Personalized education provides an open learning environment which enriches the advanced technologies to establish a paradigm shift, active and dynamic teaching and learning patterns. E-learning has a various establis...Personalized education provides an open learning environment which enriches the advanced technologies to establish a paradigm shift, active and dynamic teaching and learning patterns. E-learning has a various established approaches to the creation and sequencing of content-based, single learner, and self-paced learning objects. However, there is little understanding of how to create sequences of learning activities which involve groups of learners interacting within a structured set of collaborative environments. In this paper, we present an approach for learning activity sequencing based on ontology and activity graph in personalized education system. Modeling and management of learning activity and learner are depicted, and an algorithm is proposed to realize learning activity sequencing and learner ontology dynamically updating.展开更多
Human Activity Recognition(HAR)has become increasingly critical in civic surveillance,medical care monitoring,and institutional protection.Current deep learning-based approaches often suffer from excessive computation...Human Activity Recognition(HAR)has become increasingly critical in civic surveillance,medical care monitoring,and institutional protection.Current deep learning-based approaches often suffer from excessive computational complexity,limited generalizability under varying conditions,and compromised real-time performance.To counter these,this paper introduces an Active Learning-aided Heuristic Deep Spatio-Textural Ensemble Learning(ALH-DSEL)framework.The model initially identifies keyframes from the surveillance videos with a Multi-Constraint Active Learning(MCAL)approach,with features extracted from DenseNet121.The frames are then segmented employing an optimized Fuzzy C-Means clustering algorithm with Firefly to identify areas of interest.A deep ensemble feature extractor,comprising DenseNet121,EfficientNet-B7,MobileNet,and GLCM,extracts varied spatial and textural features.Fused characteristics are enhanced through PCA and Min-Max normalization and discriminated by a maximum voting ensemble of RF,AdaBoost,and XGBoost.The experimental results show that ALH-DSEL provides higher accuracy,precision,recall,and F1-score,validating its superiority for real-time HAR in surveillance scenarios.展开更多
In materials science,a significant correlation often exists between material input parameters and their corresponding performance attributes.Nevertheless,the inherent challenges associated with small data obscure thes...In materials science,a significant correlation often exists between material input parameters and their corresponding performance attributes.Nevertheless,the inherent challenges associated with small data obscure these statistical correlations,impeding machine learning models from effectively capturing the underlying patterns,thereby hampering efficient optimization of material properties.This work presents a novel active learning framework that integrates generative adversarial networks(GAN)with a directionally constrained expected absolute improvement(EAI)acquisition function to accelerate the discovery of ultra-high temperature ceramics(UHTCs)using small data.The framework employs GAN for data augmentation,symbolic regression for feature weight derivation,and a self-developed EAI function that incorporates input feature importance weighting to quantify bidirectional deviations from zero ablation rate.Through only two iterations,this framework successfully identified the optimal composition of HfB_(2)-3.52SiC-5.23TaSi_(2),which exhibits robust near-zero ablation rates under plasma ablation at 2500℃ for 200 s,demonstrating superior sampling efficiency compared to conventional active learning approaches.Microstructural analysis reveals that the exceptional performance stems from the formation of a highly viscous HfO_(2)-SiO_(2)-Ta_(2)O_(5)-HfSiO_(4)-Hf_(3)(BO_(3))_(4) oxide layer,which provides effective oxygen barrier protection.This work demonstrates an efficient and universal approach for rapid materials discovery using small data.展开更多
The Reliability-Based Design Optimization(RBDO)of complex engineering structures considering uncertainties has problems of being high-dimensional,highly nonlinear,and timeconsuming,which requires a significant amount ...The Reliability-Based Design Optimization(RBDO)of complex engineering structures considering uncertainties has problems of being high-dimensional,highly nonlinear,and timeconsuming,which requires a significant amount of sampling simulation computation.In this paper,a basis-adaptive Polynomial Chaos(PC)-Kriging surrogate model is proposed,in order to relieve the computational burden and enhance the predictive accuracy of a metamodel.The active learning basis-adaptive PC-Kriging model is combined with a quantile-based RBDO framework.Finally,five engineering cases have been implemented,including a benchmark RBDO problem,three high-dimensional explicit problems,and a high-dimensional implicit problem.Compared with Support Vector Regression(SVR),Kriging,and polynomial chaos expansion models,results show that the proposed basis-adaptive PC-Kriging model is more accurate and efficient for RBDO problems of complex engineering structures.展开更多
Machine learning(ML)has recently enabled many modeling tasks in design,manufacturing,and condition monitoring due to its unparalleled learning ability using existing data.Data have become the limiting factor when impl...Machine learning(ML)has recently enabled many modeling tasks in design,manufacturing,and condition monitoring due to its unparalleled learning ability using existing data.Data have become the limiting factor when implementing ML in industry.However,there is no systematic investigation on how data quality can be assessed and improved for ML-based design and manufacturing.The aim of this survey is to uncover the data challenges in this domain and review the techniques used to resolve them.To establish the background for the subsequent analysis,crucial data terminologies in ML-based modeling are reviewed and categorized into data acquisition,management,analysis,and utilization.Thereafter,the concepts and frameworks established to evaluate data quality and imbalance,including data quality assessment,data readiness,information quality,data biases,fairness,and diversity,are further investigated.The root causes and types of data challenges,including human factors,complex systems,complicated relationships,lack of data quality,data heterogeneity,data imbalance,and data scarcity,are identified and summarized.Methods to improve data quality and mitigate data imbalance and their applications in this domain are reviewed.This literature review focuses on two promising methods:data augmentation and active learning.The strengths,limitations,and applicability of the surveyed techniques are illustrated.The trends of data augmentation and active learning are discussed with respect to their applications,data types,and approaches.Based on this discussion,future directions for data quality improvement and data imbalance mitigation in this domain are identified.展开更多
