期刊文献+
共找到350篇文章
< 1 2 18 >
每页显示 20 50 100
Multiparametric magnetic resonance imaging of deep learning-based super-resolution reconstruction for predicting histopathologic grade in hepatocellular carcinoma
1
作者 Zi-Zheng Wang Shao-Ming Song +3 位作者 Gong Zhang Rui-Qiu Chen Zhuo-Chao Zhang Rong Liu 《World Journal of Gastroenterology》 2025年第34期68-80,共13页
BACKGROUND Deep learning-based super-resolution(SR)reconstruction can obtain high-quality images with more detailed information.AIM To compare multiparametric normal-resolution(NR)and SR magnetic resonance imaging(MRI... BACKGROUND Deep learning-based super-resolution(SR)reconstruction can obtain high-quality images with more detailed information.AIM To compare multiparametric normal-resolution(NR)and SR magnetic resonance imaging(MRI)in predicting the histopathologic grade in hepatocellular carcinoma.METHODS We retrospectively analyzed a total of 826 patients from two medical centers(training 459;validation 196;test 171).T2-weighted imaging,diffusion-weighted imaging,and portal venous phases were collected.Tumor segmentations were conducted automatically by 3D U-Net.Based on generative adversarial network,we utilized 3D SR reconstruction to produce SR MRI.Radiomics models were developed and validated by XGBoost and Catboost.The predictive efficiency was demonstrated by calibration curves,decision curve analysis,area under the curve(AUC)and net reclassification index(NRI).RESULTS We extracted 3045 radiomic features from both NR and SR MRI,retaining 29 and 28 features,respectively.For XGBoost models,SR MRI yielded higher AUC value than NR MRI in the validation and test cohorts(0.83 vs 0.79;0.80 vs 0.78),respectively.Consistent trends were seen in CatBoost models:SR MRI achieved AUCs of 0.89 and 0.80 compared to NR MRI’s 0.81 and 0.76.NRI indicated that the SR MRI models could improve the prediction accuracy by-1.6%to 20.9%compared to the NR MRI models.CONCLUSION Deep learning-based SR MRI could improve the predictive performance of histopathologic grade in HCC.It may be a powerful tool for better stratification management for patients with operable HCC. 展开更多
关键词 super-resolution reconstruction Magnetic resonance imaging Hepatocellular carcinoma Histopathologic grade Radiomics
暂未订购
Transfer learning-based super-resolution in panoramic models for predicting mandibular third molar extraction difficulty: a multi-center study
2
作者 Wen Li Yang Li +4 位作者 Xiao-Ling Liu Xiang-Long Zheng Shi-Yu Gao Hui-Min Huangfu Li-Song Lin 《Medical Data Mining》 2023年第4期1-7,共7页
Background:This study aims to predict the extraction difficulty of mandibular third molars based on panoramic images using transfer learning while employing super-resolution(SR)technology to enhance the feasibility an... Background:This study aims to predict the extraction difficulty of mandibular third molars based on panoramic images using transfer learning while employing super-resolution(SR)technology to enhance the feasibility and validity of the prediction.Methods:We reviewed a total of 608 preoperative mandibular third molar panoramic radiographs from two medical facilities:the First Affiliated Hospital of Zhengzhou University(n=509;456 in the training set and 53 in the test set)and the Henan Provincial Dental Hospital(n=99 in the validation set).We conducted a deep-transfer learning network on high-resolution(HR)panoramic radiographs to improve the longitudinal resolution of the images and obtained the SR images.Subsequently,we constructed models named Model-HR and Model-SR using high-dimensional quantitative features extracted through the Least Absolute Shrinkage and Selection Operator method.The models’performances were evaluated using the receiver operating characteristic curve(ROC).To assess the reliability of the model,we compared the results from the test set with those of three dentists.Results:Model-SR outperformed Model-HR(area under the curve(AUC):0.779,sensitivity:85.5%,specificity:60.9%,and accuracy:79.8%vs.AUC:0.753,sensitivity:73.7%,specificity:73.9%,and accuracy:73.7%)in predicting the difficulty of extracting mandibular third molars.Both Model-HR(AUC=0.821,95%CI 0.687–0.956)and Model-SR(AUC=0.963,95%CI 0.921–0.999)demonstrated superior performance compared to expert dentists(highest AUC=0.799,95%CI 0.671–0.927).Conclusions:Model-SR yielded superior predictive performance in determining the difficulty of extracting mandibular third molars when compared with Model-HR and expert dentists’visual assessments. 展开更多
关键词 super-resolution transfer-learning mandibular third molar extraction difficulty panoramic radiographs
暂未订购
Image Super-Resolution Reconstruction Model Based on SRGAN
3
作者 LU Xin-ya CHEN Jia-yi +1 位作者 SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 北大核心 2025年第5期21-28,共8页
