Object imaging beyond the direct line of sight is significant for applications in robotic vision,remote sensing,autonomous driving,and many other areas.Reconstruction of a non-line-of-sight(NLOS)screen is a complex in...Object imaging beyond the direct line of sight is significant for applications in robotic vision,remote sensing,autonomous driving,and many other areas.Reconstruction of a non-line-of-sight(NLOS)screen is a complex inverse problem that comes with ultrafast time-resolved imager requirements and substantial computational demands to extract information from the multi-bounce scattered light.Consequently,the echo signal always suffers from serious deterioration in both intensity and shape,leading to limited resolution and image contrast.Here,we propose a concept of vectorial digitelligent optics for high-resolution NLOS imaging to cancel the wall’s scattering and refocus the light onto hidden targets for enhanced echo.In this approach,the polarization and wavefront of the laser spot are intelligently optimized via a feedback algorithm to form a near-perfect focusing pattern through a random scattering wall.By raster scanning the focusing spot across the object’s surface within the optical-memory-effect range of the wall,we obtain nearly diffraction-limited NLOS imaging with an enhanced signal-to-noise ratio.Our experimental results demonstrate a resolution of 0.40 mm at a distance of 0.35 m,reaching the diffraction limit of the system.Furthermore,we demonstrate that the proposed method is feasible for various complex NLOS scenarios.Our methods may open an avenue for active imaging,communication,and laser wireless power transfer.展开更多
Femtosecond laser processing is an important machining method for micro-optical components such as Fresnel zone plate(FZP).However,the low processing efficiency of the femtosecond laser restricts its application.Here,...Femtosecond laser processing is an important machining method for micro-optical components such as Fresnel zone plate(FZP).However,the low processing efficiency of the femtosecond laser restricts its application.Here,a femtosecond laser Bessel beam is proposed to process micro-FZP,which is modulated from a Gaussian beam to a Bessel annular beam.The processing time for FZP with an outer diameter of 60μm is reduced from 30 min to 1.5 min on an important semiconductor material gallium arsenide(GaAs),which significantly improves the processing efficiency.In the modulation process,a central ablation hole that has an adverse effect on the diffraction performance is produced,and the adverse effect is eliminated by superimposing the blazed grating hologram.Meanwhile,the FZP machined by spatial light modulator(SLM)has good morphology and higher diffraction efficiency,which provides a strong guarantee for the application of micro-FZP in computed tomography and solar photovoltaic cells.展开更多
This review examines the state-of-the-art in spatial manipulation of ultrafast laser processing using dynamic light modulators,with a particular focus on liquid crystal-based systems.We discuss phase modulation strate...This review examines the state-of-the-art in spatial manipulation of ultrafast laser processing using dynamic light modulators,with a particular focus on liquid crystal-based systems.We discuss phase modulation strategies and highlight the current limitations and challenges in surface and bulk processing.Specifically,we emphasize the delicate balance between high-fidelity beam shaping and energy efficiency,both critical for surface and bulk processing applications.Given the inherent physical limitations of spatial light modulators such as spatial resolution,fill factor,and phase modulation range.We explore techniques developed to bridge the gap between desired intensity distributions and actual experimental beam profiles.We present various laser light modulation technologies and the main algorithmic strategies for obtaining modulation patterns.The paper includes application examples across a wide range of fields,from surgery to surface structuring,cutting,bulk photo-inscription of optical functions,and additive manufacturing,highlighting the significant enhancements in processing speed and precision due to spatial beam shaping.The diverse applications and the technological limitations underscore the need for adapted modulation pattern calculation methods.We discuss several advancements addressing these challenges,involving both experimental and algorithmic developments,including the recent incorporation of artificial intelligence.Additionally,we cover recent progress in phase and pulse front control based on spatial modulators,which introduces an extra control parameter for light excitation with high potential for achieving more controlled processing outcomes.展开更多
A new scheme of super-resolution optical fluctuation imaging(SOFI)is proposed to broaden its application in the high-order cumulant reconstruction by optimizing blinking characteristics,eliminating noise in raw data a...A new scheme of super-resolution optical fluctuation imaging(SOFI)is proposed to broaden its application in the high-order cumulant reconstruction by optimizing blinking characteristics,eliminating noise in raw data and applying multi-resolution analysis in cumulant reconstruction.A motor-driven rotating mask optical modulation system is designed to adjust the excitation lightfield and allows for fast deployment.Active-modulated fluorescence fluctuation superresolution microscopy with multi-resolution analysis(AMF-MRA-SOFI)demonstrates enhanced resolution ability and reconstruction quality in experiments performed on sample of conventional dyes,achieving a resolution of 100 nm in the fourth order compared to conventional SOFI reconstruction.Furthermore,our approach combining expansion super-resolution achieved a resolution at-57 nm.展开更多