To capture the nonlinear dynamics and gain evolution in chirped pulse amplification(CPA)systems,the split-step Fourier method and the fourth-order Runge–Kutta method are integrated to iteratively address the generali...To capture the nonlinear dynamics and gain evolution in chirped pulse amplification(CPA)systems,the split-step Fourier method and the fourth-order Runge–Kutta method are integrated to iteratively address the generalized nonlinear Schrödinger equation and the rate equations.However,this approach is burdened by substantial computational demands,resulting in significant time expenditures.In the context of intelligent laser optimization and inverse design,the necessity for numerous simulations further exacerbates this issue,highlighting the need for fast and accurate simulation methodologies.Here,we introduce an end-to-end model augmented with active learning(E2E-AL)with decent generalization through different dedicated embedding methods over various parameters.On an identical computational platform,the artificial intelligence–driven model is 2000 times faster than the conventional simulation method.Benefiting from the active learning strategy,the E2E-AL model achieves decent precision with only two-thirds of the training samples compared with the case without such a strategy.Furthermore,we demonstrate a multi-objective inverse design of the CPA systems enabled by the E2E-AL model.The E2E-AL framework manifests the potential of becoming a standard approach for the rapid and accurate modeling of ultrafast lasers and is readily extended to simulate other complex systems.展开更多
Surface-supported clusters forming by aggregation of excessive adatoms could be the main defects of 2D materials after chemical vapor deposition.They will significantly impact the electronic/magnetic properties.Moreov...Surface-supported clusters forming by aggregation of excessive adatoms could be the main defects of 2D materials after chemical vapor deposition.They will significantly impact the electronic/magnetic properties.Moreover,surface supported atoms are also widely explored for high active and selecting catalysts.Severe deformation,even dipping into the surface,of these clusters can be expected because of the very active edge of clusters and strong interaction between supported clusters and surfaces.However,most models of these clusters are supposed to simply float on the top of the surface because ab initio simulations cannot afford the complex reconstructions.Here,we develop an accurate graph neural network machine learning potential(MLP)from ab initio data by active learning architecture through fine-tuning pre-trained models,and then employ the MLP into Monte Carlo to explore the structural evolutions of Mo and S clusters(1-8 atoms)on perfect and various defective MoS2 monolayers.Interestingly,Mo clusters can always sink and embed themselves into MoS2 layers.In contrast,S clusters float on perfect surfaces.On the defective surface,a few S atoms will fill the vacancy and rest S clusters float on the top.Such significant structural reconstructions should be carefully taken into account.展开更多
Dynamical systems often exhibit multiple attractors representing significantly different functioning conditions.A global map of attraction basins can offer valuable guidance for stabilizing or transitioning system sta...Dynamical systems often exhibit multiple attractors representing significantly different functioning conditions.A global map of attraction basins can offer valuable guidance for stabilizing or transitioning system states.Such a map can be constructed without prior system knowledge by identifying attractors across a sufficient number of points in the state space.However,determining the attractor for each initial state can be a laborious task.Here,we tackle the challenge of reconstructing attraction basins using as few initial points as possible.In each iteration of our approach,informative points are selected through random seeding and are driven along the current classification boundary,promoting the eventual selection of points that are both diverse and enlightening.The results across various experimental dynamical systems demonstrate that our approach requires fewer points than baseline methods while achieving comparable mapping accuracy.Additionally,the reconstructed map allows us to accurately estimate the minimum escape distance required to transition the system state to a target basin.展开更多
Objective:Deep learning(DL)has become the prevailing method in chest radiograph analysis,yet its performance heavily depends on large quantities of annotated images.To mitigate the cost,cold-start active learning(AL),...Objective:Deep learning(DL)has become the prevailing method in chest radiograph analysis,yet its performance heavily depends on large quantities of annotated images.To mitigate the cost,cold-start active learning(AL),comprising an initialization followed by subsequent learning,selects a small subset of informative data points for labeling.Recent advancements in pretrained models by supervised or self-supervised learning tailored to chest radiograph have shown broad applicability to diverse downstream tasks.However,their potential in cold-start AL remains unexplored.Methods:To validate the efficacy of domain-specific pretraining,we compared two foundation models:supervised TXRV and self-supervised REMEDIS with their general domain counterparts pretrained on ImageNet.Model performance was evaluated at both initialization and subsequent learning stages on two diagnostic tasks:psychiatric pneumonia and COVID-19.For initialization,we assessed their integration with three strategies:diversity,uncertainty,and hybrid sampling.For subsequent learning,we focused on uncertainty sampling powered by different pretrained models.We also conducted statistical tests to compare the foundation models with ImageNet counterparts,investigate the relationship between initialization and subsequent learning,examine the performance of one-shot initialization against the full AL process,and investigate the influence of class balance in initialization samples on initialization and subsequent learning.Results:First,domain-specific foundation models failed to outperform ImageNet counterparts in six out of eight experiments on informative sample selection.Both domain-specific and general pretrained models were unable to generate representations that could substitute for the original images as model inputs in seven of the eight scenarios.However,pretrained model-based initialization surpassed random sampling,the default approach in cold-start AL.Second,initialization performance was positively correlated with subsequent learning performance,highlighting the importance of initialization strategies.Third,one-shot initialization performed comparably to the full AL process,demonstrating the potential of reducing experts'repeated waiting during AL iterations.Last,a U-shaped correlation was observed between the class balance of initialization samples and model performance,suggesting that the class balance is more strongly associated with performance at middle budget levels than at low or high budgets.Conclusions:In this study,we highlighted the limitations of medical pretraining compared to general pretraining in the context of cold-start AL.We also identified promising outcomes related to cold-start AL,including initialization based on pretrained models,the positive influence of initialization on subsequent learning,the potential for one-shot initialization,and the influence of class balance on middle-budget AL.Researchers are encouraged to improve medical pretraining for versatile DL foundations and explore novel AL methods.展开更多