Image super-resolution reconstruction technology is currently widely used in medical imaging,video surveillance,and industrial quality inspection.It not only enhances image quality but also improves details and visual... Image super-resolution reconstruction technology is currently widely used in medical imaging,video surveillance,and industrial quality inspection.It not only enhances image quality but also improves details and visual perception,significantly increasing the utility of low-resolution images.In this study,an improved image superresolution reconstruction model based on Generative Adversarial Networks(SRGAN)was proposed.This model introduced a channel and spatial attention mechanism(CSAB)in the generator,allowing it to effectively leverage the information from the input image to enhance feature representations and capture important details.The discriminator was designed with an improved PatchGAN architecture,which more accurately captured local details and texture information of the image.With these enhanced generator and discriminator architectures and an optimized loss function design,this method demonstrated superior performance in image quality assessment metrics.Experimental results showed that this model outperforms traditional methods,presenting more detailed and realistic image details in the visual effects. 展开更多
关键词 Image super-resolution reconstruction Generative Adversarial Networks CSAB PatchGAN architecture
在线阅读 下载PDF
Multi-perception large kernel convnet for efficient image super-resolution
4
作者 MIAO Xuan LI Zheng XU Wen-Zheng 《四川大学学报(自然科学版)》 北大核心 2025年第1期67-78,共12页
Significant advancements have been achieved in the field of Single Image Super-Resolution(SISR)through the utilization of Convolutional Neural Networks(CNNs)to attain state-of-the-art performance.Recent efforts have e... Significant advancements have been achieved in the field of Single Image Super-Resolution(SISR)through the utilization of Convolutional Neural Networks(CNNs)to attain state-of-the-art performance.Recent efforts have explored the incorporation of Transformers to augment network performance in SISR.However,the high computational cost of Transformers makes them less suitable for deployment on lightweight devices.Moreover,the majority of enhancements for CNNs rely predominantly on small spatial convolutions,thereby neglecting the potential advantages of large kernel convolution.In this paper,the authors propose a Multi-Perception Large Kernel convNet(MPLKN)which delves into the exploration of large kernel convolution.Specifically,the authors have architected a Multi-Perception Large Kernel(MPLK)module aimed at extracting multi-scale features and employ a stepwise feature fusion strategy to seamlessly integrate these features.In addition,to enhance the network's capacity for nonlinear spatial information processing,the authors have designed a Spatial-Channel Gated Feed-forward Network(SCGFN)that is capable of adapting to feature interactions across both spatial and channel dimensions.Experimental results demonstrate that MPLKN outperforms other lightweight image super-resolution models while maintaining a minimal number of parameters and FLOPs. 展开更多
关键词 Single Image super-resolution Lightweight model Deep learning Large kernel
在线阅读 下载PDF
Advances in fluorescent nanoprobes for live-cell super-resolution imaging
5
作者 Peng Xu Zexuan Dong +2 位作者 Simei Zhong Yu-Hui Zhang Wei Shen 《Journal of Innovative Optical Health Sciences》 2025年第3期3-23,共21页
The rapid development of super-resolution microscopy has made it possible to observe subcellular structures and dynamic behaviors in living cells with nanoscale spatial resolution, greatly advancing progress in life s... The rapid development of super-resolution microscopy has made it possible to observe subcellular structures and dynamic behaviors in living cells with nanoscale spatial resolution, greatly advancing progress in life sciences. As hardware technology continues to evolve, the availability of new fluorescent probes with superior performance is becoming increasingly important. In recent years, fluorescent nanoprobes (FNPs) have emerged as highly promising fluorescent probes for bioimaging due to their high brightness and excellent photostability. This paper focuses on the development and applications of FNPs as probes for live-cell super-resolution imaging. It provides an overview of different super-resolution methods, discusses the performance requirements for FNPs in these methods, and reviews the latest applications of FNPs in the super-resolution imaging of living cells. Finally, it addresses the challenges and future outlook in this field. 展开更多
关键词 super-resolution imaging fluorescent nanoprobe live-cell imaging
原文传递
Super-resolution microscopy:Shedding new light on blood cell imaging
6
作者 Huan Deng Yan Ma Yu-Hui Zhang 《Journal of Innovative Optical Health Sciences》 2025年第1期29-53,共25页
