A family of neural networks is proposed to solve linear complementarity problems(LCP).The neural networks are constructed from the novel equivalent model of LCP,which is reformulated by utilizing the modulus and smoot...A family of neural networks is proposed to solve linear complementarity problems(LCP).The neural networks are constructed from the novel equivalent model of LCP,which is reformulated by utilizing the modulus and smoothing technologies.Some important properties of the proposed novel equivalent model are summarized.In addition,the stability properties of the proposed steepest descent-based neural networks for LCP are analyzed.In order to illustrate the theoretical results,we provide some numerical simulations and compare the proposed neural networks with existing neural networks based on the NCP-functions.Numerical results indicate that the performance of the proposed neural networks is effective and robust.展开更多
In this paper,we propose a new full-Newton step feasible interior-point algorithm for the special weighted linear complementarity problems.The proposed algorithm employs the technique of algebraic equivalent transform...In this paper,we propose a new full-Newton step feasible interior-point algorithm for the special weighted linear complementarity problems.The proposed algorithm employs the technique of algebraic equivalent transformation to derive the search direction.It is shown that the proximity measure reduces quadratically at each iteration.Moreover,the iteration bound of the algorithm is as good as the best-known polynomial complexity for these types of problems.Furthermore,numerical results are presented to show the efficiency of the proposed algorithm.展开更多
In this paper,a new full-Newton step primal-dual interior-point algorithm for solving the special weighted linear complementarity problem is designed and analyzed.The algorithm employs a kernel function with a linear ...In this paper,a new full-Newton step primal-dual interior-point algorithm for solving the special weighted linear complementarity problem is designed and analyzed.The algorithm employs a kernel function with a linear growth term to derive the search direction,and by introducing new technical results and selecting suitable parameters,we prove that the iteration bound of the algorithm is as good as best-known polynomial complexity of interior-point methods.Furthermore,numerical results illustrate the efficiency of the proposed method.展开更多
In this paper,a two-step iteration method is established which can be viewed as a generalization of the existing modulus-based methods for vertical linear complementarity problems given by He and Vong(Appl.Math.Lett.1...In this paper,a two-step iteration method is established which can be viewed as a generalization of the existing modulus-based methods for vertical linear complementarity problems given by He and Vong(Appl.Math.Lett.134:108344,2022).The convergence analysis of the proposed method is established,which can improve the existing results.Numerical examples show that the proposed method is efficient with the two-step technique.展开更多
A partition reduction method is used to obtain new upper bounds for the inverses of H-matrices and S-strictly diagonally dominant(S-SDD)matrices.The estimates are expressed via the determinants of third order matrices...A partition reduction method is used to obtain new upper bounds for the inverses of H-matrices and S-strictly diagonally dominant(S-SDD)matrices.The estimates are expressed via the determinants of third order matrices.Numerical experiments with various random matrices show that they are stable and better than the estimates presented in literatures.We use these upper bounds to improve known error estimates for linear complementarity problems with H-matrices and S-SDD matrices.展开更多
A parametric variational principle and the corresponding numerical algo- rithm are proposed to solve a linear-quadratic (LQ) optimal control problem with control inequality constraints. Based on the parametric varia...A parametric variational principle and the corresponding numerical algo- rithm are proposed to solve a linear-quadratic (LQ) optimal control problem with control inequality constraints. Based on the parametric variational principle, this control prob- lem is transformed into a set of Hamiltonian canonical equations coupled with the linear complementarity equations, which are solved by a linear complementarity solver in the discrete-time domain. The costate variable information is also evaluated by the proposed method. The parametric variational algorithm proposed in this paper is suitable for both time-invariant and time-varying systems. Two numerical examples are used to test the validity of the proposed method. The proposed algorithm is used to astrodynamics to solve a practical optimal control problem for rendezvousing spacecrafts with a finite low thrust. The numerical simulations show that the parametric variational algorithm is ef- fective for LQ optimal control problems with control inequality constraints.展开更多