For complex engineering problems,multi-fidelity modeling has been used to achieve efficient reliability analysis by leveraging multiple information sources.However,most methods require nested training samples to captu...For complex engineering problems,multi-fidelity modeling has been used to achieve efficient reliability analysis by leveraging multiple information sources.However,most methods require nested training samples to capture the correlation between different fidelity data,which may lead to a significant increase in low-fidelity samples.In addition,it is difficult to build accurate surrogate models because current methods do not fully consider the nonlinearity between different fidelity samples.To address these problems,a novel multi-fidelity modeling method with active learning is proposed in this paper.Firstly,a nonlinear autoregressive multi-fidelity Kriging(NAMK)model is used to build a surrogate model.To avoid introducing redundant samples in the process of NAMK model updating,a collective learning function is then developed by a combination of a U-learning function,the correlation between different fidelity samples,and the sampling cost.Furthermore,a residual model is constructed to automatically generate low-fidelity samples when high-fidelity samples are selected.The efficiency and accuracy of the proposed method are demonstrated using three numerical examples and an engineering case.展开更多
Machine learning combined with density functional theory(DFT)enables rapid exploration of catalyst descriptors space such as adsorption energy,facilitating rapid and effective catalyst screening.However,there is still...Machine learning combined with density functional theory(DFT)enables rapid exploration of catalyst descriptors space such as adsorption energy,facilitating rapid and effective catalyst screening.However,there is still a lack of models for predicting adsorption energies on oxides,due to the complexity of elemental species and the ambiguous coordination environment.This work proposes an active learning workflow(LeNN)founded on local electronic transfer features(e)and the principle of coordinate rotation invariance.By accurately characterizing the electron transfer to adsorption site atoms and their surrounding geometric structures,LeNN mitigates abrupt feature changes due to different element types and clarifies coordination environments.As a result,it enables the prediction of^(*)H adsorption energy on binary oxide surfaces with a mean absolute error(MAE)below 0.18 eV.Moreover,we incorporate local coverage(θ_(l))and leverage neutral network ensemble to establish an active learning workflow,attaining a prediction MAE below 0.2 eV for 5419 multi-^(*)H adsorption structures.These findings validate the universality and capability of the proposed features in predicting^(*)H adsorption energy on binary oxide surfaces.展开更多
Surrogate models offer an efficient approach to tackle the computationally intensive evaluation of performance functions in reliability analysis.Nevertheless,the approximations inherent in surrogate models necessitate...Surrogate models offer an efficient approach to tackle the computationally intensive evaluation of performance functions in reliability analysis.Nevertheless,the approximations inherent in surrogate models necessitate the consideration of surrogate model uncertainty in estimating failure probabilities.This paper proposes a new reliability analysis method in which the uncertainty from the Kriging surrogate model is quantified simultaneously.This method treats surrogate model uncertainty as an independent entity,characterizing the estimation error of failure probabilities.Building upon the probabilistic classification function,a failure probability uncertainty is proposed by integrating the difference between the traditional indicator function and the probabilistic classification function to quantify the impact of surrogate model uncertainty on failure probability estimation.Furthermore,the proposed uncertainty quantification method is applied to a newly designed reliability analysis approach termed SUQ-MCS,incorporating a proposed median approximation function for active learning.The proposed failure probability uncertainty serves as the stopping criterion of this framework.Through benchmarking,the effectiveness of the proposed uncertainty quantification method is validated.The empirical results present the competitive performance of the SUQ-MCS method relative to alternative approaches.展开更多
The effectiveness of facial expression recognition(FER)algorithms hinges on the model’s quality and the availability of a substantial amount of labeled expression data.However,labeling large datasets demands signific...The effectiveness of facial expression recognition(FER)algorithms hinges on the model’s quality and the availability of a substantial amount of labeled expression data.However,labeling large datasets demands significant human,time,and financial resources.Although active learning methods have mitigated the dependency on extensive labeled data,a cold-start problem persists in small to medium-sized expression recognition datasets.This issue arises because the initial labeled data often fails to represent the full spectrum of facial expression characteristics.This paper introduces an active learning approach that integrates uncertainty estimation,aiming to improve the precision of facial expression recognition regardless of dataset scale variations.The method is divided into two primary phases.First,the model undergoes self-supervised pre-training using contrastive learning and uncertainty estimation to bolster its feature extraction capabilities.Second,the model is fine-tuned using the prior knowledge obtained from the pre-training phase to significantly improve recognition accuracy.In the pretraining phase,the model employs contrastive learning to extract fundamental feature representations from the complete unlabeled dataset.These features are then weighted through a self-attention mechanism with rank regularization.Subsequently,data from the low-weighted set is relabeled to further refine the model’s feature extraction ability.The pre-trained model is then utilized in active learning to select and label information-rich samples more efficiently.Experimental results demonstrate that the proposed method significantly outperforms existing approaches,achieving an improvement in recognition accuracy of 5.09%and 3.82%over the best existing active learning methods,Margin,and Least Confidence methods,respectively,and a 1.61%improvement compared to the conventional segmented active learning method.展开更多