Blood cells are the most integral part of the body,which are made up of erythrocytes,platelets and white blood cells.The examination of subcellular structures and proteins within blood cells at the nanoscale can provi... Blood cells are the most integral part of the body,which are made up of erythrocytes,platelets and white blood cells.The examination of subcellular structures and proteins within blood cells at the nanoscale can provide valuable insights into the health status of an individual,accurate diagnosis,and efficient treatment strategies for diseases.Super-resolution microscopy(SRM)has recently emerged as a cutting-edge tool for the study of blood cells,providing numerous advantages over traditional methods for examining subcellular structures and proteins.In this paper,we focus on outlining the fundamental principles of various SRM techniques and their applications in both normal and diseased states of blood cells.Furthermore,future prospects of SRM techniques in the analysis of blood cells are also discussed. 展开更多
关键词 super-resolution imaging blood cells subcellular structure PROTEINS
原文传递
Super-resolution for electron microscope scanning images of shale via spatial-spectral domain attention network
7
作者 Junqi Chen Lijuan Jia +1 位作者 Jinchuan Zhang Yilong Feng 《Natural Gas Industry B》 2025年第2期147-157,共11页
The evaluation of adsorption states and shale gas content in shale fractures and pores relies on the analysis of these fractures and pores.Scanning electron microscopy images are commonly used for shale analysis;howev... The evaluation of adsorption states and shale gas content in shale fractures and pores relies on the analysis of these fractures and pores.Scanning electron microscopy images are commonly used for shale analysis;however,their low resolution,particularly the loss of high-frequency information at pore edges,presents challenges in analyzing fractures and pores in shale gas reservoirs.This study introduced a novel neural network called the spatial-spectral domain attention network(SSDAN),which employed spatial and spectral domain attention mechanisms to extract features and restore information in parallel.The network generated super-resolution images through a fusion module that included CNN-based spatial blocks for pixel-level image information recovery,spectral blocks to process Fourier transform information of images and enhance high-frequency recovery,and an adaptive vision transformer to process Fourier transform block information,eliminating the need for a preset image size.The SSDAN model demonstrated exceptional performance in comparative experiments on marine shale and marine continental shale datasets,achieving optimal performance on key indicators such as peak signal-to-noise ratio,structural similarity,learned perceptual image patch similarity,and Frechet inception distance while also exhibiting superior visual performance in pore recovery.Ablation experiments further confirmed the effectiveness of the spatial blocks,channel attention,spectral blocks,and frequency loss function in the model.The SSDAN model showed remarkable capability in enhancing the resolution of shale gas reservoir images and restoring high-frequency information at pore edges,thereby validating its effectiveness in unconventional natural gas reservoir analyses. 展开更多
关键词 super-resolution Deep learning Spectral block Adaptive ViT Frequency loss
在线阅读 下载PDF
A Lightweight Super-Resolution Network for Infrared Images Based on an Adaptive Attention Mechanism
8
作者 Mengke Tang Yong Gan +1 位作者 Yifan Zhang Xinxin Gan 《Computers, Materials & Continua》 2025年第8期2699-2716,共18页
Infrared imaging technology has been widely adopted in various fields,such as military reconnaissance,medical diagnosis,and security monitoring,due to its excellent ability to penetrate smoke and fog.However,the preva... Infrared imaging technology has been widely adopted in various fields,such as military reconnaissance,medical diagnosis,and security monitoring,due to its excellent ability to penetrate smoke and fog.However,the prevalent low resolution of infrared images severely limits the accurate interpretation of their contents.In addition,deploying super-resolution models on resource-constrained devices faces significant challenges.To address these issues,this study proposes a lightweight super-resolution network for infrared images based on an adaptive attention mechanism.The network’s dynamic weighting module automatically adjusts the weights of the attention and nonattention branch outputs based on the network’s characteristics at different levels.Among them,the attention branch is further subdivided into pixel attention and brightness-texture attention,which are specialized for extracting the most informative features in infrared images.Meanwhile,the non-attention branch supplements the extraction of those neglected features to enhance the comprehensiveness of the features.Through ablation experiments,we verify the effectiveness of the proposed