期刊文献+
共找到116篇文章
< 1 2 6 >
每页显示 20 50 100
Beyond Performance of Learning Control Subject to Uncertainties and Noise: A Frequency-Domain Approach Applied to Wafer Stages
1
作者 Fazhi Song Ning Cui +4 位作者 Shuaiqi Chen Kai Zhang Yang Liu Xinkai Chen Jiubin Tan 《IEEE/CAA Journal of Automatica Sinica》 2025年第1期198-214,共17页
The increasingly stringent performance requirement in integrated circuit manufacturing, characterized by smaller feature sizes and higher productivity, necessitates the wafer stage executing a extreme motion with the ... The increasingly stringent performance requirement in integrated circuit manufacturing, characterized by smaller feature sizes and higher productivity, necessitates the wafer stage executing a extreme motion with the accuracy in terms of nanometers. This demanding requirement witnesses a widespread application of iterative learning control(ILC), given the repetitive nature of wafer scanning. ILC enables substantial performance improvement by using past measurement data in combination with the system model knowledge. However, challenges arise in cases where the data is contaminated by the stochastic noise, or when the system model exhibits significant uncertainties, constraining the achievable performance. In response to this issue, an extended state observer(ESO) based adaptive ILC approach is proposed in the frequency domain.Despite being model-based, it utilizes only a rough system model and then compensates for the resulting model uncertainties using an ESO, thereby achieving high robustness against uncertainties with minimal modeling effort. Additionally, an adaptive learning law is developed to mitigate the limited performance in the presence of stochastic noise, yielding high convergence accuracy yet without compromising convergence speed. Simulation and experimental comparisons with existing model-based and data-driven inversion-based ILC validate the effectiveness as well as the superiority of the proposed method. 展开更多
关键词 Extended state observer learning control model uncertainties motion control stochastic noise
在线阅读 下载PDF
A Modified Iterative Learning Control Approach for the Active Suppression of Rotor Vibration Induced by Coupled Unbalance and Misalignment 被引量:2
2
作者 Yifan Bao Jianfei Yao +1 位作者 Fabrizio Scarpa Yan Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期242-253,共12页
This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibr... This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibration of the rotor is provided by an active magnetic actuator(AMA).The iterative gain of the MILC algorithm here presented has a self-adjustment based on the magnitude of the vibration.Notch filters are adopted to extract the synchronous(1×Ω)and twice rotational frequency(2×Ω)components of the rotor vibration.Both the notch frequency of the filter and the size of feedforward storage used during the experiment have a real-time adaptation to the rotational speed.The method proposed in this work can provide effective suppression of the vibration of the rotor in case of sudden changes or fluctuations of the rotor speed.Simulations and experiments using the MILC algorithm proposed here are carried out and give evidence to the feasibility and robustness of the technique proposed. 展开更多
关键词 Rotor vibration suppression Modified iterative learning control UNBALANCE Parallel misalignment Active magnetic actuator
在线阅读 下载PDF
Data-Driven Learning Control Algorithms for Unachievable Tracking Problems 被引量:1
3
作者 Zeyi Zhang Hao Jiang +1 位作者 Dong Shen Samer S.Saab 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期205-218,共14页
For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to in... For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to investigate solutions using the Ptype learning control scheme. Initially, we demonstrate the necessity of gradient information for achieving the best approximation.Subsequently, we propose an input-output-driven learning gain design to handle the imprecise gradients of a class of uncertain systems. However, it is discovered that the desired performance may not be attainable when faced with incomplete information.To address this issue, an extended iterative learning control scheme is introduced. In this scheme, the tracking errors are modified through output data sampling, which incorporates lowmemory footprints and offers flexibility in learning gain design.The input sequence is shown to converge towards the desired input, resulting in an output that is closest to the given reference in the least square sense. Numerical simulations are provided to validate the theoretical findings. 展开更多
关键词 Data-driven algorithms incomplete information iterative learning control gradient information unachievable problems
在线阅读 下载PDF
Noise-Tolerant ZNN-Based Data-Driven Iterative Learning Control for Discrete Nonaffine Nonlinear MIMO Repetitive Systems
4
作者 Yunfeng Hu Chong Zhang +4 位作者 Bo Wang Jing Zhao Xun Gong Jinwu Gao Hong Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期344-361,共18页
Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning ... Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning control(ILC) scheme based on the zeroing neural networks(ZNNs) is proposed. First, the equivalent dynamic linearization data model is obtained by means of dynamic linearization technology, which exists theoretically in the iteration domain. Then, the iterative extended state observer(IESO) is developed to estimate the disturbance and the coupling between systems, and the decoupled dynamic linearization model is obtained for the purpose of controller synthesis. To solve the zero-seeking tracking problem with inherent tolerance of noise,an ILC based on noise-tolerant modified ZNN is proposed. The strict assumptions imposed on the initialization conditions of each iteration in the existing ILC methods can be absolutely removed with our method. In addition, theoretical analysis indicates that the modified ZNN can converge to the exact solution of the zero-seeking tracking problem. Finally, a generalized example and an application-oriented example are presented to verify the effectiveness and superiority of the proposed process. 展开更多
关键词 Adaptive control control system synthesis data-driven iterative learning control neurocontroller nonlinear discrete time systems
在线阅读 下载PDF
Generalized Norm Optimal Iterative Learning Control with Intermediate Point and Sub-interval Tracking 被引量:2
5
作者 David H.Owens Chris T.Freeman Bing Chu 《International Journal of Automation and computing》 EI CSCD 2015年第3期243-253,共11页
Norm optimal iterative learning control(NOILC) has recently been applied to iterative learning control(ILC) problems in which tracking is only required at a subset of isolated time points along the trial duration. Thi... Norm optimal iterative learning control(NOILC) has recently been applied to iterative learning control(ILC) problems in which tracking is only required at a subset of isolated time points along the trial duration. This problem addresses the practical needs of many applications, including industrial automation, crane control, satellite positioning and motion control within a medical stroke rehabilitation context. This paper provides a substantial generalization of this framework by providing a solution to the problem of convergence at intermediate points with simultaneous tracking of subsets of outputs to reference trajectories on subintervals. This formulation enables the NOILC paradigm to tackle tasks which mix "point to point" movements with linear tracking requirements and hence substantially broadens the application domain to include automation tasks which include welding or cutting movements, or human motion control where the movement is restricted by the task to straight line and/or planar segments. A solution to the problem is presented in the framework of NOILC and inherits NOILC s well-defined convergence properties. Design guidelines and supporting experimental results are included. 展开更多
关键词 Iterative learning control learning control optimization linear systems robotics.
原文传递
Generalized projective synchronization of chaotic systems via adaptive learning control 被引量:19
6
作者 孙云平 李俊民 +1 位作者 王江安 王辉林 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第2期119-126,共8页
In this paper, a learning control approach is applied to the generalized projective synchronisation (GPS) of different chaotic systems with unknown periodically time-varying parameters. Using the Lyapunov--Krasovski... In this paper, a learning control approach is applied to the generalized projective synchronisation (GPS) of different chaotic systems with unknown periodically time-varying parameters. Using the Lyapunov--Krasovskii functional stability theory, a differential-difference mixed parametric learning law and an adaptive learning control law are constructed to make the states of two different chaotic systems asymptotically synchronised. The scheme is successfully applied to the generalized projective synchronisation between the Lorenz system and Chen system. Moreover, numerical simulations results are used to verify the effectiveness of the proposed scheme. 展开更多
关键词 generalized projective synchronisation chaotic systems adaptive learning control Lyapunov--Krasovskii functional
原文传递
Fuzzy iterative learning control of electro-hydraulic servo system for SRM direct-drive volume control hydraulic press 被引量:18
7
作者 郑建明 赵升吨 魏树国 《Journal of Central South University》 SCIE EI CAS 2010年第2期316-322,共7页
A new kind of volume control hydraulic press that combines the advantages of both hydraulic and SRM(switched reluctance motor) driving technology is developed.Considering that the serious dead zone and time-variant no... A new kind of volume control hydraulic press that combines the advantages of both hydraulic and SRM(switched reluctance motor) driving technology is developed.Considering that the serious dead zone and time-variant nonlinearity exist in the volume control electro-hydraulic servo system,the ILC(iterative learning control) method is applied to tracking the displacement curve of the hydraulic press slider.In order to improve the convergence speed and precision of ILC,a fuzzy ILC algorithm that utilizes the fuzzy strategy to adaptively adjust the iterative learning gains is put forward.The simulation and experimental researches are carried out to investigate the convergence speed and precision of the fuzzy ILC for hydraulic press slider position tracking.The results show that the fuzzy ILC can raise the iterative learning speed enormously,and realize the tracking control of slider displacement curve with rapid response speed and high control precision.In experiment,the maximum tracking error 0.02 V is achieved through 12 iterations only. 展开更多
