A data-driven model ofmultiple variable cutting(M-VCUT)level set-based substructure is proposed for the topology optimization of lattice structures.TheM-VCUTlevel setmethod is used to represent substructures,enriching...A data-driven model ofmultiple variable cutting(M-VCUT)level set-based substructure is proposed for the topology optimization of lattice structures.TheM-VCUTlevel setmethod is used to represent substructures,enriching their diversity of configuration while ensuring connectivity.To construct the data-driven model of substructure,a database is prepared by sampling the space of substructures spanned by several substructure prototypes.Then,for each substructure in this database,the stiffness matrix is condensed so that its degrees of freedomare reduced.Thereafter,the data-drivenmodel of substructures is constructed through interpolationwith compactly supported radial basis function(CS-RBF).The inputs of the data-driven model are the design variables of topology optimization,and the outputs are the condensed stiffness matrix and volume of substructures.During the optimization,this data-driven model is used,thus avoiding repeated static condensation that would requiremuch computation time.Several numerical examples are provided to verify the proposed method.展开更多
To solve the problem of false edges in a flat region of l_(1)norm total variational TV model,an edge extractor based on non-local idea is proposed in this paper.The new edge extractor can effectively suppress the infl...To solve the problem of false edges in a flat region of l_(1)norm total variational TV model,an edge extractor based on non-local idea is proposed in this paper.The new edge extractor can effectively suppress the influence of noise and extract the edge information of the image.The new edge extractor is used as the adaptive function and the weighting function of the l_(p) norm variational model to control the noise reduction ability of the model,and a new model 1 is obtained.Considering that the new model 1 only uses the gradient mode as the image feature operator,which is insufficient to express the image texture information,a new level set curvature gradient variational model 2 combined with the edge extractor is proposed.The new model 2 uses the idea of minimum curvature of the level set of clear images to obtain noise reduction images.By coupling new model 1 and new model 2 to smooth the noise and protect more textures,a new Non-local level set denoising model(NLSDM)for image noise reduction is obtained.The experimental results show that compared with the noise reduction model,the new model has significantly improved the peak signal-to-noise ratio and structural similarity,and the effect of noise reduction and edge preservation is better.展开更多
Using traditional particle tracking velocimetry based on optical flow for measuring areas with large velocity gradient changes may cause oversmoothing,resulting in significant measurement errors.To address this proble...Using traditional particle tracking velocimetry based on optical flow for measuring areas with large velocity gradient changes may cause oversmoothing,resulting in significant measurement errors.To address this problem,the traditional particle tracking velocimetry method based on an optical flow was improved.The level set segmentation algorithm was used to obtain the boundary contour of the region with large velocity gradient changes,and the non-uniform flow field was divided into regions according to the boundary contour to obtain sub-regions with uniform velocity distribution.The particle tracking velocimetry method based on optical flow was used to measure the granular flow velocity in each sub-region,thus avoiding the problem of granular flow distribution.The simulation results show that the measurement accuracy of this method is approximately 10%higher than that of traditional methods.The method was applied to a velocity measurement experiment on dense granular flow in silos,and the velocity distribution of the granular flow was obtained,verifying the practicality of the method in granular flow fields.展开更多
Structural Reliability-Based Topology Optimization(RBTO),as an efficient design methodology,serves as a crucial means to ensure the development ofmodern engineering structures towards high performance,long service lif...Structural Reliability-Based Topology Optimization(RBTO),as an efficient design methodology,serves as a crucial means to ensure the development ofmodern engineering structures towards high performance,long service life,and high reliability.However,in practical design processes,topology optimization must not only account for the static performance of structures but also consider the impacts of various responses and uncertainties under complex dynamic conditions,which traditional methods often struggle accommodate.Therefore,this study proposes an RBTO framework based on a Kriging-assisted level set function and a novel Dynamic Hybrid Particle Swarm Optimization(DHPSO)algorithm.By leveraging the Kriging model