module.Finally,through experiments on two datasets,FLIR and Thermal101,qualitative and quantitative results demonstrate that the model can effectively recover high-frequency details of infrared images and significantly improve image resolution.In detail,compared with the suboptimal method,we have reduced the number of parameters by 30%and improved the model performance.When the scale factor is 2,the peak signal-tonoise ratio of the test datasets FLIR and Thermal101 is improved by 0.09 and 0.15 dB,respectively.When the scale factor is 4,it is improved by 0.05 and 0.09 dB,respectively.In addition,due to the lightweight design of the network structure,it has a low computational cost.It is suitable for deployment on edge devices,thus effectively enhancing the sensing performance of infrared imaging devices. 展开更多
关键词 Infrared image super-resolution convolutional neural network attention mechanism dynamic network
在线阅读 下载PDF
3D Enhanced Residual CNN for Video Super-Resolution Network
9
作者 Weiqiang Xin Zheng Wang +3 位作者 Xi Chen Yufeng Tang Bing Li Chunwei Tian 《Computers, Materials & Continua》 2025年第11期2837-2849,共13页
Deep convolutional neural networks(CNNs)have demonstrated remarkable performance in video super-resolution(VSR).However,the ability of most existing methods to recover fine details in complex scenes is often hindered ... Deep convolutional neural networks(CNNs)have demonstrated remarkable performance in video super-resolution(VSR).However,the ability of most existing methods to recover fine details in complex scenes is often hindered by the loss of shallow texture information during feature extraction.To address this limitation,we propose a 3D Convolutional Enhanced Residual Video Super-Resolution Network(3D-ERVSNet).This network employs a forward and backward bidirectional propagation module(FBBPM)that aligns features across frames using explicit optical flow through lightweight SPyNet.By incorporating an enhanced residual structure(ERS)with skip connections,shallow and deep features are effectively integrated,enhancing texture restoration capabilities.Furthermore,3D convolution module(3DCM)is applied after the backward propagation module to implicitly capture spatio-temporal dependencies.The architecture synergizes these components where FBBPM extracts aligned features,ERS fuses hierarchical representations,and 3DCM refines temporal coherence.Finally,a deep feature aggregation module(DFAM)fuses the processed features,and a pixel-upsampling module(PUM)reconstructs the high-resolution(HR)video frames.Comprehensive evaluations on REDS,Vid4,UDM10,and Vim4 benchmarks demonstrate well performance including 30.95 dB PSNR/0.8822 SSIM on REDS and 32.78 dB/0.8987 on Vim4.3D-ERVSNet achieves significant gains over baselines while maintaining high efficiency with only 6.3M parameters and 77ms/frame runtime(i.e.,20×faster than RBPN).The network’s effectiveness stems from its task-specific asymmetric design that balances explicit alignment and implicit fusion. 展开更多
关键词 Video super-resolution 3D convolution enhanced residual CNN spatio-temporal feature extraction
在线阅读 下载PDF
Single-neutron super-resolution imaging based on neutron capture event detection and reconstruction
10
作者 Yu-Hua Ma Bin Tang +10 位作者 Wei Yin Hang Li Hong-Wen Huang Hong-Li Chen Xin Yang He-Yong Huo Yong Sun Sheng Wang Bin Liu Run-Dong Li Yang Wu 《Nuclear Science and Techniques》 2025年第7期24-33,共10页
Neutron capture event imaging is a novel technique that has the potential to substantially enhance the resolution of existing imaging systems.This study provides a measurement method for neutron capture event distribu... Neutron capture event imaging is a novel technique that has the potential to substantially enhance the resolution of existing imaging systems.This study provides a measurement method for neutron capture event distribution along with multiple reconstruction methods for super-resolution imaging.The proposed technology reduces the point-spread function of an imag-ing system through single-neutron detection and event reconstruction,thereby significantly improving imaging resolution.A single-neutron detection experiment was conducted using a highly practical and efficient^(6)LiF-ZnS scintillation screen of a cold neutron imaging device in the research reactor.In milliseconds of exposure time,a large number of weak light clusters and their distribution in the scintillation screen were recorded frame by frame,to complete single-neutron detection.Several reconstruction algorithms were proposed for the calculations.The location of neutron capture was calculated using several processing methods such as noise removal,filtering,spot segmentation,contour analysis,and local positioning.The proposed algorithm achieved a higher imaging resolution and faster reconstruction speed,and single-neutron super-resolution imaging was realized by combining single-neutron detection experiments and reconstruction calculations.The results show that the resolution of the 100μm thick^(6)LiF-ZnS scintillation screen can be improved from 125 to 40 microns.This indicates that the proposed single-neutron detection and calculation method is effective and can significantly improve imaging resolution. 展开更多