An intelligent wind tunnel using an active learning approach automates flow control experiments to discover the aerodynamic impact of sweeping jet on a swept wing. A Gaussian process regression model is established to...An intelligent wind tunnel using an active learning approach automates flow control experiments to discover the aerodynamic impact of sweeping jet on a swept wing. A Gaussian process regression model is established to study the jet actuator's performance at various attack and flap deflection angles. By selectively focusing on the most informative experiments, the proposed framework was able to predict 3721 wing conditions from just 55experiments, significantly reducing the number of experiments required and leading to faster and cost-effective predictions. The results show that the angle of attack and flap deflection angle are coupled to affect the effectiveness of the sweeping jet. Meanwhile, increasing the jet momentum coefficient can contribute to lift enhancement;a momentum coefficient of 3% can increase the lift coefficient by at most 0.28. Additionally, the improvement effects are more pronounced when actuators are placed closer to the wing root.展开更多
Deep learning has been widely applied in surrogate modeling for airfoil flow field prediction.The success of deep learning relies heavily on large-scale,high-quality labeled samples.However,acquiring labeled samples w...Deep learning has been widely applied in surrogate modeling for airfoil flow field prediction.The success of deep learning relies heavily on large-scale,high-quality labeled samples.However,acquiring labeled samples with complete annotations is prohibitively expensive,and the available annotations in practical engineering are often sparse due to limited observation.To leverage samples with sparse annotations,this paper proposes an uncertainty-based active transfer learning method.The most valuable positions in the flow field are selected based on uncertainty for annotation,effectively improving prediction accuracy and reducing annotation costs.Our method involves a novel active annotation based on synchronous quantile regression,which can mitigate the computational cost of query annotation.Besides,a novel quantile levels-based consistency regularization is proposed to constrain the remaining unlabeled regions and further improve the model performance.Experiments show that our method can significantly reduce prediction errors with only 1%extra annotations,and is a promising tool for achieving rapid and accurate flow field prediction.展开更多
Graph learning,when used as a semi-supervised learning(SSL)method,performs well for classification tasks with a low label rate.We provide a graph-based batch active learning pipeline for pixel/patch neighborhood multi...Graph learning,when used as a semi-supervised learning(SSL)method,performs well for classification tasks with a low label rate.We provide a graph-based batch active learning pipeline for pixel/patch neighborhood multi-or hyperspectral image segmentation.Our batch active learning approach selects a collection of unlabeled pixels that satisfy a graph local maximum constraint for the active learning acquisition function that determines the relative importance of each pixel to the classification.This work builds on recent advances in the design of novel active learning acquisition functions(e.g.,the Model Change approach in arXiv:2110.07739)while adding important further developments including patch-neighborhood image analysis and batch active learning methods to further increase the accuracy and greatly increase the computational efficiency of these methods.In addition to improvements in the accuracy,our approach can greatly reduce the number of labeled pixels needed to achieve the same level of the accuracy based on randomly selected labeled pixels.展开更多
Active learning in semi-supervised classification involves introducing additional labels for unlabelled data to improve the accuracy of the underlying classifier.A challenge is to identify which points to label to bes...Active learning in semi-supervised classification involves introducing additional labels for unlabelled data to improve the accuracy of the underlying classifier.A challenge is to identify which points to label to best improve performance while limiting the number of new labels."Model Change"active learning quantifies the resulting change incurred in the classifier by introducing the additional label(s).We pair this idea with graph-based semi-supervised learning(SSL)methods,that use the spectrum of the graph Laplacian matrix,which can be truncated to avoid prohibitively large computational and storage costs.We consider a family of convex loss functions for which the acquisition function can be efficiently approximated using the Laplace approximation of the posterior distribution.We show a variety of multiclass examples that illustrate improved performance over prior state-of-art.展开更多
The sampling of the training data is a bottleneck in the development of artificial intelligence(AI)models due to the processing of huge amounts of data or to the difficulty of access to the data in industrial practice...The sampling of the training data is a bottleneck in the development of artificial intelligence(AI)models due to the processing of huge amounts of data or to the difficulty of access to the data in industrial practices.Active learning(AL)approaches are useful in such a context since they maximize the performance of the trained model while minimizing the number of training samples.Such smart sampling methodologies iteratively sample the points that should be labeled and added to the training set based on their informativeness and pertinence.To judge the relevance of a data instance,query rules are defined.In this paper,we propose an AL methodology based on a physics-based query rule.Given some industrial objectives from the physical process where the AI model is implied in,the physics-based AL approach iteratively converges to the data instances fulfilling those objectives while sampling training points.Therefore,the trained surrogate model is accurate where the potentially interesting data instances from the industrial point of view are,while coarse everywhere else where the data instances are of no interest in the industrial context studied.展开更多
基金the National Natural Science Foundation of China (60473076, 60573095)
文摘Personalized education provides an open learning environment which enriches the advanced technologies to establish a paradigm shift, active and dynamic teaching and learning patterns. E-learning has a various established approaches to the creation and sequencing of content-based, single learner, and self-paced learning objects. However, there is little understanding of how to create sequences of learning activities which involve groups of learners interacting within a structured set of collaborative environments. In this paper, we present an approach for learning activity sequencing based on ontology and activity graph in personalized education system. Modeling and management of learning activity and learner are depicted, and an algorithm is proposed to realize learning activity sequencing and learner ontology dynamically updating.