关键词 hydraulic press volume control electro-hydraulic servo iterative learning control fuzzy control
在线阅读 下载PDF
Iterative Learning Control With Incomplete Information:A Survey 被引量:15
8
作者 Dong Shen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第5期885-901,共17页
This paper conducts a survey on iterative learn-ing control(ILC)with incomplete information and associated control system design,which is a frontier of the ILC field.The incomplete information,including passive and ac... This paper conducts a survey on iterative learn-ing control(ILC)with incomplete information and associated control system design,which is a frontier of the ILC field.The incomplete information,including passive and active types,can cause data loss or fragment due to various factors.Passive incomplete information refers to incomplete data and information caused by practical system limitations during data collection,storage,transmission,and processing,such as data dropouts,delays,disordering,and limited transmission bandwidth.Active incomplete information refers to incomplete data and information caused by man-made reduction of data quantity and quality on the premise that the given objective is satisfied,such as sampling and quantization.This survey emphasizes two aspects:the first one is how to guarantee good learning performance and tracking performance with passive incomplete data,and the second is how to balance the control performance index and data demand by active means.The promising research directions along this topic are also addressed,where data robustness is highly emphasized.This survey is expected to improve understanding of the restrictive relationship and trade-off between incomplete data and tracking performance,quantitatively,and promote further developments of ILC theory. 展开更多
关键词 Data dropout data robustness incomplete information iterative learning control(ILC) quantized control sampled control varying lengths
在线阅读 下载PDF
Docking control for probe-drogue refueling: An additive-state-decomposition-based output feedback iterative learning control method 被引量:12
9
作者 Jinrui REN Quan QUAN +1 位作者 Cunjia LIU Kai-Yuan CAI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第3期1016-1025,共10页
Designing a controller for the docking maneuver in Probe-Drogue Refueling(PDR) is an important but challenging task, due to the complex system model and the high precision requirement.In order to overcome the disadvan... Designing a controller for the docking maneuver in Probe-Drogue Refueling(PDR) is an important but challenging task, due to the complex system model and the high precision requirement.In order to overcome the disadvantage of only feedback control, a feedforward control scheme known as Iterative Learning Control(ILC) is adopted in this paper.First, Additive State Decomposition(ASD) is used to address the tight coupling of input saturation, nonlinearity and the property of Non Minimum Phase(NMP) by separating these features into two subsystems(a primary system and a secondary system).After system decomposition, an adjoint-type ILC is applied to the Linear Time-Invariant(LTI) primary system with NMP to achieve entire output trajectory tracking, whereas state feedback is used to stabilize the secondary system with input saturation.The two controllers designed for the two subsystems can be combined to achieve the original control goal of the PDR system.Furthermore, to compensate for the receiverindependent uncertainties, a correction action is proposed by using the terminal docking error,which can lead to a smaller docking error at the docking moment.Simulation tests have been carried out to demonstrate the performance of the proposed control method, which has some advantages over the traditional derivative-type ILC and adjoint-type ILC in the docking control of PDR. 展开更多
关键词 Additive state decomposition Adjoint operator Docking control Iterative learning control Probe-drogue refueling Stable inversion
原文传递
PD-type iterative learning control for nonlinear time-delay system with external disturbance 被引量:12
10
作者 Zhang Baolin Tang Gongyou Zheng Shi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第3期600-605,共6页
The PD-type iterative learning control design of a class of affine nonlinear time-delay systems with external disturbances is considered. Sufficient conditions guaranteeing the convergence of the n-norm of the trackin... The PD-type iterative learning control design of a class of affine nonlinear time-delay systems with external disturbances is considered. Sufficient conditions guaranteeing the convergence of the n-norm of the tracking error are derived. It is shown that the system outputs can be guaranteed to converge to desired trajectories in the absence of external disturbances and output measurement noises. And in the presence of state disturbances and measurement noises, the tracking error will be bounded uniformly. A numerical simulation example is presented to validate the effectiveness of the proposed scheme. 展开更多
关键词 time-delay system nonlinear system iterative learning control CONVERGENCE external disturbance.