关键词 Neutron capture reaction super-resolution imaging Weak light detection Event reconstruction
在线阅读 下载PDF
Super-resolution imaging of cellular pseudopodia dynamics with a target-specific blinkogenic probe
11
作者 Aoxuan Song Qinglong Qiao +4 位作者 Ning Xu Yiyan Ruan Wenhao Jia Xiang Wang Zhaochao Xu 《Chinese Chemical Letters》 2025年第8期424-428,共5页
Monitoring the dynamics of cellular pseudopodia at nanoscale has become essential for understanding their diverse and complex functions in living cells.This is made possible by combining single-molecule localization m... Monitoring the dynamics of cellular pseudopodia at nanoscale has become essential for understanding their diverse and complex functions in living cells.This is made possible by combining single-molecule localization microscopy(SMLM)with self-blinking dyes.However,existing self-blinking dyes often face limitations,such as nonspecific blinking and low photostability,which can bring background noise and yield erroneous localization signals,hindering their effectiveness for nanoscale visualization.Here,we present a method for long-term SMLM imaging of cellular pseudopodia dynamics using a blinkogenic probe that exhibits self-blinking activation upon molecular recognition.This approach enabled the precise tracking of various pseudopodia structures,including filopodia,lamellipodia,and(tunneling nanotubes)-nanoscale(TNTs),in living cells.We monitored the growth and fusion of filopodia,as well as the extension and shrinkage of lamellipodia,in real-time.Additionally,we identified two distinct fusion modes between filopodia and lamellipodia and captured the formation of TNTs and their interactions with filopodia,demonstrating the probe's utility in visualizing real-time pseudopodia dynamics at nanoscale. 展开更多
关键词 Single-molecule localization microscopy Cellular pseudopodia Self-blinking Blinkogenic probe Dynamic super-resolution imaging
原文传递
Effects of Normalised SSIM Loss on Super-Resolution Tasks
12
作者 Adéla Hamplová TomášNovák +1 位作者 MiroslavŽácek JiríBrožek 《Computer Modeling in Engineering & Sciences》 2025年第6期3329-3349,共21页
This study proposes a new component of the composite loss function minimised during training of the Super-Resolution(SR)algorithms—the normalised structural similarity index loss LSSIMN,which has the potential to imp... This study proposes a new component of the composite loss function minimised during training of the Super-Resolution(SR)algorithms—the normalised structural similarity index loss LSSIMN,which has the potential to improve the natural appearance of reconstructed images.Deep learning-based super-resolution(SR)algorithms reconstruct high-resolution images from low-resolution inputs,offering a practical means to enhance image quality without requiring superior imaging hardware,which is particularly important in medical applications where diagnostic accuracy is critical.Although recent SR methods employing convolutional and generative adversarial networks achieve high pixel fidelity,visual artefacts may persist,making the design of the loss function during training essential for ensuring reliable and naturalistic image reconstruction.Our research shows on two models—SR and Invertible Rescaling Neural Network(IRN)—trained on multiple benchmark datasets that the function LSSIMN significantly contributes to the visual quality,preserving the structural fidelity on the reference datasets.The quantitative analysis of results while incorporating LSSIMN shows that including this loss function component has a mean 2.88%impact on the improvement of the final structural similarity of the reconstructed images in the validation set,in comparison to leaving it out and 0.218%in comparison when this component is non-normalised. 展开更多
关键词 super-resolution convolutional neural networks composite loss function structural similarity normalisation training optimisation
在线阅读 下载PDF
Lamb wave TDTE super-resolution imaging assisted by deep learning
13
作者 Liu-Jia Sun Qing-Bang Han and Qi-Lin Jin 《Chinese Physics B》 2025年第1期357-366,共10页