Vortex beams have attracted great attention due to their promising applications in the fields of high-capacity optical communication,optical micromanipulation,and quantum information processing.Here,we demonstrate vor...Vortex beams have attracted great attention due to their promising applications in the fields of high-capacity optical communication,optical micromanipulation,and quantum information processing.Here,we demonstrate vortex beams with flexible control of the topological charge and modes in a carbon dots random laser for the first time.Vortex beams with different types,including the Laguerre-Gaussian(LG),Bessel-Gaussian(BG),LG-superposition,and polarized vortex beams with topological charges up to 50,have been successfully achieved.Moreover,vortex beams can be well realized in carbon dots random lasers with different emission wavelengths covering from 465 to 612 nm.This work would not only enrich the types of vortex laser,especially for solution-processable lasers,but also provide a new route to realizing multicolor and wavelength-tunable vortex lasers.展开更多
Plasmonic modes within metal nanostructures play a pivotal role in various nanophotonic applications.However,a significant challenge arises from the fixed shapes of nanostructures post-fabrication,resulting in limited...Plasmonic modes within metal nanostructures play a pivotal role in various nanophotonic applications.However,a significant challenge arises from the fixed shapes of nanostructures post-fabrication,resulting in limited modes under ordinary illumination.A promising solution lies in far-field control facilitated by spatial light modulators(SLMs),which enable on-site,real-time,and non-destructive manipulation of plasmon excitation.Through the robust modulation of the incident light using SLMs,this approach enables the generation,optimization,and dynamic control of surface plasmon polariton(SPP)and localized surface plasmon(LSP)modes.The versatility of this technique introduces a rich array of tunable degrees of freedom to plasmon-enhanced spectroscopy,offering novel approaches for signal optimization and functional expansion in this field.This paper provides a comprehensive review of the generation and modulation of SPP and LSP modes through far-field control with SLMs and highlights the diverse applications of this optical technology in plasmon-enhanced spectroscopy.展开更多
The primary mirrors of current and future large telescopes always employ a segmented mirror configuration.The small but non-negligible gaps between neighboring segments cause additional diffraction,which restricts the...The primary mirrors of current and future large telescopes always employ a segmented mirror configuration.The small but non-negligible gaps between neighboring segments cause additional diffraction,which restricts the performance of high-contrast coronagraph.To solve this problem,we propose a coronagraph system based on a single liquid crystal spatial light modulator(SLM).This spatial light modulator is used for amplitude apodization,and its feasibility and potential performance are demonstrated using a laboratory setup using the stochastic parallel gradient descent(SPGD)algorithm to control the spatial light modulator,which is based on point spread function(PSF)sensing and evaluation and optimized for maximum contrast in the discovery working area as a merit function.The system delivers a contrast in the order of 10−6,and shows excellent potential to be used in current and future large aperture telescopes,both on the ground and in space.展开更多
This project adopts an advanced microcontroller as the core control unit,which accurately commands the servo drive,realizes the real-time light chasing and charging function of the solar panel,and effectively manages ...This project adopts an advanced microcontroller as the core control unit,which accurately commands the servo drive,realizes the real-time light chasing and charging function of the solar panel,and effectively manages the power supply system of the street light.At the same time,the system is able to continuously monitor the operation status of the servo within the range of 0°to 180°to ensure that it is trouble-free and not offline.The hardware system construction consists of five modules:a power module,solar panel module,servo module,street light module,and Organic Light-Emitting Diode(OLED)display module.Each module works together to support the stable operation of the whole system.The system workflow is to accurately determine the direction of the light source by collecting real-time light intensity data through four precision photoresistors.Subsequently,the microcontroller intelligently controls the helm module based on these data to drive the solar panel to rotate within a range of 180°to accurately track the sun’s orientation.The street light provides two lighting modes,automatic and manual,to meet the needs of different scenarios.During the daytime,the solar panels work actively to monitor and collect solar energy efficiently in real-time,meanwhile,when night falls,the solar panels switch to standby mode and the streetlights light up automatically,illuminating the road ahead for pedestrians.Compared with the traditional solar street lights on the market,the intelligent solar light chasing road system introduced in this project has significant advantages.Its unique light-chasing algorithm enables the solar panel to continuously track the light source from sunrise to sunset,thus significantly improving the charging efficiency.Compared with traditional street lights,the biggest advantage of this project is the proposed light-chasing algorithm,which can always charge from sunrise until sunset,making the charging efficiency increase by 38%to 47%.The charging efficiency is 20%to 38%higher than that of traditional street lamps.Simultaneously,the biggest advantage of this project is that the power storage capacity is higher than 35%of the traditional solar street light.Bringing users a more durable and stable lighting experience.展开更多
The liquid crystal spatial light modulator (LC SLM) is very suitable for wavefront correction and optical testing and can produce a wavefront with large phase change and high accuracy. The LC SLM is composed of thou...The liquid crystal spatial light modulator (LC SLM) is very suitable for wavefront correction and optical testing and can produce a wavefront with large phase change and high accuracy. The LC SLM is composed of thousands of pixels and the pixel size and shape have effects on the diffractive characteristics of the LC SLM. This paper investigates the pixel effect on the phase of the wavefront with the scalar diffractive theory. The results show that the maximum optical path difference modulation is 41μm to produce the paraboloid wavefront with the peak to valley accuracy better than λ/10. Effects of the mismatch between the pixel and the period, and black matrix on the diffraction efficiency of the LC SLM are also analysed with the Fresnel phase lens model. The ability of the LC SLM is discussed for optical testing and wavefront correction based on the calculated results. It shows that the LC SLM can be used as a wavefront corrector and a compensator.展开更多
