For American option pricing, the Black-Scholes-Merton model can be discretized as a linear comple- mentarity problem (LCP) by using some finite difference schemes. It is well known that the Projected Successive Over...For American option pricing, the Black-Scholes-Merton model can be discretized as a linear comple- mentarity problem (LCP) by using some finite difference schemes. It is well known that the Projected Successive Over Relaxation (PSOR) has been widely applied to solve the resulted LCP. In this paper, we propose a fixed point iterative method to solve this type of LCPs, where the splitting technique of the matrix is used. We show that the proposed method is globally convergent under mild assumptions. The preliminary numerical results are reported, which demonstrate that the proposed method is more accurate than the PSOR for the problems we tested.展开更多
基金Supported by the National Natural Science Foundation of China(Grant No.11431002)
文摘For American option pricing, the Black-Scholes-Merton model can be discretized as a linear comple- mentarity problem (LCP) by using some finite difference schemes. It is well known that the Projected Successive Over Relaxation (PSOR) has been widely applied to solve the resulted LCP. In this paper, we propose a fixed point iterative method to solve this type of LCPs, where the splitting technique of the matrix is used. We show that the proposed method is globally convergent under mild assumptions. The preliminary numerical results are reported, which demonstrate that the proposed method is more accurate than the PSOR for the problems we tested.