文摘Human Activity Recognition(HAR)has become increasingly critical in civic surveillance,medical care monitoring,and institutional protection.Current deep learning-based approaches often suffer from excessive computational complexity,limited generalizability under varying conditions,and compromised real-time performance.To counter these,this paper introduces an Active Learning-aided Heuristic Deep Spatio-Textural Ensemble Learning(ALH-DSEL)framework.The model initially identifies keyframes from the surveillance videos with a Multi-Constraint Active Learning(MCAL)approach,with features extracted from DenseNet121.The frames are then segmented employing an optimized Fuzzy C-Means clustering algorithm with Firefly to identify areas of interest.A deep ensemble feature extractor,comprising DenseNet121,EfficientNet-B7,MobileNet,and GLCM,extracts varied spatial and textural features.Fused characteristics are enhanced through PCA and Min-Max normalization and discriminated by a maximum voting ensemble of RF,AdaBoost,and XGBoost.The experimental results show that ALH-DSEL provides higher accuracy,precision,recall,and F1-score,validating its superiority for real-time HAR in surveillance scenarios.
基金supported by the Natural Science Foundation of China[grant numbers 52302093]Natural Science Foundation of Jiangxi Province[grant numbers 20224BAB204021].
文摘In materials science,a significant correlation often exists between material input parameters and their corresponding performance attributes.Nevertheless,the inherent challenges associated with small data obscure these statistical correlations,impeding machine learning models from effectively capturing the underlying patterns,thereby hampering efficient optimization of material properties.This work presents a novel active learning framework that integrates generative adversarial networks(GAN)with a directionally constrained expected absolute improvement(EAI)acquisition function to accelerate the discovery of ultra-high temperature ceramics(UHTCs)using small data.The framework employs GAN for data augmentation,symbolic regression for feature weight derivation,and a self-developed EAI function that incorporates input feature importance weighting to quantify bidirectional deviations from zero ablation rate.Through only two iterations,this framework successfully identified the optimal composition of HfB_(2)-3.52SiC-5.23TaSi_(2),which exhibits robust near-zero ablation rates under plasma ablation at 2500℃ for 200 s,demonstrating superior sampling efficiency compared to conventional active learning approaches.Microstructural analysis reveals that the exceptional performance stems from the formation of a highly viscous HfO_(2)-SiO_(2)-Ta_(2)O_(5)-HfSiO_(4)-Hf_(3)(BO_(3))_(4) oxide layer,which provides effective oxygen barrier protection.This work demonstrates an efficient and universal approach for rapid materials discovery using small data.
基金supported by the National Key R&D Program of China(No.2021YFB1715000)the National Natural Science Foundation of China(No.52375073)。
文摘The Reliability-Based Design Optimization(RBDO)of complex engineering structures considering uncertainties has problems of being high-dimensional,highly nonlinear,and timeconsuming,which requires a significant amount of sampling simulation computation.In this paper,a basis-adaptive Polynomial Chaos(PC)-Kriging surrogate model is proposed,in order to relieve the computational burden and enhance the predictive accuracy of a metamodel.The active learning basis-adaptive PC-Kriging model is combined with a quantile-based RBDO framework.Finally,five engineering cases have been implemented,including a benchmark RBDO problem,three high-dimensional explicit problems,and a high-dimensional implicit problem.Compared with Support Vector Regression(SVR),Kriging,and polynomial chaos expansion models,results show that the proposed basis-adaptive PC-Kriging model is more accurate and efficient for RBDO problems of complex engineering structures.
基金funded by the McGill University Graduate Excellence Fellowship Award(00157)the Mitacs Accelerate Program(IT13369)the McGill Engineering Doctoral Award(MEDA).
文摘Machine learning(ML)has recently enabled many modeling tasks in design,manufacturing,and condition monitoring due to its unparalleled learning ability using existing data.Data have become the limiting factor when implementing ML in industry.However,there is no systematic investigation on how data quality can be assessed and improved for ML-based design and manufacturing.The aim of this survey is to uncover the data challenges in this domain and review the techniques used to resolve them.To establish the background for the subsequent analysis,crucial data terminologies in ML-based modeling are reviewed and categorized into data acquisition,management,analysis,and utilization.Thereafter,the concepts and frameworks established to evaluate data quality and imbalance,including data quality assessment,data readiness,information quality,data biases,fairness,and diversity,are further investigated.The root causes and types of data challenges,including human factors,complex systems,complicated relationships,lack of data quality,data heterogeneity,data imbalance,and data scarcity,are identified and summarized.Methods to improve data quality and mitigate data imbalance and their applications in this domain are reviewed.This literature review focuses on two promising methods:data augmentation and active learning.The strengths,limitations,and applicability of the surveyed techniques are illustrated.The trends of data augmentation and active learning are discussed with respect to their applications,data types,and approaches.Based on this discussion,future directions for data quality improvement and data imbalance mitigation in this domain are identified.