Spatial light modulators,as dynamic flat-panel optical devices,have witnessed rapid development over the past two decades,concomitant with the advancements in micro-and opto-electronic integration technology.In partic...Spatial light modulators,as dynamic flat-panel optical devices,have witnessed rapid development over the past two decades,concomitant with the advancements in micro-and opto-electronic integration technology.In particular,liquid-crystal spatial light modulator(LC-SLM)technologies have been regarded as versatile tools for generating arbitrary optical fields and tailoring all degrees of freedom beyond just phase and amplitude.These devices have gained significant interest in the nascent field of structured light in space and time,facilitated by their ease of use and real-time light manipulation,fueling both fundamental research and practical applications.Here we provide an overview of the key working principles of LC-SLMs and review the significant progress made to date in their deployment for various applications,covering topics as diverse as beam shaping and steering,holography,optical trapping and tweezers,measurement,wavefront coding,optical vortex,and quantum optics.Finally,we conclude with an outlook on the potential opportunities and technical challenges in this rapidly developing field.展开更多
Two methods:high-power,short-time,single-shot irradiation(Method A) and low-power,long-time,multi-shot irradiation(Method B) are investigated to mitigate the UV damage growth in fused silica by using a 10.6-μm C...Two methods:high-power,short-time,single-shot irradiation(Method A) and low-power,long-time,multi-shot irradiation(Method B) are investigated to mitigate the UV damage growth in fused silica by using a 10.6-μm CO2 laser.To verify the mitigation effect of the two methods,the laser induced damage thresholds(LIDTs) of the mitigated sites are tested with a 355-nm,6.4-ns Nd:YAG laser,and the light modulation of the mitigation sites are tested with a 351-nm continuous Nd:YLF laser.The mitigated damaged sites treated with the two methods have almost the same LIDTs,which can recover to the level of pristine material.Compared with Method A,Method B produces mitigated sites with low crater depth and weak light modulation.In addition,there is no raised rim or re-deposited debris formed around the crater edge for Method B.Theoretical calculation is utilized to evaluate the central temperature of the CO2 laser beam irradiated zone and the radius of the crater.It is indicated that the calculated results are consistent with the experimental results.展开更多
For the nonlinearity distortion problem of Mach-Zehnder modulator(MZM)applied in the on-board microwave photonics system,the situation for two input radio frequency(RF)signals with different frequencies and phases is ...For the nonlinearity distortion problem of Mach-Zehnder modulator(MZM)applied in the on-board microwave photonics system,the situation for two input radio frequency(RF)signals with different frequencies and phases is discussed,and an exact analytical solution is derived with the method of expanding Bessel series and Graf addition theory.According to the analytical expression,the nonlinearity characteristics of the modulator can be precisely predicted,and the system performance can be optimized.The correctness of the analytical solution is approved by simulation results.Analytical results indicate that the nonlinearity distortion is suppressed as the decrease of modulation index,the increase of direct current bias phase shift and phase difference between two input RF signals.When the phase difference equals zero orπand the direct current bias phase shift isπ/2,there are only odd-order distortion terms.When the phase difference equals zero orπand the direct current bias phase shift isπ,there are only even-order distortion terms.展开更多
We report three-dimensional fluorescence emission difference(3D-FED)microscopy using a spatial light modulator(SLM).Zero phase,0–2vortex phase and binary 0-pi phase are loaded on the SLM to generate the correspondin...We report three-dimensional fluorescence emission difference(3D-FED)microscopy using a spatial light modulator(SLM).Zero phase,0–2vortex phase and binary 0-pi phase are loaded on the SLM to generate the corresponding solid,doughnut and z-axis hollow excitation spot,respectively.Our technique achieves super-resolved image by subtracting three di®erently acquired images with proper subtractive factors.Detailed theoretical analysis and simulation tests are proceeded to testify the performance of 3D-FED.Also,the improvement of lateral and axial resolution is demonstrated by imaging 100 nm°uorescent beads.The experiment yields lateral resolution of 140 nm and axial resolution of approximate 380 nm.展开更多
This paper proposes a scheme of axial triple-well optical dipole trap by employing a simple optical system composed of a circular cosine grating and a lens. Three optical wells separated averagely by -37 μm were crea...This paper proposes a scheme of axial triple-well optical dipole trap by employing a simple optical system composed of a circular cosine grating and a lens. Three optical wells separated averagely by -37 μm were created when illuminating by a YAG laser with power 1 mW. These wells with average trapping depth -0.5 μK and volume -74 μm^3 are suitable to trap and manipulate an atomic Bose-Einstein condensation (BEC). Due to a controllable grating implemented by a spatial light modulator, an evolution between a triple-well trap and a single-well one is achievable by adjusting the height of potential barrier between adjacent wells. Based on this novel triple-well potentials, the loading and splitting of BEC, as well as the interference between three freely expanding BECs, are also numerically stimulated within the framework of mean-field treatment. By fitting three cosine functions with three Gaussian envelopes to interference fringe, the information of relative phases among three condensates is extracted.展开更多