This paper addresses the generalized linear complementarity problem (GLCP) over a polyhedral cone. To solve the problem, we first equivalently convert the problem into an affine variational inequalities problem over...This paper addresses the generalized linear complementarity problem (GLCP) over a polyhedral cone. To solve the problem, we first equivalently convert the problem into an affine variational inequalities problem over a closed polyhedral cone, and then propose a new type of method to solve the GLCP based on the error bound estimation. The global and R-linear convergence rate is established. The numerical experiments show the efficiency of the method.展开更多
In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient proje...In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient projection method is given for solving the stochastic generalized linear complementarity problems. The global convergence of the conjugate gradient projection method is proved and the related numerical results are also reported.展开更多
The Lagrange-I equations and measure differential equations for multibody systems with unilateral and bilateral constraints are constructed. For bilateral constraints, frictional forces and their impulses contain the ...The Lagrange-I equations and measure differential equations for multibody systems with unilateral and bilateral constraints are constructed. For bilateral constraints, frictional forces and their impulses contain the products of the filled-in relay function induced by Coulomb friction and the absolute values of normal constraint reactions. With the time-stepping impulse-velocity scheme, the measure differential equations are discretized. The equations of horizontal linear complementarity problems (HLCPs), which are used to compute the impulses, are constructed by decomposing the absolute function and the filled-in relay function. These HLCP equations degenerate into equations of LCPs for frictional unilateral constraints, or HLCPs for frictional bilateral constraints. Finally, a numerical simulation for multibody systems with both unilateral and bilateral constraints is presented.展开更多
Feasible-interior-point algorithms start from a strictly feasible interior point,but infeassible-interior-point algorithms just need to start from an arbitrary positive point,we give a potential reduction algorithm fr...Feasible-interior-point algorithms start from a strictly feasible interior point,but infeassible-interior-point algorithms just need to start from an arbitrary positive point,we give a potential reduction algorithm from an infeasible-starting-point for a class of non-monotone linear complementarity problem.Its polynomial complexity is analyzed.After finite iterations the algorithm produces an approximate solution of the problem or shows that there is no feasible optimal solution in a large region.展开更多
A one_step smoothing Newton method is proposed for solving the vertical linear complementarity problem based on the so_called aggregation function. The proposed algorithm has the following good features: (ⅰ) It solve...A one_step smoothing Newton method is proposed for solving the vertical linear complementarity problem based on the so_called aggregation function. The proposed algorithm has the following good features: (ⅰ) It solves only one linear system of equations and does only one line search at each iteration; (ⅱ) It is well_defined for the vertical linear complementarity problem with vertical block P 0 matrix and any accumulation point of iteration sequence is its solution.Moreover, the iteration sequence is bounded for the vertical linear complementarity problem with vertical block P 0+R 0 matrix; (ⅲ) It has both global linear and local quadratic convergence without strict complementarity. Many existing smoothing Newton methods do not have the property (ⅲ).展开更多
This paper proposes an infeasible interior-point algorithm for linear complementarity problem with full-Newton steps.The main iteration consists of a feasibility step and several centrality steps.No more than O(n log...This paper proposes an infeasible interior-point algorithm for linear complementarity problem with full-Newton steps.The main iteration consists of a feasibility step and several centrality steps.No more than O(n log(n /ε))iterations are required for getting ε-solution of the problem at hand,which coincides with the best-known bound for infeasible interior-point algorithms.展开更多
It has been shown in various papers that most interior-point algorithms for linear optimization and their analysis can be generalized to P_*(κ) linear complementarity problems.This paper presents an extension of t...It has been shown in various papers that most interior-point algorithms for linear optimization and their analysis can be generalized to P_*(κ) linear complementarity problems.This paper presents an extension of the recent variant of Mehrotra's second order algorithm for linear optimijation.It is shown that the iteration-complexity bound of the algorithm is O(4κ + 3)√14κ + 5 nlog(x0)Ts0/ε,which is similar to that of the corresponding algorithm for linear optimization.展开更多