as a surrogate,the high cost associated with repeatedly running finite element analysis processes is reduced,addressing the issue of minimizing structural compliance.Meanwhile,the DHPSO algorithm enables a better balance between the population’s developmental and exploratory capabilities,significantly accelerating convergence speed and enhancing global convergence performance.Finally,the proposed method is validated through three different structural examples,demonstrating its superior performance.Observed that the computational that,compared to the traditional Solid Isotropic Material with Penalization(SIMP)method,the proposed approach reduces the upper bound of structural compliance by approximately 30%.Additionally,the optimized results exhibit clear material interfaces without grayscale elements,and the stress concentration factor is reduced by approximately 42%.Consequently,the computational results fromdifferent examples verify the effectiveness and superiority of this study across various fields,achieving the goal of providing more precise optimization results within a shorter timeframe.展开更多
A cylindrical chamber with a rotating bottom holds significant potential for application in cell culture bioreactors due to its ability to generate more stable swirling flows.In order to control vortex breakdown withi...A cylindrical chamber with a rotating bottom holds significant potential for application in cell culture bioreactors due to its ability to generate more stable swirling flows.In order to control vortex breakdown within the chamber,this study first establishes a computational fluid dynamics simulation coupled with the level set method.Verified by experimental results in literature,this method accurately simulates the position and shape of vortex breakdown,and also predicts the critical Reynolds numbers for the appearance and detachment of vortex breakdown bubbles from the center.Additionally,it precisely captures the gas-liquid interface and depicts the vortex breakdown phenomenon in the air above the liquid for the first time.Finally,it predicts the impact of physical property of gas-liquid systems on vortex breakdown in response to significant changes in viscosity of microbial process systems.展开更多
Separation between water and land is vital for marine scientific research and coastal zone planning and management.The contrasting backscatter properties of land and ocean enable clear water edge line identification i...Separation between water and land is vital for marine scientific research and coastal zone planning and management.The contrasting backscatter properties of land and ocean enable clear water edge line identification in synthetic aperture radar(SAR)imagery.However,SAR images are prone to speckle noise,and the complexity of the water-land boundaries environment makes accurate water-land separation challenging.To overcome noise and complex background interference in remote sensing images,an improved level set method was employed to enhance water-land separation.In the traditional distance regularized level set method,the selection of the image correlation weight coefficient and the edge indicator function directly influences the accuracy of the final segmentation results.A novel level set segmentation algorithm incorporating an improved edge indicator function is proposed to efficiently and accurately separate the water edge lines in SAR images.The distance regularized level set evolution model is enhanced by incorporating the signed pressure force function as an adaptive parameter,which serves as an external constraint for curve evolution.A novel level set model with an adaptive edge indicator function,combining gradient and regional information,is proposed.Experimental results demonstrate that the proposed model enhances the accuracy of waterland separation in SAR images.However,further research is needed to evaluate its potential for detecting boundaries in diverse marine environments and across different types of SAR imagery.展开更多
This paper presents an improved level set method for topology optimization of geometrically nonlinear structures accounting for the effect of thermo-mechanical couplings.It derives a new expression for element couplin...This paper presents an improved level set method for topology optimization of geometrically nonlinear structures accounting for the effect of thermo-mechanical couplings.It derives a new expression for element coupling stress resulting from the combination of mechanical and thermal loading,using geometric nonlinear finite element analysis.A topological model is then developed to minimize compliance while meeting displacement and frequency constraints to fulfill design requirements of structural members.Since the conventional Lagrange multiplier search method is unable to handle convergence instability arising from large deformation,a novel Lagrange multiplier search method is proposed.Additionally,the proposed method can be extended to multi-constrained geometrically nonlinear topology optimization,accommodating multiple physical field couplings.展开更多