By using an amplitude-type spatial light modulator to load angular spectrum of Mathieu function distribution along a narrow annular pupils, the Durnin’s experimental setup is extended to generate various types of Mat...By using an amplitude-type spatial light modulator to load angular spectrum of Mathieu function distribution along a narrow annular pupils, the Durnin’s experimental setup is extended to generate various types of Mathieu beams. As a special type of Mathieu beams, Bessel beams are also generated using this optical setup. Furthermore, the optical morphology of the Mathieu beams family are also presented and analyzed.展开更多
This paper proposes a flexible scheme to form various optical multi-well traps for cold atoms or molecules by using a simple optical system composed of an compounded amplitude cosine-only grating and a single lens ill...This paper proposes a flexible scheme to form various optical multi-well traps for cold atoms or molecules by using a simple optical system composed of an compounded amplitude cosine-only grating and a single lens illuminated by a plane light wave or a Gaussian beam. Dynamic manipulation and evolution of multi-well trap can be easily implemented by controlling the modulation frequency of the cosine patterns. It also discusses how to expand this multi-well trap to two-dimensional lattices with single- or multi-well trap by using an orthogonally or non-orthogonally modulated grating, as well as using incoherent multi-beam illumination, and these results show that all the symmetric structures of two-dimensional Bravais lattices can be obtained facilely by using proposed scheme.展开更多
A novel super-junction lateral double-diffused metal-oxide semiconductor (SJ-LDMOS) with a partial lightly doped P pillar (PD) is proposed. Firstly, the reduction in the partial P pillar charges ensures the charge...A novel super-junction lateral double-diffused metal-oxide semiconductor (SJ-LDMOS) with a partial lightly doped P pillar (PD) is proposed. Firstly, the reduction in the partial P pillar charges ensures the charge balance and suppresses the substrate-assisted depletion effect. Secondly, the new electric field peak produced by the P/P junction modulates the surface electric field distribution. Both of these result in a high breakdown voltage (BV). In addition, due to the same conduction paths, the specific on-resistance (Ron,sp) of the PD SJ-LDMOS is approximately identical to the conventional SJ-LDMOS. Simulation results indicate that the average value of the surface lateral electric field of the PD SJ-LDMOS reaches 20 V/μm at a 15 μm drift length, resulting in a BV of 300 V.展开更多
Multifocal multiphoton microscopy(MMM)has recently become an important tool in biomedicine for performing three-dimensional fastfluorescence imaging.Using various beamsplitting techniques,MMM splits the near-infrared ...Multifocal multiphoton microscopy(MMM)has recently become an important tool in biomedicine for performing three-dimensional fastfluorescence imaging.Using various beamsplitting techniques,MMM splits the near-infrared laser beam into multiple beamlets and produces a multifocal array on the sample for parallel multiphoton excitation and then recordsfluorescence signal from all foci simultaneously with an area array detector,which significantly improves the imaging speed of multiphoton microscopy and allows for high efficiency in use of the excitation light.In this paper,we discuss the features of several MMM setups using different beamsplitting devices,including a Nipkow spinning disk,a microlens array,a set of beamsplitting mirrors,or a diffractive optical element(DOE).In particular,we present our recent work on the development of an MMM using a spatial light modulator(SLM).展开更多
Liquid crystal spatial light modulator (LCSLM) realizing equal-intensity multiple beams often has some features, i.e., phase valley between two adjacent pixels, flybaek region when phase decreases immediately from 2...Liquid crystal spatial light modulator (LCSLM) realizing equal-intensity multiple beams often has some features, i.e., phase valley between two adjacent pixels, flybaek region when phase decreases immediately from 2~r to 0, and inevitable backplane curvature, which are different from those of most conventional diffractive optical elements (DOEs), such as static DOEs. For optimal intensity uniformity, equal-intensity multi-beam generation must be considered for these artifacts. We present a tunable-grating method in which the intensity uniformity can be improved by considering the LCSLM artifacts. For instance, tuning phase modulation depth of the grating, called isosceles triangle multilevel phase grating (ITMPG), can be used not only to improve the intensity uniformity, but also to fast steer four beams with narrow beamwidths, determined by the same effective aperture of ITMPG. Improved intensity uniformity and high relative diffraction efficiency are demonstrated through experiments with phase-only LCSLM.展开更多
An open-loop resonator micro-optic gyro (R-MOG) with a 6 cm-long waveguide-type ring resonator is set up using the phase modulation spectroscopy technique. In the experiment, according to the test parameters of the re...An open-loop resonator micro-optic gyro (R-MOG) with a 6 cm-long waveguide-type ring resonator is set up using the phase modulation spectroscopy technique. In the experiment, according to the test parameters of the resonator, the shot- noise-limited sensitivity is estimated to be 1.07×10-4 rad/s. From the test demodulation signal, the gyro dynamic range of ±7.0×103 rad/s is obtained. Using different phase modulation frequencies, the open-loop gyro output signal is observed when the equivalent gyro rotation ...展开更多
基金supported by the National Key Research and Development Program of China(2023YFB2805800 and 2021YFA1401003)the National Natural Science Foundation of China(62222513).
