Complex network modeling characterizes system relationships and structures,while network visualization enables intuitive analysis and interpretation of these patterns.However,existing network visualization tools exhib...Complex network modeling characterizes system relationships and structures,while network visualization enables intuitive analysis and interpretation of these patterns.However,existing network visualization tools exhibit significant limitations in representing attributes of complex networks at various scales,particularly failing to provide advanced visual representations of specific nodes and edges,community affiliation attribution,and global scalability.These limitations substantially impede the intuitive analysis and interpretation of complex network patterns through visual representation.To address these limitations,we propose SFFSlib,a multi-scale network visualization framework incorporating novel methods to highlight attribute representation in diverse network scenarios and optimize structural feature visualization.Notably,we have enhanced the visualization of pivotal details at different scales across diverse network scenarios.The visualization algorithms proposed within SFFSlib were applied to real-world datasets and benchmarked against conventional layout algorithms.The experimental results reveal that SFFSlib significantly enhances the clarity of visualizations across different scales,offering a practical solution for the advancement of network attribute representation and the overall enhancement of visualization quality.展开更多
This paper presents a novel hybrid metaheuristic GA-VNS matching genetic algorithm (GA) and variable neighborhood search (VNS) to the dynamic facility layout problem (DFLP). The DFLP is a well-known NP hard problem wh...This paper presents a novel hybrid metaheuristic GA-VNS matching genetic algorithm (GA) and variable neighborhood search (VNS) to the dynamic facility layout problem (DFLP). The DFLP is a well-known NP hard problem which aims at assigning a set of facilities to a set of locations over a time planning horizon so that the total cost including material handling cost and re-arrangement cost is minimized. The proposed hybrid approach in this paper elegantly integrates the exploitation ability of VNS and exploration ability of GA. To examine the performance of the proposed hybrid approach, a set of instance problems have been used from the literature. As demonstrated in the results, the GA-VNS is mighty of attaining high quality solution. Compared with some state-of-the-art algorithms, our proposed hybrid approach is competitive.展开更多
Automation in the layout of fixture components is important to achieve efficiency and flexibility in computer aided fixture design. Based on basic genetic algorithm and particulars of different fixture components, a m...Automation in the layout of fixture components is important to achieve efficiency and flexibility in computer aided fixture design. Based on basic genetic algorithm and particulars of different fixture components, a method of layout space division is presented. Such techniques as suitable crossover rate, mutation rate and selection arithmetic element are adopted in the genetic operation. The results show that genetic algorithm can effectively be applied in the automatic layout of fixture components.展开更多
Layout design problem is to determine a suitable arrangement for the departments so that the total costs associated with the flow among departments become least. Single Row Facility Layout Problem, SRFLP, is one of &l...Layout design problem is to determine a suitable arrangement for the departments so that the total costs associated with the flow among departments become least. Single Row Facility Layout Problem, SRFLP, is one of </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">the </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">layout problems that have many practical applications. This problem and its specific scenarios are often used to model many of the raised issues in the field of facility location. SRFLP is an arrangement of </span><i><span style="font-family:Verdana;">n</span></i><span style="font-family:Verdana;"> departments with a specified length in a straight line so that the sum of the weighted distances between the pairs of departments is minimized. This problem is NP-hard. In this paper, first, a lower bound for a special case of SRFLP is presented. Then, a general </span><span style="font-family:Verdana;">case of SRFLP is presented in which some new and real assumptions are added to generate more practical model. Then a lower bound, as well as an algorithm, is proposed for solving the model. Experimental results on some instances in literature show the efficiency of our algorithm.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.61773091 and 62476045)the LiaoNing Revitalization Talents Program(Grant No.XLYC1807106)the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Liaoning(Grant No.LR2016070).
文摘Complex network modeling characterizes system relationships and structures,while network visualization enables intuitive analysis and interpretation of these patterns.However,existing network visualization tools exhibit significant limitations in representing attributes of complex networks at various scales,particularly failing to provide advanced visual representations of specific nodes and edges,community affiliation attribution,and global scalability.These limitations substantially impede the intuitive analysis and interpretation of complex network patterns through visual representation.To address these limitations,we propose SFFSlib,a multi-scale network visualization framework incorporating novel methods to highlight attribute representation in diverse network scenarios and optimize structural feature visualization.Notably,we have enhanced the visualization of pivotal details at different scales across diverse network scenarios.The visualization algorithms proposed within SFFSlib were applied to real-world datasets and benchmarked against conventional layout algorithms.The experimental results reveal that SFFSlib significantly enhances the clarity of visualizations across different scales,offering a practical solution for the advancement of network attribute representation and the overall enhancement of visualization quality.
文摘This paper presents a novel hybrid metaheuristic GA-VNS matching genetic algorithm (GA) and variable neighborhood search (VNS) to the dynamic facility layout problem (DFLP). The DFLP is a well-known NP hard problem which aims at assigning a set of facilities to a set of locations over a time planning horizon so that the total cost including material handling cost and re-arrangement cost is minimized. The proposed hybrid approach in this paper elegantly integrates the exploitation ability of VNS and exploration ability of GA. To examine the performance of the proposed hybrid approach, a set of instance problems have been used from the literature. As demonstrated in the results, the GA-VNS is mighty of attaining high quality solution. Compared with some state-of-the-art algorithms, our proposed hybrid approach is competitive.
文摘Automation in the layout of fixture components is important to achieve efficiency and flexibility in computer aided fixture design. Based on basic genetic algorithm and particulars of different fixture components, a method of layout space division is presented. Such techniques as suitable crossover rate, mutation rate and selection arithmetic element are adopted in the genetic operation. The results show that genetic algorithm can effectively be applied in the automatic layout of fixture components.
文摘Layout design problem is to determine a suitable arrangement for the departments so that the total costs associated with the flow among departments become least. Single Row Facility Layout Problem, SRFLP, is one of </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">the </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">layout problems that have many practical applications. This problem and its specific scenarios are often used to model many of the raised issues in the field of facility location. SRFLP is an arrangement of </span><i><span style="font-family:Verdana;">n</span></i><span style="font-family:Verdana;"> departments with a specified length in a straight line so that the sum of the weighted distances between the pairs of departments is minimized. This problem is NP-hard. In this paper, first, a lower bound for a special case of SRFLP is presented. Then, a general </span><span style="font-family:Verdana;">case of SRFLP is presented in which some new and real assumptions are added to generate more practical model. Then a lower bound, as well as an algorithm, is proposed for solving the model. Experimental results on some instances in literature show the efficiency of our algorithm.