在线阅读 下载PDF
Stability of Iterative Learning Control with Data Dropouts via Asynchronous Dynamical System 被引量:18
11
作者 Xu-Hui Bu Zhong-Sheng Hou 《International Journal of Automation and computing》 EI 2011年第1期29-36,共8页
In this paper, the stability of iterative learning control with data dropouts is discussed. By the super vector formulation, an iterative learning control (ILC) system with data dropouts can be modeled as an asynchr... In this paper, the stability of iterative learning control with data dropouts is discussed. By the super vector formulation, an iterative learning control (ILC) system with data dropouts can be modeled as an asynchronous dynamical system with rate constraints on events in the iteration domain. The stability condition is provided in the form of linear matrix inequalities (LMIS) depending on the stability of asynchronous dynamical systems. The analysis is supported by simulations. 展开更多
关键词 Iterative learning control (ILC) networked control systems (NCSs) data dropouts asynchronous dynamical system robustness.
在线阅读 下载PDF
Adaptive Iterative Learning Control for Nonlinearly Parameterized Systems with Unknown Time-varying Delay and Unknown Control Direction 被引量:17
12
作者 Dan Li Jun-Min Li Department of Mathematics,Xidian University,Xi an 710071,China 《International Journal of Automation and computing》 EI 2012年第6期578-586,共9页
This paper proposes a new adaptive iterative learning control approach for a class of nonlinearly parameterized systems with unknown time-varying delay and unknown control direction.By employing the parameter separati... This paper proposes a new adaptive iterative learning control approach for a class of nonlinearly parameterized systems with unknown time-varying delay and unknown control direction.By employing the parameter separation technique and signal replacement mechanism,the approach can overcome unknown time-varying parameters and unknown time-varying delay of the nonlinear systems.By incorporating a Nussbaum-type function,the proposed approach can deal with the unknown control direction of the nonlinear systems.Based on a Lyapunov-Krasovskii-like composite energy function,the convergence of tracking error sequence is achieved in the iteration domain.Finally,two simulation examples are provided to illustrate the feasibility of the proposed control method. 展开更多
关键词 Nonlinearly time-varying parameterized systems unknown time-varying delay unknown control direction composite energy function adaptive iterative learning control.
原文传递
Observer-based Adaptive Iterative Learning Control for Nonlinear Systems with Time-varying Delays 被引量:12
13
作者 Wei-Sheng Chen Rui-Hong Li Jing Li 《International Journal of Automation and computing》 EI 2010年第4期438-446,共9页
An observer-based adaptive iterative learning control (AILC) scheme is developed for a class of nonlinear systems with unknown time-varying parameters and unknown time-varying delays. The linear matrix inequality (... An observer-based adaptive iterative learning control (AILC) scheme is developed for a class of nonlinear systems with unknown time-varying parameters and unknown time-varying delays. The linear matrix inequality (LMI) method is employed to design the nonlinear observer. The designed controller contains a proportional-integral-derivative (PID) feedback term in time domain. The learning law of unknown constant parameter is differential-difference-type, and the learning law of unknown time-varying parameter is difference-type. It is assumed that the unknown delay-dependent uncertainty is nonlinearly parameterized. By constructing a Lyapunov-Krasovskii-like composite energy function (CEF), we prove the boundedness of all closed-loop signals and the convergence of tracking error. A simulation example is provided to illustrate the effectiveness of the control algorithm proposed in this paper. 展开更多
关键词 Adaptive iterative learning control (AILC) nonlinearly parameterized systems time-varying delays Lyapunov- Krasovskii-like composite energy function.