文摘Object imaging beyond the direct line of sight is significant for applications in robotic vision,remote sensing,autonomous driving,and many other areas.Reconstruction of a non-line-of-sight(NLOS)screen is a complex inverse problem that comes with ultrafast time-resolved imager requirements and substantial computational demands to extract information from the multi-bounce scattered light.Consequently,the echo signal always suffers from serious deterioration in both intensity and shape,leading to limited resolution and image contrast.Here,we propose a concept of vectorial digitelligent optics for high-resolution NLOS imaging to cancel the wall’s scattering and refocus the light onto hidden targets for enhanced echo.In this approach,the polarization and wavefront of the laser spot are intelligently optimized via a feedback algorithm to form a near-perfect focusing pattern through a random scattering wall.By raster scanning the focusing spot across the object’s surface within the optical-memory-effect range of the wall,we obtain nearly diffraction-limited NLOS imaging with an enhanced signal-to-noise ratio.Our experimental results demonstrate a resolution of 0.40 mm at a distance of 0.35 m,reaching the diffraction limit of the system.Furthermore,we demonstrate that the proposed method is feasible for various complex NLOS scenarios.Our methods may open an avenue for active imaging,communication,and laser wireless power transfer.
基金Projects(51875584,51875585,51975590)supported by the National Natural Science Foundation of China。
文摘Femtosecond laser processing is an important machining method for micro-optical components such as Fresnel zone plate(FZP).However,the low processing efficiency of the femtosecond laser restricts its application.Here,a femtosecond laser Bessel beam is proposed to process micro-FZP,which is modulated from a Gaussian beam to a Bessel annular beam.The processing time for FZP with an outer diameter of 60μm is reduced from 30 min to 1.5 min on an important semiconductor material gallium arsenide(GaAs),which significantly improves the processing efficiency.In the modulation process,a central ablation hole that has an adverse effect on the diffraction performance is produced,and the adverse effect is eliminated by superimposing the blazed grating hologram.Meanwhile,the FZP machined by spatial light modulator(SLM)has good morphology and higher diffraction efficiency,which provides a strong guarantee for the application of micro-FZP in computed tomography and solar photovoltaic cells.
基金supported by the French ANRT agence nationale de la recherche technologique under the CIFRE conventions industrielles de formation par la recherche framework.
文摘This review examines the state-of-the-art in spatial manipulation of ultrafast laser processing using dynamic light modulators,with a particular focus on liquid crystal-based systems.We discuss phase modulation strategies and highlight the current limitations and challenges in surface and bulk processing.Specifically,we emphasize the delicate balance between high-fidelity beam shaping and energy efficiency,both critical for surface and bulk processing applications.Given the inherent physical limitations of spatial light modulators such as spatial resolution,fill factor,and phase modulation range.We explore techniques developed to bridge the gap between desired intensity distributions and actual experimental beam profiles.We present various laser light modulation technologies and the main algorithmic strategies for obtaining modulation patterns.The paper includes application examples across a wide range of fields,from surgery to surface structuring,cutting,bulk photo-inscription of optical functions,and additive manufacturing,highlighting the significant enhancements in processing speed and precision due to spatial beam shaping.The diverse applications and the technological limitations underscore the need for adapted modulation pattern calculation methods.We discuss several advancements addressing these challenges,involving both experimental and algorithmic developments,including the recent incorporation of artificial intelligence.Additionally,we cover recent progress in phase and pulse front control based on spatial modulators,which introduces an extra control parameter for light excitation with high potential for achieving more controlled processing outcomes.
基金supported by the National Natural Science Foundation of China(62175034,62175036,32271510)the National Key R&D Program of China(2021YFF0502900)+2 种基金the Science and Technology Research Program of Shanghai(Grant No.19DZ2282100)the Shanghai Key Laboratory of Metasurfaces for Light Manipulation(23dz2260100)the Shanghai Engineering Technology Research Center of Hair Medicine(19DZ2250500).
文摘A new scheme of super-resolution optical fluctuation imaging(SOFI)is proposed to broaden its application in the high-order cumulant reconstruction by optimizing blinking characteristics,eliminating noise in raw data and applying multi-resolution analysis in cumulant reconstruction.A motor-driven rotating mask optical modulation system is designed to adjust the excitation lightfield and allows for fast deployment.Active-modulated fluorescence fluctuation superresolution microscopy with multi-resolution analysis(AMF-MRA-SOFI)demonstrates enhanced resolution ability and reconstruction quality in experiments performed on sample of conventional dyes,achieving a resolution of 100 nm in the fourth order compared to conventional SOFI reconstruction.Furthermore,our approach combining expansion super-resolution achieved a resolution at-57 nm.
基金financially supported by the Science and Technology Major Project of Henan Province (No.221100230300)。
文摘Vortex beams have attracted great attention due to their promising applications in the fields of high-capacity optical communication,optical micromanipulation,and quantum information processing.Here,we demonstrate vortex beams with flexible control of the topological charge and modes in a carbon dots random laser for the first time.Vortex beams with different types,including the Laguerre-Gaussian(LG),Bessel-Gaussian(BG),LG-superposition,and polarized vortex beams with topological charges up to 50,have been successfully achieved.Moreover,vortex beams can be well realized in carbon dots random lasers with different emission wavelengths covering from 465 to 612 nm.This work would not only enrich the types of vortex laser,especially for solution-processable lasers,but also provide a new route to realizing multicolor and wavelength-tunable vortex lasers.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2020B0301030009)the National Key Research and Development Program of China(Grant No.2022YFA1604304)the National Natural Science Foundation of China(Grant No.92250305).