Ultrasonic Lamb waves undergo complex mode conversion and diffraction at non-penetrating defects, such as plate corrosion and cracks. Lamb wave imaging has a resolution limit due to the guided wave dispersion characte... Ultrasonic Lamb waves undergo complex mode conversion and diffraction at non-penetrating defects, such as plate corrosion and cracks. Lamb wave imaging has a resolution limit due to the guided wave dispersion characteristics and Rayleigh criterion limitations. In this paper, a full convolutional network is designed to segment and reconstruct the received signals, enabling the automatic identification of target modalities. This approach eliminates clutter and mode conversion interference when calculating direct and accompanying acoustic fields in time-domain topological energy(TDTE) imaging.Subsequently, the measured accompanying acoustic field is reversed for adaptive focusing on defects and enhance the imaging quality. To circumvent the limitations of the Rayleigh criterion, the direct acoustic field and the accompanying acoustic field were fused to characterize the pixel distribution in the imaging region, achieving Lamb wave super-resolution imaging. Experimental results indicate that compared to the sign coherence factor-total focusing method(SCF-TFM),the proposed method achieves a 31.41% improvement in lateral resolution and a 29.53% increase in signal-to-noise ratio for single-blind-hole defects. In the case of multiple-blind-hole defects with spacings greater than the Rayleigh criterion resolution limit, it exhibits a 27.23% enhancement in signal-to-noise ratio. On the contrary, when the defect spacings are relatively smaller than the limit, this method has a higher resolution limit than SCF-TFM in super-resolution imaging. 展开更多
关键词 Lamb waves asymmetric defects fully convolutional network time-domain topological energy imaging super-resolution
原文传递
Magnetic Resonance Image Super-Resolution Based on GAN and Multi-Scale Residual Dense Attention Network
14
作者 GUAN Chunling YU Suping +1 位作者 XU Wujun FAN Hong 《Journal of Donghua University(English Edition)》 2025年第4期435-441,共7页
The application of image super-resolution(SR)has brought significant assistance in the medical field,aiding doctors to make more precise diagnoses.However,solely relying on a convolutional neural network(CNN)for image... The application of image super-resolution(SR)has brought significant assistance in the medical field,aiding doctors to make more precise diagnoses.However,solely relying on a convolutional neural network(CNN)for image SR may lead to issues such as blurry details and excessive smoothness.To address the limitations,we proposed an algorithm based on the generative adversarial network(GAN)framework.In the generator network,three different sizes of convolutions connected by a residual dense structure were used to extract detailed features,and an attention mechanism combined with dual channel and spatial information was applied to concentrate the computing power on crucial areas.In the discriminator network,using InstanceNorm to normalize tensors sped up the training process while retaining feature information.The experimental results demonstrate that our algorithm achieves higher peak signal-to-noise ratio(PSNR)and structural similarity index measure(SSIM)compared to other methods,resulting in an improved visual quality. 展开更多
关键词 magnetic resonance(MR) image super-resolution(SR) attention mechanism generative adversarial network(GAN) multi-scale convolution
在线阅读 下载PDF
Machine Learning-Based Detection and Selective Mitigation of Denial-of-Service Attacks in Wireless Sensor Networks
15
作者 Soyoung Joo So-Hyun Park +2 位作者 Hye-Yeon Shim Ye-Sol Oh Il-Gu Lee 《Computers, Materials & Continua》 2025年第2期2475-2494,共20页
As the density of wireless networks increases globally, the vulnerability of overlapped dense wireless communications to interference by hidden nodes and denial-of-service (DoS) attacks is becoming more apparent. Ther... As the density of wireless networks increases globally, the vulnerability of overlapped dense wireless communications to interference by hidden nodes and denial-of-service (DoS) attacks is becoming more apparent. There exists a gap in research on the detection and response to attacks on Medium Access Control (MAC) mechanisms themselves, which would lead to service outages between nodes. Classifying exploitation and deceptive jamming attacks on control mechanisms is particularly challengingdue to their resemblance to normal heavy communication patterns. Accordingly, this paper proposes a machine learning-based selective attack mitigation model that detects DoS attacks on wireless networks by monitoring packet log data. Based on the type of detected attack, it implements effective corresponding mitigation techniques to restore performance to nodes whose availability has been compromised. Experimental results reveal that the accuracy of the proposed model is 14% higher than that of a baseline anomaly detection model. Further, the appropriate mitigation techniques selected by the proposed system based on the attack type improve the average throughput by more than 440% compared to the case without a response. 展开更多
关键词 Distributed coordinated function mechanism jamming attack machine learning-based attack detection selective attack mitigation model selective attack mitigation model selfish attack
在线阅读 下载PDF