BACKGROUND Insulin therapy plays a crucial role in managing diabetes.Regulatory guidelines mandate assessing the pharmacokinetics(PK)and pharmacodynamics(PD)of new insulin formulations with euglycemic clamp techniques...BACKGROUND Insulin therapy plays a crucial role in managing diabetes.Regulatory guidelines mandate assessing the pharmacokinetics(PK)and pharmacodynamics(PD)of new insulin formulations with euglycemic clamp techniques before entry into the market.Typically,blood glucose(BG)levels are maintained at 5%below baseline to suppress endogenous insulin secretion in healthy volunteers.However,in scenarios where BG baseline is relatively low,maintaining it at 5%below baseline can increase hypoglycemic risk.Consequently,we adjusted to maintain it at 2.5%below a baseline of<4.00 mmol/L.It remains uncertain whether this adjustment impacts endogenous insulin inhibition or the PD of study insulin.AIM To evaluate and compare the PD and C-peptide status using two different target BG setting methods.METHODS Data came from euglycemic clamp trials assessing the PK/PD of insulin aspart(IAsp)in healthy participants.Target BG was set at 2.5%below baseline for those with a basal BG of<4.00 mmol/L(group A),and at 5%below baseline for others(group B).The area under the curve(AUC)of IAsp(AUC_(IAsp,0-8 h))and GIR from 0 to 8 hours(AUCGIR,0-8 h)was used to characterize the PK and PD of IAsp,respectively.The C-peptide reduction and PK/PD of IAsp were compared between the two groups.RESULTS Out of 135 subjects,15 were assigned to group A and 120 to group B;however,group B exhibited higher basal Cpeptide(1.59±0.36 vs 1.32±0.42 ng/mL,P=0.006).Following propensity score matching to adjust for basal Cpeptide differences,71 subjects(15 in group A and 56 in group B)were analyzed.No significant differences were observed in demographics,IAsp dosage,or clamp quality.Group B showed significantly higher baseline(4.35±0.21 vs 3.91±0.09 mmol/L,P<0.001),target(4.13±0.20 vs 3.81±0.08 mmol/L,P<0.001),and clamped(4.10±0.17 vs 3.80±0.06 mmol/L,P<0.001)BG levels.Both groups exhibited comparable C-peptide suppression(32.5%±10.0%vs 35.6%±12.1%,P=0.370)and similar IAsp activity(AUCGIR,0-8 h:1433±400 vs 1440±397 mg/kg,P=0.952)under nearly equivalent IAsp exposure(AUC_(IAsp,0-8 h):566±51 vs 571±85 ng/mL×h,P=0.840).CONCLUSION Maintaining BG at 2.5%below a baseline of<4.00 mmol/L did not compromise the endogenous insulin suppression nor alter the observed pharmacodynamic effects of the study insulin.展开更多
A Level考试素有“英国高考”之称。其制度演进大致经历了发轫与探索、扩张与调适、回归与重塑三个阶段,其主要变革内容包括四个方面:组织形式从年终末考的线性考试模式发展为一年多考的模块化考试,再回归线性考试模式;考试评价从常模...A Level考试素有“英国高考”之称。其制度演进大致经历了发轫与探索、扩张与调适、回归与重塑三个阶段,其主要变革内容包括四个方面:组织形式从年终末考的线性考试模式发展为一年多考的模块化考试,再回归线性考试模式;考试评价从常模参照转变为标准参照,评价手段逐步优化;考试要求从注重学科深度转变为强调知识广度,再发展为追求广度和深度并重;考试内容从偏重学术性转变为普职并重,再发展为职普融通和强调基础学科。变革的动因既有来自外部的国际竞争加剧和国内政党轮替,也有来自内部的文化价值观驱动和考试选才效度追求。A Level考试制度对我国高考改革有一定启发,我国可结合国情,以基础学科为支点、职普融通为路径、多样化的考试选择为依托、预测效度为导向,开展本土化探索。展开更多
The onset,cessation,and length of the rainy season are crucial for global water resources,agricultural practices,and food security.However,the response of precipitation seasonality to global warming remains uncertain....The onset,cessation,and length of the rainy season are crucial for global water resources,agricultural practices,and food security.However,the response of precipitation seasonality to global warming remains uncertain.In this study,we analyze how global warming levels(GWLs)of 1.5℃ and 2℃ could affect the timing of rainfall onset(RODs),rainfall cessation(RCDs),and the overall duration of the rainy season(LRS)over global land monsoon(GLM)regions using simulations from CMIP6 under the SSP2-4.5 and SSP5-8.5 scenarios.With high model consensus,our results reveal that RODs are projected to occur later over Southern Africa,North Africa,and South America,but earlier over South Asia and Australia,in a warmer climate.The projected early RODs in Australia are more pronounced at the 2℃ GWL under SSP5-8.5.On the other hand,early RCDs are projected over South America and East Asia,while late RCDs are projected over North Africa,with high inter-model agreement.These changes are associated with a future decrease in LRS in most GLM regions.Additionally,we found that continuous warming over 1.5℃ will further reduce the length of the rainy season,especially over the South America,North Africa,and Southern Africa monsoon regions.The findings underscore the urgent need to mitigate global warming.展开更多
South Korean President Lee Jae-myung's state visit to China signals a strategic recalibration of China-South Korea relations,aiming to restore high-level dialogues,rebuild political trust and forge new economic co...South Korean President Lee Jae-myung's state visit to China signals a strategic recalibration of China-South Korea relations,aiming to restore high-level dialogues,rebuild political trust and forge new economic cooperation amid shifting regional dynamics.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.12272144).