文摘Plasmonic modes within metal nanostructures play a pivotal role in various nanophotonic applications.However,a significant challenge arises from the fixed shapes of nanostructures post-fabrication,resulting in limited modes under ordinary illumination.A promising solution lies in far-field control facilitated by spatial light modulators(SLMs),which enable on-site,real-time,and non-destructive manipulation of plasmon excitation.Through the robust modulation of the incident light using SLMs,this approach enables the generation,optimization,and dynamic control of surface plasmon polariton(SPP)and localized surface plasmon(LSP)modes.The versatility of this technique introduces a rich array of tunable degrees of freedom to plasmon-enhanced spectroscopy,offering novel approaches for signal optimization and functional expansion in this field.This paper provides a comprehensive review of the generation and modulation of SPP and LSP modes through far-field control with SLMs and highlights the diverse applications of this optical technology in plasmon-enhanced spectroscopy.
基金supported by the National Natural Science Foundation of China (U2031210 and 11827804)Science Research from the China Manned Space Project (CMS-CSST-2021-A11 and CMS-CSST-2021-B04).
文摘The primary mirrors of current and future large telescopes always employ a segmented mirror configuration.The small but non-negligible gaps between neighboring segments cause additional diffraction,which restricts the performance of high-contrast coronagraph.To solve this problem,we propose a coronagraph system based on a single liquid crystal spatial light modulator(SLM).This spatial light modulator is used for amplitude apodization,and its feasibility and potential performance are demonstrated using a laboratory setup using the stochastic parallel gradient descent(SPGD)algorithm to control the spatial light modulator,which is based on point spread function(PSF)sensing and evaluation and optimized for maximum contrast in the discovery working area as a merit function.The system delivers a contrast in the order of 10−6,and shows excellent potential to be used in current and future large aperture telescopes,both on the ground and in space.
文摘This project adopts an advanced microcontroller as the core control unit,which accurately commands the servo drive,realizes the real-time light chasing and charging function of the solar panel,and effectively manages the power supply system of the street light.At the same time,the system is able to continuously monitor the operation status of the servo within the range of 0°to 180°to ensure that it is trouble-free and not offline.The hardware system construction consists of five modules:a power module,solar panel module,servo module,street light module,and Organic Light-Emitting Diode(OLED)display module.Each module works together to support the stable operation of the whole system.The system workflow is to accurately determine the direction of the light source by collecting real-time light intensity data through four precision photoresistors.Subsequently,the microcontroller intelligently controls the helm module based on these data to drive the solar panel to rotate within a range of 180°to accurately track the sun’s orientation.The street light provides two lighting modes,automatic and manual,to meet the needs of different scenarios.During the daytime,the solar panels work actively to monitor and collect solar energy efficiently in real-time,meanwhile,when night falls,the solar panels switch to standby mode and the streetlights light up automatically,illuminating the road ahead for pedestrians.Compared with the traditional solar street lights on the market,the intelligent solar light chasing road system introduced in this project has significant advantages.Its unique light-chasing algorithm enables the solar panel to continuously track the light source from sunrise to sunset,thus significantly improving the charging efficiency.Compared with traditional street lights,the biggest advantage of this project is the proposed light-chasing algorithm,which can always charge from sunrise until sunset,making the charging efficiency increase by 38%to 47%.The charging efficiency is 20%to 38%higher than that of traditional street lamps.Simultaneously,the biggest advantage of this project is that the power storage capacity is higher than 35%of the traditional solar street light.Bringing users a more durable and stable lighting experience.
基金Project supported by the National Natural Science Foundation of China (Nos 60578035, 50473040) and the Science Foundation of Jilin Province (Nos 20050520, 20050321-2).
文摘The liquid crystal spatial light modulator (LC SLM) is very suitable for wavefront correction and optical testing and can produce a wavefront with large phase change and high accuracy. The LC SLM is composed of thousands of pixels and the pixel size and shape have effects on the diffractive characteristics of the LC SLM. This paper investigates the pixel effect on the phase of the wavefront with the scalar diffractive theory. The results show that the maximum optical path difference modulation is 41μm to produce the paraboloid wavefront with the peak to valley accuracy better than λ/10. Effects of the mismatch between the pixel and the period, and black matrix on the diffraction efficiency of the LC SLM are also analysed with the Fresnel phase lens model. The ability of the LC SLM is discussed for optical testing and wavefront correction based on the calculated results. It shows that the LC SLM can be used as a wavefront corrector and a compensator.
基金supports from National Natural Science Foundation of China (No.62235009).