Performance vs.Complexity Comparative Analysis of Multimodal Bilinear Pooling Fusion Approaches for Deep Learning-Based Visual Arabic-Question Answering Systems
16
作者 Sarah M.Kamel Mai A.Fadel +1 位作者 Lamiaa Elrefaei Shimaa I.Hassan 《Computer Modeling in Engineering & Sciences》 2025年第4期373-411,共39页
Visual question answering(VQA)is a multimodal task,involving a deep understanding of the image scene and the question’s meaning and capturing the relevant correlations between both modalities to infer the appropriate... Visual question answering(VQA)is a multimodal task,involving a deep understanding of the image scene and the question’s meaning and capturing the relevant correlations between both modalities to infer the appropriate answer.In this paper,we propose a VQA system intended to answer yes/no questions about real-world images,in Arabic.To support a robust VQA system,we work in two directions:(1)Using deep neural networks to semantically represent the given image and question in a fine-grainedmanner,namely ResNet-152 and Gated Recurrent Units(GRU).(2)Studying the role of the utilizedmultimodal bilinear pooling fusion technique in the trade-o.between the model complexity and the overall model performance.Some fusion techniques could significantly increase the model complexity,which seriously limits their applicability for VQA models.So far,there is no evidence of how efficient these multimodal bilinear pooling fusion techniques are for VQA systems dedicated to yes/no questions.Hence,a comparative analysis is conducted between eight bilinear pooling fusion techniques,in terms of their ability to reduce themodel complexity and improve themodel performance in this case of VQA systems.Experiments indicate that these multimodal bilinear pooling fusion techniques have improved the VQA model’s performance,until reaching the best performance of 89.25%.Further,experiments have proven that the number of answers in the developed VQA system is a critical factor that a.ects the effectiveness of these multimodal bilinear pooling techniques in achieving their main objective of reducing the model complexity.The Multimodal Local Perception Bilinear Pooling(MLPB)technique has shown the best balance between the model complexity and its performance,for VQA systems designed to answer yes/no questions. 展开更多
关键词 Arabic-VQA deep learning-based VQA deep multimodal information fusion multimodal representation learning VQA of yes/no questions VQA model complexity VQA model performance performance-complexity trade-off
在线阅读 下载PDF
Deep-learning-based methods for super-resolution fluorescence microscopy 被引量:2
17
作者 Jianhui Liao Junle Qu +1 位作者 Yongqi Hao Jia Li 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2023年第3期85-100,共16页
The algorithm used for reconstruction or resolution enhancement is one of the factors affectingthe quality of super-resolution images obtained by fluorescence microscopy.Deep-learning-basedalgorithms have achieved sta... The algorithm used for reconstruction or resolution enhancement is one of the factors affectingthe quality of super-resolution images obtained by fluorescence microscopy.Deep-learning-basedalgorithms have achieved stateof-the-art performance in super-resolution fluorescence micros-copy and are becoming increasingly attractive.We firstly introduce commonly-used deep learningmodels,and then review the latest applications in terms of the net work architectures,the trainingdata and the loss functions.Additionally,we discuss the challenges and limits when using deeplearning to analyze the fluorescence microscopic data,and suggest ways to improve the reliability and robustness of deep learning applications. 展开更多
关键词 super-resolution fuorescence microscopy deep learning convolutional neural net-work generative adversarial network image reconstruction
原文传递
Efficient 2-D MUSIC algorithm for super-resolution moving target tracking based on an FMCW radar 被引量:1
18
作者 Xuchong Yi Shuangxi Zhang Yuxuan Zhou 《Geodesy and Geodynamics》 EI CSCD 2024年第5期504-515,共12页
Frequency modulated continuous wave(FMCW)radar is an advantageous sensor scheme for target estimation and environmental perception.However,existing algorithms based on discrete Fourier transform(DFT),multiple signal c... Frequency modulated continuous wave(FMCW)radar is an advantageous sensor scheme for target estimation and environmental perception.However,existing algorithms based on discrete Fourier transform(DFT),multiple signal classification(MUSIC)and compressed sensing,etc.,cannot achieve both low complexity and high resolution simultaneously.This paper proposes an efficient 2-D MUSIC algorithm for super-resolution target estimation/tracking based on FMCW radar.Firstly,we enhance the efficiency of 2-D MUSIC azimuth-range spectrum estimation by incorporating 2-D DFT and multi-level resolution searching strategy.Secondly,we apply the gradient descent method to tightly integrate the spatial continuity of object motion into spectrum estimation when processing multi-epoch radar data,which improves the efficiency of continuous target tracking.These two approaches have improved the algorithm efficiency by nearly 2-4 orders of magnitude without losing accuracy and resolution.Simulation experiments are conducted to validate the effectiveness of the algorithm in both single-epoch estimation and multi-epoch tracking scenarios. 展开更多