文摘A data-driven model ofmultiple variable cutting(M-VCUT)level set-based substructure is proposed for the topology optimization of lattice structures.TheM-VCUTlevel setmethod is used to represent substructures,enriching their diversity of configuration while ensuring connectivity.To construct the data-driven model of substructure,a database is prepared by sampling the space of substructures spanned by several substructure prototypes.Then,for each substructure in this database,the stiffness matrix is condensed so that its degrees of freedomare reduced.Thereafter,the data-drivenmodel of substructures is constructed through interpolationwith compactly supported radial basis function(CS-RBF).The inputs of the data-driven model are the design variables of topology optimization,and the outputs are the condensed stiffness matrix and volume of substructures.During the optimization,this data-driven model is used,thus avoiding repeated static condensation that would requiremuch computation time.Several numerical examples are provided to verify the proposed method.
基金funded by National Nature Science Foundation of China,grant number 61302188.
文摘To solve the problem of false edges in a flat region of l_(1)norm total variational TV model,an edge extractor based on non-local idea is proposed in this paper.The new edge extractor can effectively suppress the influence of noise and extract the edge information of the image.The new edge extractor is used as the adaptive function and the weighting function of the l_(p) norm variational model to control the noise reduction ability of the model,and a new model 1 is obtained.Considering that the new model 1 only uses the gradient mode as the image feature operator,which is insufficient to express the image texture information,a new level set curvature gradient variational model 2 combined with the edge extractor is proposed.The new model 2 uses the idea of minimum curvature of the level set of clear images to obtain noise reduction images.By coupling new model 1 and new model 2 to smooth the noise and protect more textures,a new Non-local level set denoising model(NLSDM)for image noise reduction is obtained.The experimental results show that compared with the noise reduction model,the new model has significantly improved the peak signal-to-noise ratio and structural similarity,and the effect of noise reduction and edge preservation is better.
文摘Using traditional particle tracking velocimetry based on optical flow for measuring areas with large velocity gradient changes may cause oversmoothing,resulting in significant measurement errors.To address this problem,the traditional particle tracking velocimetry method based on an optical flow was improved.The level set segmentation algorithm was used to obtain the boundary contour of the region with large velocity gradient changes,and the non-uniform flow field was divided into regions according to the boundary contour to obtain sub-regions with uniform velocity distribution.The particle tracking velocimetry method based on optical flow was used to measure the granular flow velocity in each sub-region,thus avoiding the problem of granular flow distribution.The simulation results show that the measurement accuracy of this method is approximately 10%higher than that of traditional methods.The method was applied to a velocity measurement experiment on dense granular flow in silos,and the velocity distribution of the granular flow was obtained,verifying the practicality of the method in granular flow fields.
基金fundings supported by Sichuan Science and Technology Program(2025YFHZ0065).