在线阅读 下载PDF
Optimal Iterative Learning Control for Batch Processes Based on Linear Time-varying Perturbation Model 被引量:9
14
作者 熊智华 ZHANG Jie 董进 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第2期235-240,共6页
A batch-to-batch optimal iterative learning control (ILC) strategy for the tracking control of product quality in batch processes is presented. The linear time-varying perturbation (LTVP) model is built for produc... A batch-to-batch optimal iterative learning control (ILC) strategy for the tracking control of product quality in batch processes is presented. The linear time-varying perturbation (LTVP) model is built for product quality around the nominal trajectories. To address problems of model-plant mismatches, model prediction errors in the previous batch run are added to the model predictions for the current batch run. Then tracking error transition models can be built, and the ILC law with direct error feedback is explicitly obtained, A rigorous theorem is proposed, to prove the convergence of tracking error under ILC, The proposed methodology is illustrated on a typical batch reactor and the results show that the performance of trajectory tracking is gradually improved by the ILC. 展开更多
关键词 iterative learning control linear time-varying perturbation model batch process
在线阅读 下载PDF
Robust iterative learning control for nonlinear systems with measurement disturbances 被引量:6
15
作者 Xuhui BuI FashanYu +1 位作者 Zhongsheng Hou Haizhu Yang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第6期906-913,共8页
The iterative learning control (ILC) has been demon-strated to be capable of considerably improving the tracking perfor-mance of systems which are affected by the iteration-independent disturbance. However, the achi... The iterative learning control (ILC) has been demon-strated to be capable of considerably improving the tracking perfor-mance of systems which are affected by the iteration-independent disturbance. However, the achievable performance is greatly degraded when iteration-dependent, stochastic disturbances are pre-sented. This paper considers the robustness of the ILC algorithm for the nonlinear system in presence of stochastic measurement disturbances. The robust convergence of the P-type ILC algorithm is firstly addressed, and then an improved ILC algorithm with a decreasing gain is proposed. Theoretical analyses show that the proposed algorithm can guarantee that the tracking error of the nonlinear system tends to zero in presence of measurement dis-turbances. The analysis is also supported by a numerical example. 展开更多
关键词 iterative learning control (ILC) nonlinear system mea-surement disturbance iteration-varying disturbance.
在线阅读 下载PDF
A High-order Internal Model Based Iterative Learning Control Scheme for Discrete Linear Time-varying Systems 被引量:7
16
作者 Wei Zhou Miao Yu De-Qing Huang 《International Journal of Automation and computing》 EI CSCD 2015年第3期330-336,共7页
In this paper, an iterative learning control algorithm is proposed for discrete linear time-varying systems to track iterationvarying desired trajectories. A high-order internal model(HOIM) is utilized to describe the... In this paper, an iterative learning control algorithm is proposed for discrete linear time-varying systems to track iterationvarying desired trajectories. A high-order internal model(HOIM) is utilized to describe the variation of desired trajectories in the iteration domain. In the sequel, the HOIM is incorporated into the design of learning gains. The learning convergence in the iteration axis can be guaranteed with rigorous proof. The simulation results with permanent magnet linear motors(PMLM) demonstrate that the proposed HOIM based approach yields good performance and achieves perfect tracking. 展开更多
关键词 Iterative learning control high-order internal model discrete linear time-varying systems iteration-varying desired tra-jectory
原文传递
Iterative Learning Control Algorithm with a Fixed Step 被引量:4
17
作者 WANG Yan NIU Jianjun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第4期669-675,共7页
Iterative Learning Control (ILC) captures interests of many scholars because of its capability of high precision control implement without identifying plant mathematical models, and it is widely applied in control e... Iterative Learning Control (ILC) captures interests of many scholars because of its capability of high precision control implement without identifying plant mathematical models, and it is widely applied in control engineering. Presently, most ILC algorithms still follow the original ideas of ARIMOTO, in which the iterative-learning-rate is composed by the control error with its derivative and integral values. This kind of algorithms will result in inevitable problems such as huge computation, big storage capacity for algorithm data, and also weak robust. In order to resolve these problems, an improved iterative learning control algorithm with fixed step is proposed here which breaks the primary thought of ARIMOTO. In this algorithm, the control step is set only according to the value of the control error, which could enormously reduce the computation and storage size demanded, also improve the robust of the algorithm by not using the differential coefficient of the iterative learning error. In this paper, the convergence conditions of this proposed fixed step iterative learning algorithm is theoretically analyzed and testified. Then the algorithm is tested through simulation researches on a time-variant object with randomly set disturbance through calculation of step threshold value, algorithm robustness testing,and evaluation of the relation between convergence speed and step size. Finally the algorithm is validated on a valve-serving-cylinder system of a joint robot with time-variant parameters. Experiment results demonstrate the stability of the algorithm and also the relationship between step value and convergence rate. Both simulation and experiment testify the feasibility and validity of the new algorithm proposed here. And it is worth to noticing that this algorithm is simple but with strong robust after improvements, which provides new ideas to the research of iterative learning control algorithms. 展开更多