基金supported by the National Natural Science Foundation of China(Grant Nos.62227821,62025503,and 62205199).
文摘To capture the nonlinear dynamics and gain evolution in chirped pulse amplification(CPA)systems,the split-step Fourier method and the fourth-order Runge–Kutta method are integrated to iteratively address the generalized nonlinear Schrödinger equation and the rate equations.However,this approach is burdened by substantial computational demands,resulting in significant time expenditures.In the context of intelligent laser optimization and inverse design,the necessity for numerous simulations further exacerbates this issue,highlighting the need for fast and accurate simulation methodologies.Here,we introduce an end-to-end model augmented with active learning(E2E-AL)with decent generalization through different dedicated embedding methods over various parameters.On an identical computational platform,the artificial intelligence–driven model is 2000 times faster than the conventional simulation method.Benefiting from the active learning strategy,the E2E-AL model achieves decent precision with only two-thirds of the training samples compared with the case without such a strategy.Furthermore,we demonstrate a multi-objective inverse design of the CPA systems enabled by the E2E-AL model.The E2E-AL framework manifests the potential of becoming a standard approach for the rapid and accurate modeling of ultrafast lasers and is readily extended to simulate other complex systems.
基金supported by the National Natural Science Foundation of China(Grant No.12374253,12074053,12004064)J.G.thanks the Foreign talents project(G2022127004L),The authors also acknowledge computer support from the Shanghai Supercomputer Center,the DUT Supercomputing Center,and the Tianhe supercomputer of Tianjin Center.
文摘Surface-supported clusters forming by aggregation of excessive adatoms could be the main defects of 2D materials after chemical vapor deposition.They will significantly impact the electronic/magnetic properties.Moreover,surface supported atoms are also widely explored for high active and selecting catalysts.Severe deformation,even dipping into the surface,of these clusters can be expected because of the very active edge of clusters and strong interaction between supported clusters and surfaces.However,most models of these clusters are supposed to simply float on the top of the surface because ab initio simulations cannot afford the complex reconstructions.Here,we develop an accurate graph neural network machine learning potential(MLP)from ab initio data by active learning architecture through fine-tuning pre-trained models,and then employ the MLP into Monte Carlo to explore the structural evolutions of Mo and S clusters(1-8 atoms)on perfect and various defective MoS2 monolayers.Interestingly,Mo clusters can always sink and embed themselves into MoS2 layers.In contrast,S clusters float on perfect surfaces.On the defective surface,a few S atoms will fill the vacancy and rest S clusters float on the top.Such significant structural reconstructions should be carefully taken into account.
基金supported by the National Natural Science Foundation of China(Grant Nos.T2225022,12350710786,62088101,and 12161141016)Shuguang Program of Shanghai Education Development Foundation(Grant No.22SG21)Shanghai Municipal Education Commission,and the Fundamental Research Funds for the Central Universities。
文摘Dynamical systems often exhibit multiple attractors representing significantly different functioning conditions.A global map of attraction basins can offer valuable guidance for stabilizing or transitioning system states.Such a map can be constructed without prior system knowledge by identifying attractors across a sufficient number of points in the state space.However,determining the attractor for each initial state can be a laborious task.Here,we tackle the challenge of reconstructing attraction basins using as few initial points as possible.In each iteration of our approach,informative points are selected through random seeding and are driven along the current classification boundary,promoting the eventual selection of points that are both diverse and enlightening.The results across various experimental dynamical systems demonstrate that our approach requires fewer points than baseline methods while achieving comparable mapping accuracy.Additionally,the reconstructed map allows us to accurately estimate the minimum escape distance required to transition the system state to a target basin.
文摘Objective:Deep learning(DL)has become the prevailing method in chest radiograph analysis,yet its performance heavily depends on large quantities of annotated images.To mitigate the cost,cold-start active learning(AL),comprising an initialization followed by subsequent learning,selects a small subset of informative data points for labeling.Recent advancements in pretrained models by supervised or self-supervised learning tailored to chest radiograph have shown broad applicability to diverse downstream tasks.However,their potential in cold-start AL remains unexplored.Methods:To validate the efficacy of domain-specific pretraining,we compared two foundation models:supervised TXRV and self-supervised REMEDIS with their general domain counterparts pretrained on ImageNet.Model performance was evaluated at both initialization and subsequent learning stages on two diagnostic tasks:psychiatric pneumonia and COVID-19.For initialization,we assessed their integration with three strategies:diversity,uncertainty,and hybrid sampling.For subsequent learning,we focused on uncertainty sampling powered by different pretrained models.We also conducted statistical tests to compare the foundation models with ImageNet counterparts,investigate the relationship between initialization and subsequent learning,examine the performance of one-shot initialization against the full AL process,and investigate the influence of class balance in initialization samples on initialization and subsequent learning.Results:First,domain-specific foundation models failed to outperform ImageNet counterparts in six out of eight experiments on informative sample selection.Both domain-specific and general pretrained models were unable to generate representations that could substitute for the original images as model inputs in seven of the eight scenarios.However,pretrained model-based initialization surpassed random sampling,the default approach in cold-start AL.Second,initialization performance was positively correlated with subsequent learning performance,highlighting the importance of initialization strategies.Third,one-shot initialization performed comparably to the full AL process,demonstrating the potential of reducing experts'repeated waiting during AL iterations.Last,a U-shaped correlation was observed between the class balance of initialization samples and model performance,suggesting that the class balance is more strongly associated with performance at middle budget levels than at low or high budgets.Conclusions:In this study,we highlighted the limitations of medical pretraining compared to general pretraining in the context of cold-start AL.We also identified promising outcomes related to cold-start AL,including initialization based on pretrained models,the positive influence of initialization on subsequent learning,the potential for one-shot initialization,and the influence of class balance on middle-budget AL.Researchers are encouraged to improve medical pretraining for versatile DL foundations and explore novel AL methods.