文摘Structural Reliability-Based Topology Optimization(RBTO),as an efficient design methodology,serves as a crucial means to ensure the development ofmodern engineering structures towards high performance,long service life,and high reliability.However,in practical design processes,topology optimization must not only account for the static performance of structures but also consider the impacts of various responses and uncertainties under complex dynamic conditions,which traditional methods often struggle accommodate.Therefore,this study proposes an RBTO framework based on a Kriging-assisted level set function and a novel Dynamic Hybrid Particle Swarm Optimization(DHPSO)algorithm.By leveraging the Kriging model as a surrogate,the high cost associated with repeatedly running finite element analysis processes is reduced,addressing the issue of minimizing structural compliance.Meanwhile,the DHPSO algorithm enables a better balance between the population’s developmental and exploratory capabilities,significantly accelerating convergence speed and enhancing global convergence performance.Finally,the proposed method is validated through three different structural examples,demonstrating its superior performance.Observed that the computational that,compared to the traditional Solid Isotropic Material with Penalization(SIMP)method,the proposed approach reduces the upper bound of structural compliance by approximately 30%.Additionally,the optimized results exhibit clear material interfaces without grayscale elements,and the stress concentration factor is reduced by approximately 42%.Consequently,the computational results fromdifferent examples verify the effectiveness and superiority of this study across various fields,achieving the goal of providing more precise optimization results within a shorter timeframe.
基金National Natural Science Foundation of China(22178228,22178326)
文摘A cylindrical chamber with a rotating bottom holds significant potential for application in cell culture bioreactors due to its ability to generate more stable swirling flows.In order to control vortex breakdown within the chamber,this study first establishes a computational fluid dynamics simulation coupled with the level set method.Verified by experimental results in literature,this method accurately simulates the position and shape of vortex breakdown,and also predicts the critical Reynolds numbers for the appearance and detachment of vortex breakdown bubbles from the center.Additionally,it precisely captures the gas-liquid interface and depicts the vortex breakdown phenomenon in the air above the liquid for the first time.Finally,it predicts the impact of physical property of gas-liquid systems on vortex breakdown in response to significant changes in viscosity of microbial process systems.
基金The National Natural Science Foundation of China under contract Nos 61701416 and 61901195Natural Science Foundation of Jiangsu Province of China under contract No.BK20211341China Postdoctoral Science Foundation under contract No.2022M712687.
文摘Separation between water and land is vital for marine scientific research and coastal zone planning and management.The contrasting backscatter properties of land and ocean enable clear water edge line identification in synthetic aperture radar(SAR)imagery.However,SAR images are prone to speckle noise,and the complexity of the water-land boundaries environment makes accurate water-land separation challenging.To overcome noise and complex background interference in remote sensing images,an improved level set method was employed to enhance water-land separation.In the traditional distance regularized level set method,the selection of the image correlation weight coefficient and the edge indicator function directly influences the accuracy of the final segmentation results.A novel level set segmentation algorithm incorporating an improved edge indicator function is proposed to efficiently and accurately separate the water edge lines in SAR images.The distance regularized level set evolution model is enhanced by incorporating the signed pressure force function as an adaptive parameter,which serves as an external constraint for curve evolution.A novel level set model with an adaptive edge indicator function,combining gradient and regional information,is proposed.Experimental results demonstrate that the proposed model enhances the accuracy of waterland separation in SAR images.However,further research is needed to evaluate its potential for detecting boundaries in diverse marine environments and across different types of SAR imagery.
基金supported by grants from the National Natural Science Foundation of China (51478130)the Guangzhou Municipal Education Bureau’s Scientific Research Project, China (2024312217)+1 种基金the China Scholarship Council (201808440070)the 111 Project of China (D21021).
文摘This paper presents an improved level set method for topology optimization of geometrically nonlinear structures accounting for the effect of thermo-mechanical couplings.It derives a new expression for element coupling stress resulting from the combination of mechanical and thermal loading,using geometric nonlinear finite element analysis.A topological model is then developed to minimize compliance while meeting displacement and frequency constraints to fulfill design requirements of structural members.Since the conventional Lagrange multiplier search method is unable to handle convergence instability arising from large deformation,a novel Lagrange multiplier search method is proposed.Additionally,the proposed method can be extended to multi-constrained geometrically nonlinear topology optimization,accommodating multiple physical field couplings.
基金This retrospective analysis incorporated data from two clinical trials(CTR20220854 and CTR20222843)sponsored by Chongqing Chenan Biopharmaceutical Co.,Ltd.and Jiangsu Hengrui Pharmaceuticals Co.,Ltd.However,these sponsors did not partake in the study design,data interpretation,or manuscript preparation.
