model the hydrodynamics.In this paper,a model is built in COMSOL Multiphysics to solve for the hydrodynamic parameters of a point-absorbing wave energy device.The results are compared with a linear model where the hydrodynamical parameters are computed using WAMIT,and to experimental results from the Lysekil research site.The agreement with experimental data is good for both numerical models.
文摘Porous electrodes with three-phase reaction in low temperature fuel cells have attracted much attention by their flooding phenomena. In order to have a better understanding of the flooding phenomena inside electrode, it is important to evaluate various discharge conditions of the flooded electrodes. A model of flooded porous electrode under the influence of potential sweep was developed to evaluate the flooding conditions in-situ. The hysteresis of current density vs. time was observed at high sweep rates (1 O0 mV.sl). It was not observed at low sweep rate (0.1 mV-s~). In this study, these characteristics of flooding and hysteresis conditions were found to be markedly dependent on the potential scan rate. These dynamic behaviors are interpreted in terms of water saturation response, velocity of water movement, and evaporation rate of water.
基金financially supported by the Research of the Ayatollah Alozma Boroujerdi University(No. 92-1012)
文摘The effect of Cd impurity on the electronic structure and magnetic properties of hydrogen-terminated AlN nanoribbons with zigzag edges (ZAINNRs) was in- vestigate using the band structure results obtained through the full potential linearized augmented plane wave (FP- LAPW) method within the density functional theory (DFT). The exchange correlation potential was treated by the generalized gradient approximation within the Perdew scheme. The calculated results show that the H-terminated zigzag AlN nanoribbon is semiconducting and nonmag- netic material with a direct band gap of about 2.78 eV, while the Cd-doped H-terminated ZAlNNR structures show complete (100 %) spin polarization very close to the Fermi level, which will result in spin-anisotropic transport. The charge transport is totally dominated by Cd spin down electrons in the H-terminated ZAlNNR. These results suggest potential applications for the development of using the A1N nanoribbons in nanoelectronics and magnetoelec-tronic devices as a base.
基金supported by the Deanship of Scientific Research at King Saud University Group(Grant No.PRG-1437-39)
文摘In this paper, we investigated the structural, electronic and optical properties of InAs, InN and InP binary compounds and their related ternary and quaternary alloys by using the full potential linearized augmented plane wave(FP-LAPW)method based on density functional theory(DFT). The total energies, the lattice parameters, and the bulk modulus and its first pressure derivative were calculated using different exchange correlation approximations. The local density approach(LDA) and Tran–Blaha modified Becke–Johnson(TB-m BJ) approximations were used to calculate the band structure.Nonlinear variations of the lattice parameters, the bulk modulus and the band gap with compositions x and y are found.Furthermore, the optical properties and the dielectric function, refractive index and loss energy were computed. Our results are in good agreement with the validated experimental and theoretical data found in the literature.
基金Project supported by the National Natural Science Foundation of China(Nos.11372175 and 11272197)the Research Fund for the Doctoral Program of Higher Education of China(No.20103108110004)the Innovation Program of Shanghai Municipality Education Commission(No.14ZZ095)
文摘The molecular dynamics simulations are performed to show that in aque- ous environments, a short single-walled carbon nanotube (SWCNT) guided by a long SWCNT, either inside or outside the longer tube, is capable of moving along the nanotube axis unidirectionally in an electric field perpendicular to the carbon nanotube (CNT) axis with the linear gradient. The design suggests a new way of molecule transportation or mass delivery. To reveal the mechanism behind this phenomenon, the free energy profiles of the system are calculated by the method of the potential of mean force (PMF).
基金the National Natural Science Foundation of China (Grant No. 40775023)the ScientificResearch Special Item of Commonweal (Meteorology) KeyApplication Technology Study on Ensemble Forecast usingTIGGE Data (Grant No. GYHY (QX)2007-6-1)
文摘This article is concerned with the growth of energy of disturbances in a baroclinic flow within a finite time period. The implicit difference scheme was applied to the linearized vorticity equation, and the disturbance energy was computed for three kinds of vertical shears. It turns out that all the disturbance energy rapidly increases initially, and during the succeeding period there are several stages of growth and decay of energy of disturbances, and from a certain time on, all the disturbance energy begins to decrease.