关键词 iterative learning control fixed step time variant system simulating study robot control
在线阅读 下载PDF
Robust Optimization-Based Iterative Learning Control for Nonlinear Systems With Nonrepetitive Uncertainties 被引量:5
18
作者 Deyuan Meng Jingyao Zhang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第5期1001-1014,共14页
This paper aims to solve the robust iterative learning control(ILC)problems for nonlinear time-varying systems in the presence of nonrepetitive uncertainties.A new optimization-based method is proposed to design and a... This paper aims to solve the robust iterative learning control(ILC)problems for nonlinear time-varying systems in the presence of nonrepetitive uncertainties.A new optimization-based method is proposed to design and analyze adaptive ILC,for which robust convergence analysis via a contraction mapping approach is realized by leveraging properties of substochastic matrices.It is shown that robust tracking tasks can be realized for optimization-based adaptive ILC,where the boundedness of system trajectories and estimated parameters can be ensured,regardless of unknown time-varying nonlinearities and nonrepetitive uncertainties.Two simulation tests,especially implemented for an injection molding process,demonstrate the effectiveness of our robust optimization-based ILC results. 展开更多
关键词 Adaptive iterative learning control(ILC) nonlinear time-varying system robust convergence substochastic matrix
在线阅读 下载PDF
An Exploration on Adaptive Iterative Learning Control for a Class of Commensurate High-order Uncertain Nonlinear Fractional Order Systems 被引量:5
19
作者 Jianming Wei Youan Zhang Hu Bao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第2期618-627,共10页
This paper explores the adaptive iterative learning control method in the control of fractional order systems for the first time. An adaptive iterative learning control(AILC) scheme is presented for a class of commens... This paper explores the adaptive iterative learning control method in the control of fractional order systems for the first time. An adaptive iterative learning control(AILC) scheme is presented for a class of commensurate high-order uncertain nonlinear fractional order systems in the presence of disturbance.To facilitate the controller design, a sliding mode surface of tracking errors is designed by using sufficient conditions of linear fractional order systems. To relax the assumption of the identical initial condition in iterative learning control(ILC), a new boundary layer function is proposed by employing MittagLeffler function. The uncertainty in the system is compensated for by utilizing radial basis function neural network. Fractional order differential type updating laws and difference type learning law are designed to estimate unknown constant parameters and time-varying parameter, respectively. The hyperbolic tangent function and a convergent series sequence are used to design robust control term for neural network approximation error and bounded disturbance, simultaneously guaranteeing the learning convergence along iteration. The system output is proved to converge to a small neighborhood of the desired trajectory by constructing Lyapnov-like composite energy function(CEF)containing new integral type Lyapunov function, while keeping all the closed-loop signals bounded. Finally, a simulation example is presented to verify the effectiveness of the proposed approach. 展开更多
关键词 Index Terms-Adaptive iterative learning control (AILC) boundary layer function composite energy function (CEF) frac-tional order differential learning law fractional order nonlinearsystems Mittag-Leffler function.
在线阅读 下载PDF
An Anticipatory Terminal Iterative Learning Control Approach with Applications to Constrained Batch Processes 被引量:4
20
作者 池荣虎 张德霞 +2 位作者 刘喜梅 侯忠生 金尚泰 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第3期271-275,共5页
This work presents an anticipatory terminal iterative learning control scheme for a class of batch proc- esses, where only the final system output is measurable and the control input is constant in each operations. Th... This work presents an anticipatory terminal iterative learning control scheme for a class of batch proc- esses, where only the final system output is measurable and the control input is constant in each operations. The propgsed approach works well with input constraints provided that the desired control input with respect to the desired trajectory is within the samratiorl bound. The tracking error convergence is established with rigorous mathe- matical analysis. Simulation results .are provided to showthe effectiveness, of the proposed approach. 展开更多
关键词 "terminal iterative learning control batch-to-batch processes input saturation convergence analysis
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部