A polynomial interior-point algorithm is presented for monotone linear complementarity problem (MLCP) based on a class of kernel functions with the general barrier term, which are called general kernel functions. Un...A polynomial interior-point algorithm is presented for monotone linear complementarity problem (MLCP) based on a class of kernel functions with the general barrier term, which are called general kernel functions. Under the mild conditions for the barrier term, the complexity bound of algorithm in terms of such kernel function and its derivatives is obtained. The approach is actually an extension of the existing work which only used the specific kernel functions for the MLCP.展开更多
A modified sequential linear programming algorithm is presented, whose subproblem is always solvable, for the extended linear complementarity problem (XLCP), the global convergence of the algorithm under assumption of...A modified sequential linear programming algorithm is presented, whose subproblem is always solvable, for the extended linear complementarity problem (XLCP), the global convergence of the algorithm under assumption of X-row sufficiency or X-colunm monotonicity is proved. As a result, a sufficient condition for existence and boundedness of solution to the XLCP are obtained.展开更多
Mehrotra-type predictor-corrector algorithm, as one of most efficient interior point methods, has become the backbones of most optimization packages. Salahi et al. proposed a cut strategy based algorithm for linear op...Mehrotra-type predictor-corrector algorithm, as one of most efficient interior point methods, has become the backbones of most optimization packages. Salahi et al. proposed a cut strategy based algorithm for linear optimization that enjoyed polynomial complexity and maintained its efficiency in practice. We extend their algorithm to P. (~) linear complementar- ity problems. The way of choosing corrector direction for our algorithm is different from theirs: The new algorithm has been proved to have an O((1 + 4k)(17 + 19k)√1+2kn 3/2 log(x0)Ts0/ε) worst case iteration complexity bound. An numerical experiment verifies the feasibility of the new algorithm.展开更多
The extended linear complementarity problem(denoted by ELCP) can be reformulated as the solution of a nonsmooth system of equations. By the symmetrically perturbed CHKS smoothing function, the ELCP is approximated by ...The extended linear complementarity problem(denoted by ELCP) can be reformulated as the solution of a nonsmooth system of equations. By the symmetrically perturbed CHKS smoothing function, the ELCP is approximated by a family of parameterized smooth equations. A one-step smoothing Newton method is designed for solving the ELCP. The proposed algorithm is proved to be globally convergent under suitable assumptions.展开更多
In this paper,by means of constructing the linear complementarity problems into the corresponding absolute value equation,we raise an iteration method,called as the nonlinear lopsided HSS-like modulus-based matrix spl...In this paper,by means of constructing the linear complementarity problems into the corresponding absolute value equation,we raise an iteration method,called as the nonlinear lopsided HSS-like modulus-based matrix splitting iteration method,for solving the linear complementarity problems whose coefficient matrix in R^(n×n)is large sparse and positive definite.From the convergence analysis,it is appreciable to see that the proposed method will converge to its accurate solution under appropriate conditions.Numerical examples demonstrate that the presented method precede to other methods in practical implementation.展开更多
It is well known that a linear complementarity problem (LCP) can be formulated as a system of nonsmooth equations F(x) = 0, where F is a map from Rninto itself. Using the aggregate function, we construct a smooth Newt...It is well known that a linear complementarity problem (LCP) can be formulated as a system of nonsmooth equations F(x) = 0, where F is a map from Rninto itself. Using the aggregate function, we construct a smooth Newton homotopy H(x,t) = 0. Under certain assumptions, we prove the existence of a smooth path defined by the Newton homotopy which leads to a solution of the original problem, and study limiting properties of the homotopy path.展开更多
Abstract In this paper,a class of generalized parallel matrix multisplitting relaxation methods for solving linear complementarity problems on the high speed multiprocessor systems is set up.This class of methods not ...Abstract In this paper,a class of generalized parallel matrix multisplitting relaxation methods for solving linear complementarity problems on the high speed multiprocessor systems is set up.This class of methods not only includes all the existing relaxation methods for the linear complementarity problems,but also yields a lot of novel ones in the sense of multisplitting.We establish the convergence theories of this class of generalized parallel multisplitting relaxation methods under the condition that the system matrix is an H matrix with positive diagonal elements.展开更多
基金Supported by the National Natural Science Foundation of China(12371378,41725017,11901098).