文摘Spatial light modulators,as dynamic flat-panel optical devices,have witnessed rapid development over the past two decades,concomitant with the advancements in micro-and opto-electronic integration technology.In particular,liquid-crystal spatial light modulator(LC-SLM)technologies have been regarded as versatile tools for generating arbitrary optical fields and tailoring all degrees of freedom beyond just phase and amplitude.These devices have gained significant interest in the nascent field of structured light in space and time,facilitated by their ease of use and real-time light manipulation,fueling both fundamental research and practical applications.Here we provide an overview of the key working principles of LC-SLMs and review the significant progress made to date in their deployment for various applications,covering topics as diverse as beam shaping and steering,holography,optical trapping and tweezers,measurement,wavefront coding,optical vortex,and quantum optics.Finally,we conclude with an outlook on the potential opportunities and technical challenges in this rapidly developing field.
基金Project supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. 11076008)the Fundamental Research Funds for the Central Universities (Grant No. ZYGX2011J043)+1 种基金the Foundation for Young Scholars of University of Electronic Science and Technology of China (Grant No. 8010401JX0806)the Young Scientists Foundation of Sichuan Province of China (Grant No. 2010JQ0006)
文摘Two methods:high-power,short-time,single-shot irradiation(Method A) and low-power,long-time,multi-shot irradiation(Method B) are investigated to mitigate the UV damage growth in fused silica by using a 10.6-μm CO2 laser.To verify the mitigation effect of the two methods,the laser induced damage thresholds(LIDTs) of the mitigated sites are tested with a 355-nm,6.4-ns Nd:YAG laser,and the light modulation of the mitigation sites are tested with a 351-nm continuous Nd:YLF laser.The mitigated damaged sites treated with the two methods have almost the same LIDTs,which can recover to the level of pristine material.Compared with Method A,Method B produces mitigated sites with low crater depth and weak light modulation.In addition,there is no raised rim or re-deposited debris formed around the crater edge for Method B.Theoretical calculation is utilized to evaluate the central temperature of the CO2 laser beam irradiated zone and the radius of the crater.It is indicated that the calculated results are consistent with the experimental results.
文摘For the nonlinearity distortion problem of Mach-Zehnder modulator(MZM)applied in the on-board microwave photonics system,the situation for two input radio frequency(RF)signals with different frequencies and phases is discussed,and an exact analytical solution is derived with the method of expanding Bessel series and Graf addition theory.According to the analytical expression,the nonlinearity characteristics of the modulator can be precisely predicted,and the system performance can be optimized.The correctness of the analytical solution is approved by simulation results.Analytical results indicate that the nonlinearity distortion is suppressed as the decrease of modulation index,the increase of direct current bias phase shift and phase difference between two input RF signals.When the phase difference equals zero orπand the direct current bias phase shift isπ/2,there are only odd-order distortion terms.When the phase difference equals zero orπand the direct current bias phase shift isπ,there are only even-order distortion terms.
基金This work was financially supported by grants from the National Basic Research Program of China (973 Program)(No.2015CB352003)the National Natural Science Foundation of China (Nos.61377013,61335003,61378051,and 61427818)+1 种基金NSFC of Zhejiang province LR16F050001,Innovation Joint Research Center for iCPS (2015XZZX005-01)Open Foundation of the State Key Laboratory of Modern Optical Instrumentation.
文摘We report three-dimensional fluorescence emission difference(3D-FED)microscopy using a spatial light modulator(SLM).Zero phase,0–2vortex phase and binary 0-pi phase are loaded on the SLM to generate the corresponding solid,doughnut and z-axis hollow excitation spot,respectively.Our technique achieves super-resolved image by subtracting three di®erently acquired images with proper subtractive factors.Detailed theoretical analysis and simulation tests are proceeded to testify the performance of 3D-FED.Also,the improvement of lateral and axial resolution is demonstrated by imaging 100 nm°uorescent beads.The experiment yields lateral resolution of 140 nm and axial resolution of approximate 380 nm.
基金supported by the National Natural Science Foundation of China (Grant Nos.10434060,10674047 and 10804031)the National Key Basic Research and Development Program of China (Grant No.2006CB921604)+2 种基金the Program for Changjiang Scholarand Innovative Research Team and Shanghai Leading Academic Discipline Project (Grant No.B408)the Youth Foundation of Jiangxi Educational Committee (Grant No.GJJ09530)the Scientific Research Foundation of ECIT (Grant No.DSH0417)
文摘This paper proposes a scheme of axial triple-well optical dipole trap by employing a simple optical system composed of a circular cosine grating and a lens. Three optical wells separated averagely by -37 μm were created when illuminating by a YAG laser with power 1 mW. These wells with average trapping depth -0.5 μK and volume -74 μm^3 are suitable to trap and manipulate an atomic Bose-Einstein condensation (BEC). Due to a controllable grating implemented by a spatial light modulator, an evolution between a triple-well trap and a single-well one is achievable by adjusting the height of potential barrier between adjacent wells. Based on this novel triple-well potentials, the loading and splitting of BEC, as well as the interference between three freely expanding BECs, are also numerically stimulated within the framework of mean-field treatment. By fitting three cosine functions with three Gaussian envelopes to interference fringe, the information of relative phases among three condensates is extracted.