基金supported by the Major Projects of Zhejiang Provincial Natural Science Foundation of China(No.LD22E050009)the National Natural Science Foundation of China(No.51475425)the College Student’s Science and Technology Innovation Project of Zhejiang Province(No.2022R403B060),China.
文摘For complex engineering problems,multi-fidelity modeling has been used to achieve efficient reliability analysis by leveraging multiple information sources.However,most methods require nested training samples to capture the correlation between different fidelity data,which may lead to a significant increase in low-fidelity samples.In addition,it is difficult to build accurate surrogate models because current methods do not fully consider the nonlinearity between different fidelity samples.To address these problems,a novel multi-fidelity modeling method with active learning is proposed in this paper.Firstly,a nonlinear autoregressive multi-fidelity Kriging(NAMK)model is used to build a surrogate model.To avoid introducing redundant samples in the process of NAMK model updating,a collective learning function is then developed by a combination of a U-learning function,the correlation between different fidelity samples,and the sampling cost.Furthermore,a residual model is constructed to automatically generate low-fidelity samples when high-fidelity samples are selected.The efficiency and accuracy of the proposed method are demonstrated using three numerical examples and an engineering case.
基金supported by the National Natural Science Foundation of China(No.52488201)the Natural Science Basic Research Program of Shaanxi(No.2024JC-YBMS-284)+1 种基金the Key Research and Development Program of Shaanxi(No.2024GHYBXM-02)the Fundamental Research Funds for the Central Universities.
文摘Machine learning combined with density functional theory(DFT)enables rapid exploration of catalyst descriptors space such as adsorption energy,facilitating rapid and effective catalyst screening.However,there is still a lack of models for predicting adsorption energies on oxides,due to the complexity of elemental species and the ambiguous coordination environment.This work proposes an active learning workflow(LeNN)founded on local electronic transfer features(e)and the principle of coordinate rotation invariance.By accurately characterizing the electron transfer to adsorption site atoms and their surrounding geometric structures,LeNN mitigates abrupt feature changes due to different element types and clarifies coordination environments.As a result,it enables the prediction of^(*)H adsorption energy on binary oxide surfaces with a mean absolute error(MAE)below 0.18 eV.Moreover,we incorporate local coverage(θ_(l))and leverage neutral network ensemble to establish an active learning workflow,attaining a prediction MAE below 0.2 eV for 5419 multi-^(*)H adsorption structures.These findings validate the universality and capability of the proposed features in predicting^(*)H adsorption energy on binary oxide surfaces.
基金supported by the National Key Research and Development Program of China(No.2023YFB3406900)the National Natural Science Foundation of China(No.52075068).
文摘Surrogate models offer an efficient approach to tackle the computationally intensive evaluation of performance functions in reliability analysis.Nevertheless,the approximations inherent in surrogate models necessitate the consideration of surrogate model uncertainty in estimating failure probabilities.This paper proposes a new reliability analysis method in which the uncertainty from the Kriging surrogate model is quantified simultaneously.This method treats surrogate model uncertainty as an independent entity,characterizing the estimation error of failure probabilities.Building upon the probabilistic classification function,a failure probability uncertainty is proposed by integrating the difference between the traditional indicator function and the probabilistic classification function to quantify the impact of surrogate model uncertainty on failure probability estimation.Furthermore,the proposed uncertainty quantification method is applied to a newly designed reliability analysis approach termed SUQ-MCS,incorporating a proposed median approximation function for active learning.The proposed failure probability uncertainty serves as the stopping criterion of this framework.Through benchmarking,the effectiveness of the proposed uncertainty quantification method is validated.The empirical results present the competitive performance of the SUQ-MCS method relative to alternative approaches.
基金supported by National Science Foundation of China(61971078)Chongqing Municipal Education Commission Science and Technology Major Project(KJZDM202301901).