关键词 2D-MUSIC FMCW radar Moving target tracking super-resolution Algorithm optimization
原文传递
Shear Let Transform Residual Learning Approach for Single-Image Super-Resolution
19
作者 Israa Ismail Ghada Eltaweel Mohamed Meselhy Eltoukhy 《Computers, Materials & Continua》 SCIE EI 2024年第5期3193-3209,共17页
Super-resolution techniques are employed to enhance image resolution by reconstructing high-resolution images from one or more low-resolution inputs.Super-resolution is of paramount importance in the context of remote... Super-resolution techniques are employed to enhance image resolution by reconstructing high-resolution images from one or more low-resolution inputs.Super-resolution is of paramount importance in the context of remote sensing,satellite,aerial,security and surveillance imaging.Super-resolution remote sensing imagery is essential for surveillance and security purposes,enabling authorities to monitor remote or sensitive areas with greater clarity.This study introduces a single-image super-resolution approach for remote sensing images,utilizing deep shearlet residual learning in the shearlet transform domain,and incorporating the Enhanced Deep Super-Resolution network(EDSR).Unlike conventional approaches that estimate residuals between high and low-resolution images,the proposed approach calculates the shearlet coefficients for the desired high-resolution image using the provided low-resolution image instead of estimating a residual image between the high-and low-resolution image.The shearlet transform is chosen for its excellent sparse approximation capabilities.Initially,remote sensing images are transformed into the shearlet domain,which divides the input image into low and high frequencies.The shearlet coefficients are fed into the EDSR network.The high-resolution image is subsequently reconstructed using the inverse shearlet transform.The incorporation of the EDSR network enhances training stability,leading to improved generated images.The experimental results from the Deep Shearlet Residual Learning approach demonstrate its superior performance in remote sensing image recovery,effectively restoring both global topology and local edge detail information,thereby enhancing image quality.Compared to other networks,our proposed approach outperforms the state-of-the-art in terms of image quality,achieving an average peak signal-to-noise ratio of 35 and a structural similarity index measure of approximately 0.9. 展开更多
关键词 super-resolution shearlet transform shearlet coefficients enhanced deep super-resolution network
在线阅读 下载PDF
AFBNet: A Lightweight Adaptive Feature Fusion Module for Super-Resolution Algorithms
20
作者 Lirong Yin Lei Wang +7 位作者 Siyu Lu Ruiyang Wang Haitao Ren Ahmed AlSanad Salman A.AlQahtani Zhengtong Yin Xiaolu Li Wenfeng Zheng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2315-2347,共33页
At present,super-resolution algorithms are employed to tackle the challenge of low image resolution,but it is difficult to extract differentiated feature details based on various inputs,resulting in poor generalizatio... At present,super-resolution algorithms are employed to tackle the challenge of low image resolution,but it is difficult to extract differentiated feature details based on various inputs,resulting in poor generalization ability.Given this situation,this study first analyzes the features of some feature extraction modules of the current super-resolution algorithm and then proposes an adaptive feature fusion block(AFB)for feature extraction.This module mainly comprises dynamic convolution,attention mechanism,and pixel-based gating mechanism.Combined with dynamic convolution with scale information,the network can extract more differentiated feature information.The introduction of a channel spatial attention mechanism combined with multi-feature fusion further enables the network to retain more important feature information.Dynamic convolution and pixel-based gating mechanisms enhance the module’s adaptability.Finally,a comparative experiment of a super-resolution algorithm based on the AFB module is designed to substantiate the efficiency of the AFB module.The results revealed that the network combined with the AFB module has stronger generalization ability and expression ability. 展开更多
关键词 super-resolution feature extraction dynamic convolution attention mechanism gate control
在线阅读 下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部