文摘A family of neural networks is proposed to solve linear complementarity problems(LCP).The neural networks are constructed from the novel equivalent model of LCP,which is reformulated by utilizing the modulus and smoothing technologies.Some important properties of the proposed novel equivalent model are summarized.In addition,the stability properties of the proposed steepest descent-based neural networks for LCP are analyzed.In order to illustrate the theoretical results,we provide some numerical simulations and compare the proposed neural networks with existing neural networks based on the NCP-functions.Numerical results indicate that the performance of the proposed neural networks is effective and robust.
基金Supported by the Optimisation Theory and Algorithm Research Team(Grant No.23kytdzd004)University Science Research Project of Anhui Province(Grant No.2024AH050631)the General Programs for Young Teacher Cultivation of Educational Commission of Anhui Province(Grant No.YQYB2023090).
文摘In this paper,we propose a new full-Newton step feasible interior-point algorithm for the special weighted linear complementarity problems.The proposed algorithm employs the technique of algebraic equivalent transformation to derive the search direction.It is shown that the proximity measure reduces quadratically at each iteration.Moreover,the iteration bound of the algorithm is as good as the best-known polynomial complexity for these types of problems.Furthermore,numerical results are presented to show the efficiency of the proposed algorithm.
基金Supported by University Science Research Project of Anhui Province(2023AH052921)Outstanding Youth Talent Project of Anhui Province(gxyq2021254)。
文摘In this paper,a new full-Newton step primal-dual interior-point algorithm for solving the special weighted linear complementarity problem is designed and analyzed.The algorithm employs a kernel function with a linear growth term to derive the search direction,and by introducing new technical results and selecting suitable parameters,we prove that the iteration bound of the algorithm is as good as best-known polynomial complexity of interior-point methods.Furthermore,numerical results illustrate the efficiency of the proposed method.
基金supported by the Scientific Computing Research Innovation Team of Guangdong Province(no.2021KCXTD052)the Science and Technology Development Fund,Macao SAR(no.0096/2022/A,0151/2022/A)+3 种基金University of Macao(no.MYRG2020-00035-FST,MYRG2022-00076-FST)the Guangdong Key Construction Discipline Research Capacity Enhancement Project(no.2022ZDJS049)Technology Planning Project of Shaoguan(no.210716094530390)the ScienceFoundation of Shaoguan University(no.SZ2020KJ01).
文摘In this paper,a two-step iteration method is established which can be viewed as a generalization of the existing modulus-based methods for vertical linear complementarity problems given by He and Vong(Appl.Math.Lett.134:108344,2022).The convergence analysis of the proposed method is established,which can improve the existing results.Numerical examples show that the proposed method is efficient with the two-step technique.
基金Supported by the Scientific Research Project of Education Department of Hunan Province(Grant No.21C0837).
文摘A partition reduction method is used to obtain new upper bounds for the inverses of H-matrices and S-strictly diagonally dominant(S-SDD)matrices.The estimates are expressed via the determinants of third order matrices.Numerical experiments with various random matrices show that they are stable and better than the estimates presented in literatures.We use these upper bounds to improve known error estimates for linear complementarity problems with H-matrices and S-SDD matrices.