文摘The effectiveness of facial expression recognition(FER)algorithms hinges on the model’s quality and the availability of a substantial amount of labeled expression data.However,labeling large datasets demands significant human,time,and financial resources.Although active learning methods have mitigated the dependency on extensive labeled data,a cold-start problem persists in small to medium-sized expression recognition datasets.This issue arises because the initial labeled data often fails to represent the full spectrum of facial expression characteristics.This paper introduces an active learning approach that integrates uncertainty estimation,aiming to improve the precision of facial expression recognition regardless of dataset scale variations.The method is divided into two primary phases.First,the model undergoes self-supervised pre-training using contrastive learning and uncertainty estimation to bolster its feature extraction capabilities.Second,the model is fine-tuned using the prior knowledge obtained from the pre-training phase to significantly improve recognition accuracy.In the pretraining phase,the model employs contrastive learning to extract fundamental feature representations from the complete unlabeled dataset.These features are then weighted through a self-attention mechanism with rank regularization.Subsequently,data from the low-weighted set is relabeled to further refine the model’s feature extraction ability.The pre-trained model is then utilized in active learning to select and label information-rich samples more efficiently.Experimental results demonstrate that the proposed method significantly outperforms existing approaches,achieving an improvement in recognition accuracy of 5.09%and 3.82%over the best existing active learning methods,Margin,and Least Confidence methods,respectively,and a 1.61%improvement compared to the conventional segmented active learning method.
基金supported by the National Natural Science Foundation of China (Grant No.92271107)。
文摘An intelligent wind tunnel using an active learning approach automates flow control experiments to discover the aerodynamic impact of sweeping jet on a swept wing. A Gaussian process regression model is established to study the jet actuator's performance at various attack and flap deflection angles. By selectively focusing on the most informative experiments, the proposed framework was able to predict 3721 wing conditions from just 55experiments, significantly reducing the number of experiments required and leading to faster and cost-effective predictions. The results show that the angle of attack and flap deflection angle are coupled to affect the effectiveness of the sweeping jet. Meanwhile, increasing the jet momentum coefficient can contribute to lift enhancement;a momentum coefficient of 3% can increase the lift coefficient by at most 0.28. Additionally, the improvement effects are more pronounced when actuators are placed closer to the wing root.
基金supported by the National Natural Science Foundation of China(No.92371206).
文摘Deep learning has been widely applied in surrogate modeling for airfoil flow field prediction.The success of deep learning relies heavily on large-scale,high-quality labeled samples.However,acquiring labeled samples with complete annotations is prohibitively expensive,and the available annotations in practical engineering are often sparse due to limited observation.To leverage samples with sparse annotations,this paper proposes an uncertainty-based active transfer learning method.The most valuable positions in the flow field are selected based on uncertainty for annotation,effectively improving prediction accuracy and reducing annotation costs.Our method involves a novel active annotation based on synchronous quantile regression,which can mitigate the computational cost of query annotation.Besides,a novel quantile levels-based consistency regularization is proposed to constrain the remaining unlabeled regions and further improve the model performance.Experiments show that our method can significantly reduce prediction errors with only 1%extra annotations,and is a promising tool for achieving rapid and accurate flow field prediction.
基金supported by the UC-National Lab In-Residence Graduate Fellowship Grant L21GF3606supported by a DOD National Defense Science and Engineering Graduate(NDSEG)Research Fellowship+1 种基金supported by the Laboratory Directed Research and Development program of Los Alamos National Laboratory under project numbers 20170668PRD1 and 20210213ERsupported by the NGA under Contract No.HM04762110003.
文摘Graph learning,when used as a semi-supervised learning(SSL)method,performs well for classification tasks with a low label rate.We provide a graph-based batch active learning pipeline for pixel/patch neighborhood multi-or hyperspectral image segmentation.Our batch active learning approach selects a collection of unlabeled pixels that satisfy a graph local maximum constraint for the active learning acquisition function that determines the relative importance of each pixel to the classification.This work builds on recent advances in the design of novel active learning acquisition functions(e.g.,the Model Change approach in arXiv:2110.07739)while adding important further developments including patch-neighborhood image analysis and batch active learning methods to further increase the accuracy and greatly increase the computational efficiency of these methods.In addition to improvements in the accuracy,our approach can greatly reduce the number of labeled pixels needed to achieve the same level of the accuracy based on randomly selected labeled pixels.
基金supported by the DOD National Defense Science and Engineering Graduate(NDSEG)Research Fellowshipsupported by the NGA under Contract No.HM04762110003.
文摘Active learning in semi-supervised classification involves introducing additional labels for unlabelled data to improve the accuracy of the underlying classifier.A challenge is to identify which points to label to best improve performance while limiting the number of new labels."Model Change"active learning quantifies the resulting change incurred in the classifier by introducing the additional label(s).We pair this idea with graph-based semi-supervised learning(SSL)methods,that use the spectrum of the graph Laplacian matrix,which can be truncated to avoid prohibitively large computational and storage costs.We consider a family of convex loss functions for which the acquisition function can be efficiently approximated using the Laplace approximation of the posterior distribution.We show a variety of multiclass examples that illustrate improved performance over prior state-of-art.
文摘The sampling of the training data is a bottleneck in the development of artificial intelligence(AI)models due to the processing of huge amounts of data or to the difficulty of access to the data in industrial practices.Active learning(AL)approaches are useful in such a context since they maximize the performance of the trained model while minimizing the number of training samples.Such smart sampling methodologies iteratively sample the points that should be labeled and added to the training set based on their informativeness and pertinence.To judge the relevance of a data instance,query rules are defined.In this paper,we propose an AL methodology based on a physics-based query rule.Given some industrial objectives from the physical process where the AI model is implied in,the physics-based AL approach iteratively converges to the data instances fulfilling those objectives while sampling training points.Therefore,the trained surrogate model is accurate where the potentially interesting data instances from the industrial point of view are,while coarse everywhere else where the data instances are of no interest in the industrial context studied.