期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
LIMITED MEMORY BFGS METHOD BY USING LINEAR INDEPENDENT SEARCH DIRECTIONS
1
作者 倪勤 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2001年第2期236-239,共4页
The degree of numerical linear independence is proposed and discussed. Based on this linear independence theory, a modified limited memory BFGS method is deve loped. Similar to the standard limited memory method, thi... The degree of numerical linear independence is proposed and discussed. Based on this linear independence theory, a modified limited memory BFGS method is deve loped. Similar to the standard limited memory method, this new method determines the new update by applying the updating formula m times to an initial positive diagonal matrix using the m previous pairs of the change in iteration and gradient. Besides the most recent pair of the change, which guarantees the quadratic termination, the choice of the other ( m -1) pairs of the change in the new method is dependent on the degree of numerical linear independence of previous search directions. In addition, the numerical linear independence theory is further discussed and the computation of the degree of linear independence is simplified. Theoretical and numerical results show that this new modified method improves efficiently the standard limited memory method. 展开更多
关键词 unconstrained optimization limited memory method BFGS method degree of linear independence
在线阅读 下载PDF
Improved hybrid iterative optimization method for seismic full waveform inversion
2
作者 王义 董良国 刘玉柱 《Applied Geophysics》 SCIE CSCD 2013年第3期265-277,357,358,共15页
In full waveform inversion (FWI), Hessian information of the misfit function is of vital importance for accelerating the convergence of the inversion; however, it usually is not feasible to directly calculate the He... In full waveform inversion (FWI), Hessian information of the misfit function is of vital importance for accelerating the convergence of the inversion; however, it usually is not feasible to directly calculate the Hessian matrix and its inverse. Although the limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) or Hessian-free inexact Newton (HFN) methods are able to use approximate Hessian information, the information they collect is limited. The two methods can be interlaced because they are able to provide Hessian information for each other; however, the performance of the hybrid iterative method is dependent on the effective switch between the two methods. We have designed a new scheme to realize the dynamic switch between the two methods based on the decrease ratio (DR) of the misfit function (objective function), and we propose a modified hybrid iterative optimization method. In the new scheme, we compare the DR of the two methods for a given computational cost, and choose the method with a faster DR. Using these steps, the modified method always implements the most efficient method. The results of Marmousi and overthrust model testings indicate that the convergence with our modified method is significantly faster than that in the L-BFGS method with no loss of inversion quality. Moreover, our modified outperforms the enriched method by a little speedup of the convergence. It also exhibits better efficiency than the HFN method. 展开更多
关键词 Full waveform inversion Hessian information limited memory BFGS method Hessian-free inexact Newton method decrease ratio
在线阅读 下载PDF
LIMITED MEMORY BFGS METHOD FOR NONLINEAR MONOTONE EQUATIONS 被引量:4
3
作者 Weijun Zhou Donghui Li 《Journal of Computational Mathematics》 SCIE EI CSCD 2007年第1期89-96,共8页
In this paper, we propose an algorithm for solving nonlinear monotone equations by combining the limited memory BFGS method (L-BFGS) with a projection method. We show that the method is globally convergent if the eq... In this paper, we propose an algorithm for solving nonlinear monotone equations by combining the limited memory BFGS method (L-BFGS) with a projection method. We show that the method is globally convergent if the equation involves a Lipschitz continuous monotone function. We also present some preliminary numerical results. 展开更多
关键词 limited memory BFGS method Monotone function Projection method.
原文传递
Global Convergence of a Modified Limited Memory BFGS Method for Non-convex Minimization
4
作者 Yun-hai XIAO Ting-feng Zeng-xin WEI 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2013年第3期555-566,共12页
In this paper, a modified limited memory BFGS method for solving large-scale unconstrained optimization problems is proposed. A remarkable feature of the proposed method is that it possesses global convergence propert... In this paper, a modified limited memory BFGS method for solving large-scale unconstrained optimization problems is proposed. A remarkable feature of the proposed method is that it possesses global convergence property without convexity assumption on the objective function. Under some suitable conditions, the global convergence of the proposed method is proved. Some numerical results are reported which illustrate that the proposed method is efficient. 展开更多
关键词 Non-convex minimization secant equation limited memory BFGS method global convergence
原文传递
A PERTURBED QUASI-NEWTON ALGORITHM FOR BOUND-CONSTRAINED GLOBAL OPTIMIZATION
5
作者 Raouf Ziadi Abdelatif Bencherif-Madani 《Journal of Computational Mathematics》 2025年第1期143-173,共31页
This paper presents a stochastic modification of a limited memory BFGS method to solve bound-constrained global minimization problems with a differentiable cost function with no further smoothness. The approach is a s... This paper presents a stochastic modification of a limited memory BFGS method to solve bound-constrained global minimization problems with a differentiable cost function with no further smoothness. The approach is a stochastic descent method where the deterministic sequence, generated by a limited memory BFGS method, is replaced by a sequence of random variables. To enhance the performance of the proposed algorithm and make sure the perturbations lie within the feasible domain, we have developed a novel perturbation technique based on truncating a multivariate double exponential distribution to deal with bound-constrained problems;the theoretical study and the simulation of the developed truncated distribution are also presented. Theoretical results ensure that the proposed method converges almost surely to the global minimum. The performance of the algorithm is demonstrated through numerical experiments on some typical test functions as well as on some further engineering problems. The numerical comparisons with stochastic and meta-heuristic methods indicate that the suggested algorithm is promising. 展开更多
关键词 Global optimization limited memory BFGS method Stochastic perturbation Truncated multivariate double exponential distribution
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部