文摘BACKGROUND Insulin therapy plays a crucial role in managing diabetes.Regulatory guidelines mandate assessing the pharmacokinetics(PK)and pharmacodynamics(PD)of new insulin formulations with euglycemic clamp techniques before entry into the market.Typically,blood glucose(BG)levels are maintained at 5%below baseline to suppress endogenous insulin secretion in healthy volunteers.However,in scenarios where BG baseline is relatively low,maintaining it at 5%below baseline can increase hypoglycemic risk.Consequently,we adjusted to maintain it at 2.5%below a baseline of<4.00 mmol/L.It remains uncertain whether this adjustment impacts endogenous insulin inhibition or the PD of study insulin.AIM To evaluate and compare the PD and C-peptide status using two different target BG setting methods.METHODS Data came from euglycemic clamp trials assessing the PK/PD of insulin aspart(IAsp)in healthy participants.Target BG was set at 2.5%below baseline for those with a basal BG of<4.00 mmol/L(group A),and at 5%below baseline for others(group B).The area under the curve(AUC)of IAsp(AUC_(IAsp,0-8 h))and GIR from 0 to 8 hours(AUCGIR,0-8 h)was used to characterize the PK and PD of IAsp,respectively.The C-peptide reduction and PK/PD of IAsp were compared between the two groups.RESULTS Out of 135 subjects,15 were assigned to group A and 120 to group B;however,group B exhibited higher basal Cpeptide(1.59±0.36 vs 1.32±0.42 ng/mL,P=0.006).Following propensity score matching to adjust for basal Cpeptide differences,71 subjects(15 in group A and 56 in group B)were analyzed.No significant differences were observed in demographics,IAsp dosage,or clamp quality.Group B showed significantly higher baseline(4.35±0.21 vs 3.91±0.09 mmol/L,P<0.001),target(4.13±0.20 vs 3.81±0.08 mmol/L,P<0.001),and clamped(4.10±0.17 vs 3.80±0.06 mmol/L,P<0.001)BG levels.Both groups exhibited comparable C-peptide suppression(32.5%±10.0%vs 35.6%±12.1%,P=0.370)and similar IAsp activity(AUCGIR,0-8 h:1433±400 vs 1440±397 mg/kg,P=0.952)under nearly equivalent IAsp exposure(AUC_(IAsp,0-8 h):566±51 vs 571±85 ng/mL×h,P=0.840).CONCLUSION Maintaining BG at 2.5%below a baseline of<4.00 mmol/L did not compromise the endogenous insulin suppression nor alter the observed pharmacodynamic effects of the study insulin.
基金supported by the Australian Research Council(Grant No.CE230100012)。
文摘The onset,cessation,and length of the rainy season are crucial for global water resources,agricultural practices,and food security.However,the response of precipitation seasonality to global warming remains uncertain.In this study,we analyze how global warming levels(GWLs)of 1.5℃ and 2℃ could affect the timing of rainfall onset(RODs),rainfall cessation(RCDs),and the overall duration of the rainy season(LRS)over global land monsoon(GLM)regions using simulations from CMIP6 under the SSP2-4.5 and SSP5-8.5 scenarios.With high model consensus,our results reveal that RODs are projected to occur later over Southern Africa,North Africa,and South America,but earlier over South Asia and Australia,in a warmer climate.The projected early RODs in Australia are more pronounced at the 2℃ GWL under SSP5-8.5.On the other hand,early RCDs are projected over South America and East Asia,while late RCDs are projected over North Africa,with high inter-model agreement.These changes are associated with a future decrease in LRS in most GLM regions.Additionally,we found that continuous warming over 1.5℃ will further reduce the length of the rainy season,especially over the South America,North Africa,and Southern Africa monsoon regions.The findings underscore the urgent need to mitigate global warming.
文摘South Korean President Lee Jae-myung's state visit to China signals a strategic recalibration of China-South Korea relations,aiming to restore high-level dialogues,rebuild political trust and forge new economic cooperation amid shifting regional dynamics.