基金supported by the National Natural Science Foundation of China(Nos.11102031 and 11272076)the Fundamental Research Funds for Central Universities(No.DUT13LK25)+2 种基金the Key Laboratory Fund of Liaoning Province(No.L2013015)the China Postdoctoral Science Foundation(No.2014M550155)the State Key Laboratory of Mechanics and Control of Mechanical Structures(Nanjing University of Aeronautics and Astronautics)(No.MCMS-0114G02)
文摘A parametric variational principle and the corresponding numerical algo- rithm are proposed to solve a linear-quadratic (LQ) optimal control problem with control inequality constraints. Based on the parametric variational principle, this control prob- lem is transformed into a set of Hamiltonian canonical equations coupled with the linear complementarity equations, which are solved by a linear complementarity solver in the discrete-time domain. The costate variable information is also evaluated by the proposed method. The parametric variational algorithm proposed in this paper is suitable for both time-invariant and time-varying systems. Two numerical examples are used to test the validity of the proposed method. The proposed algorithm is used to astrodynamics to solve a practical optimal control problem for rendezvousing spacecrafts with a finite low thrust. The numerical simulations show that the parametric variational algorithm is ef- fective for LQ optimal control problems with control inequality constraints.
基金supported by National Natural Science Foundation of China (No. 10771120)
文摘This paper addresses the generalized linear complementarity problem (GLCP) over a polyhedral cone. To solve the problem, we first equivalently convert the problem into an affine variational inequalities problem over a closed polyhedral cone, and then propose a new type of method to solve the GLCP based on the error bound estimation. The global and R-linear convergence rate is established. The numerical experiments show the efficiency of the method.
文摘In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient projection method is given for solving the stochastic generalized linear complementarity problems. The global convergence of the conjugate gradient projection method is proved and the related numerical results are also reported.
基金supported by the National Natural Science Foundation of China (10672007)
文摘The Lagrange-I equations and measure differential equations for multibody systems with unilateral and bilateral constraints are constructed. For bilateral constraints, frictional forces and their impulses contain the products of the filled-in relay function induced by Coulomb friction and the absolute values of normal constraint reactions. With the time-stepping impulse-velocity scheme, the measure differential equations are discretized. The equations of horizontal linear complementarity problems (HLCPs), which are used to compute the impulses, are constructed by decomposing the absolute function and the filled-in relay function. These HLCP equations degenerate into equations of LCPs for frictional unilateral constraints, or HLCPs for frictional bilateral constraints. Finally, a numerical simulation for multibody systems with both unilateral and bilateral constraints is presented.
基金Supported by the National Natural Science Foun dation of China(70371032)the Doctoral Educational Foundation 0f China of the Ministry of Education(20020486035)
文摘Feasible-interior-point algorithms start from a strictly feasible interior point,but infeassible-interior-point algorithms just need to start from an arbitrary positive point,we give a potential reduction algorithm from an infeasible-starting-point for a class of non-monotone linear complementarity problem.Its polynomial complexity is analyzed.After finite iterations the algorithm produces an approximate solution of the problem or shows that there is no feasible optimal solution in a large region.
文摘A one_step smoothing Newton method is proposed for solving the vertical linear complementarity problem based on the so_called aggregation function. The proposed algorithm has the following good features: (ⅰ) It solves only one linear system of equations and does only one line search at each iteration; (ⅱ) It is well_defined for the vertical linear complementarity problem with vertical block P 0 matrix and any accumulation point of iteration sequence is its solution.Moreover, the iteration sequence is bounded for the vertical linear complementarity problem with vertical block P 0+R 0 matrix; (ⅲ) It has both global linear and local quadratic convergence without strict complementarity. Many existing smoothing Newton methods do not have the property (ⅲ).
基金Supported by the National Natural Science Foundation of China(71071119)
文摘This paper proposes an infeasible interior-point algorithm for linear complementarity problem with full-Newton steps.The main iteration consists of a feasibility step and several centrality steps.No more than O(n log(n /ε))iterations are required for getting ε-solution of the problem at hand,which coincides with the best-known bound for infeasible interior-point algorithms.