基金Project supported by the National Natural Science Foundation of China(Grant No.11674288)
文摘By using an amplitude-type spatial light modulator to load angular spectrum of Mathieu function distribution along a narrow annular pupils, the Durnin’s experimental setup is extended to generate various types of Mathieu beams. As a special type of Mathieu beams, Bessel beams are also generated using this optical setup. Furthermore, the optical morphology of the Mathieu beams family are also presented and analyzed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10434060,10674047 and 10804031)the National Key Basic Research and Development Program of China(Grant No.2006CB921604)+2 种基金the Program for Changjiang Scholar and Innovative Research Team,and Shanghai Leading Academic Discipline Project(Grant No.B408)the Youth Foundation of Jiangxi Educational Committee(Grant No.GJJ09530)the Open Research Fund of State Key Laboratory of Precision Spectroscopy,East China Normal University.
文摘This paper proposes a flexible scheme to form various optical multi-well traps for cold atoms or molecules by using a simple optical system composed of an compounded amplitude cosine-only grating and a single lens illuminated by a plane light wave or a Gaussian beam. Dynamic manipulation and evolution of multi-well trap can be easily implemented by controlling the modulation frequency of the cosine patterns. It also discusses how to expand this multi-well trap to two-dimensional lattices with single- or multi-well trap by using an orthogonally or non-orthogonally modulated grating, as well as using incoherent multi-beam illumination, and these results show that all the symmetric structures of two-dimensional Bravais lattices can be obtained facilely by using proposed scheme.
基金supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2010ZX02201)the National Natural Science Foundation of China (Grant No. 61176069)the National Defense Pre-Research of China (Grant No. 51308020304)
文摘A novel super-junction lateral double-diffused metal-oxide semiconductor (SJ-LDMOS) with a partial lightly doped P pillar (PD) is proposed. Firstly, the reduction in the partial P pillar charges ensures the charge balance and suppresses the substrate-assisted depletion effect. Secondly, the new electric field peak produced by the P/P junction modulates the surface electric field distribution. Both of these result in a high breakdown voltage (BV). In addition, due to the same conduction paths, the specific on-resistance (Ron,sp) of the PD SJ-LDMOS is approximately identical to the conventional SJ-LDMOS. Simulation results indicate that the average value of the surface lateral electric field of the PD SJ-LDMOS reaches 20 V/μm at a 15 μm drift length, resulting in a BV of 300 V.
基金This work has been partially supported by NIH(SC COBRE P20RR021949 and Career Award 1k25hl088262-01)NSF(MRI CBET-0923311 and SC EPSCoR RII EPS-0903795 through SC GEAR program)+3 种基金The National Natural Science Foundation of China(31171372,61078067)Guangdong Province Science and Technology Project(2010B060300002)Shenzhen University Application Technology Development Project(201136,CXB201104220021A,JC201005250032A,200854)the Fundamental Research Funds for the Central Universities(K50510050006).
文摘Multifocal multiphoton microscopy(MMM)has recently become an important tool in biomedicine for performing three-dimensional fastfluorescence imaging.Using various beamsplitting techniques,MMM splits the near-infrared laser beam into multiple beamlets and produces a multifocal array on the sample for parallel multiphoton excitation and then recordsfluorescence signal from all foci simultaneously with an area array detector,which significantly improves the imaging speed of multiphoton microscopy and allows for high efficiency in use of the excitation light.In this paper,we discuss the features of several MMM setups using different beamsplitting devices,including a Nipkow spinning disk,a microlens array,a set of beamsplitting mirrors,or a diffractive optical element(DOE).In particular,we present our recent work on the development of an MMM using a spatial light modulator(SLM).
基金supported by the National Natural Science Foundation of China (Grant No. 60878048)the China Postdoctoral Science Foundation (Grant No. 20080440898)
文摘Liquid crystal spatial light modulator (LCSLM) realizing equal-intensity multiple beams often has some features, i.e., phase valley between two adjacent pixels, flybaek region when phase decreases immediately from 2~r to 0, and inevitable backplane curvature, which are different from those of most conventional diffractive optical elements (DOEs), such as static DOEs. For optimal intensity uniformity, equal-intensity multi-beam generation must be considered for these artifacts. We present a tunable-grating method in which the intensity uniformity can be improved by considering the LCSLM artifacts. For instance, tuning phase modulation depth of the grating, called isosceles triangle multilevel phase grating (ITMPG), can be used not only to improve the intensity uniformity, but also to fast steer four beams with narrow beamwidths, determined by the same effective aperture of ITMPG. Improved intensity uniformity and high relative diffraction efficiency are demonstrated through experiments with phase-only LCSLM.
基金supported by Shenzhen University ResearchDevelopment Fund (No. 200867)Shenzhen Key Laboratoryof Micro-Nano Photonic Information Technology (No. 2000812).
文摘An open-loop resonator micro-optic gyro (R-MOG) with a 6 cm-long waveguide-type ring resonator is set up using the phase modulation spectroscopy technique. In the experiment, according to the test parameters of the resonator, the shot- noise-limited sensitivity is estimated to be 1.07×10-4 rad/s. From the test demodulation signal, the gyro dynamic range of ±7.0×103 rad/s is obtained. Using different phase modulation frequencies, the open-loop gyro output signal is observed when the equivalent gyro rotation ...