基金supported by the Natural Science Foundation of Hubei Province of China(2008CDZ047)
文摘It has been shown in various papers that most interior-point algorithms for linear optimization and their analysis can be generalized to P_*(κ) linear complementarity problems.This paper presents an extension of the recent variant of Mehrotra's second order algorithm for linear optimijation.It is shown that the iteration-complexity bound of the algorithm is O(4κ + 3)√14κ + 5 nlog(x0)Ts0/ε,which is similar to that of the corresponding algorithm for linear optimization.
基金supported by the National Natural Science Foundation of China (Grant No.10771133)the Shanghai Pujiang Program (Grant No.06PJ14039)
文摘A polynomial interior-point algorithm is presented for monotone linear complementarity problem (MLCP) based on a class of kernel functions with the general barrier term, which are called general kernel functions. Under the mild conditions for the barrier term, the complexity bound of algorithm in terms of such kernel function and its derivatives is obtained. The approach is actually an extension of the existing work which only used the specific kernel functions for the MLCP.
文摘A modified sequential linear programming algorithm is presented, whose subproblem is always solvable, for the extended linear complementarity problem (XLCP), the global convergence of the algorithm under assumption of X-row sufficiency or X-colunm monotonicity is proved. As a result, a sufficient condition for existence and boundedness of solution to the XLCP are obtained.
基金Supported by the Natural Science Foundation of Hubei Province(Grant No.2008CDZ047)
文摘Mehrotra-type predictor-corrector algorithm, as one of most efficient interior point methods, has become the backbones of most optimization packages. Salahi et al. proposed a cut strategy based algorithm for linear optimization that enjoyed polynomial complexity and maintained its efficiency in practice. We extend their algorithm to P. (~) linear complementar- ity problems. The way of choosing corrector direction for our algorithm is different from theirs: The new algorithm has been proved to have an O((1 + 4k)(17 + 19k)√1+2kn 3/2 log(x0)Ts0/ε) worst case iteration complexity bound. An numerical experiment verifies the feasibility of the new algorithm.
基金Supported by the NNSF of China(11071041, 11171257)
文摘The extended linear complementarity problem(denoted by ELCP) can be reformulated as the solution of a nonsmooth system of equations. By the symmetrically perturbed CHKS smoothing function, the ELCP is approximated by a family of parameterized smooth equations. A one-step smoothing Newton method is designed for solving the ELCP. The proposed algorithm is proved to be globally convergent under suitable assumptions.
基金This work is supported by the National Natural Science Foundation of China with No.11461046the Natural Science Foundation of Jiangxi Province of China with Nos.20181ACB20001 and 20161ACB21005.
文摘In this paper,by means of constructing the linear complementarity problems into the corresponding absolute value equation,we raise an iteration method,called as the nonlinear lopsided HSS-like modulus-based matrix splitting iteration method,for solving the linear complementarity problems whose coefficient matrix in R^(n×n)is large sparse and positive definite.From the convergence analysis,it is appreciable to see that the proposed method will converge to its accurate solution under appropriate conditions.Numerical examples demonstrate that the presented method precede to other methods in practical implementation.
文摘It is well known that a linear complementarity problem (LCP) can be formulated as a system of nonsmooth equations F(x) = 0, where F is a map from Rninto itself. Using the aggregate function, we construct a smooth Newton homotopy H(x,t) = 0. Under certain assumptions, we prove the existence of a smooth path defined by the Newton homotopy which leads to a solution of the original problem, and study limiting properties of the homotopy path.
文摘Abstract In this paper,a class of generalized parallel matrix multisplitting relaxation methods for solving linear complementarity problems on the high speed multiprocessor systems is set up.This class of methods not only includes all the existing relaxation methods for the linear complementarity problems,but also yields a lot of novel ones in the sense of multisplitting.We establish the convergence theories of this class of generalized parallel multisplitting relaxation methods under the condition that the system matrix is an H matrix with positive diagonal elements.