期刊文献+
共找到5,526篇文章
< 1 2 250 >
每页显示 20 50 100
Integrated laser processing platform based on metasurface
1
作者 Mingbo Pu 《Opto-Electronic Advances》 2025年第2期1-4,共4页
Laser processing technologies enable the precise fabrication of arbitrary structures and devices with broad applications in micro-optics,micro-mechanics,and biomedicine.However,its adoption is limited by the large siz... Laser processing technologies enable the precise fabrication of arbitrary structures and devices with broad applications in micro-optics,micro-mechanics,and biomedicine.However,its adoption is limited by the large size,complexity,high cost,and low flexibility of optical systems.Metasurfaces enable precise multidimensional control of light fields,aligning well with the development trend toward compact,high-performance optical systems.Here,we review several recent studies on the application of metasurfaces in laser processing technologies,including 3D nanolithography,direct laser writing,and laser cutting.Metasurfaces provide an integrated operational platform with exceptional performance,poised to disrupt conventional laser processing workflows.This combination presents significant cost efficiency and substantial development potential,with promising applications in areas such as imaging,optical storage,advanced sensing,and space on-orbit manufacturing. 展开更多
关键词 laser processing two-photon polymerization direct laser writing laser cutting metasurface
在线阅读 下载PDF
Dynamic spatial beam shaping for ultrafast laser processing:a review
2
作者 Cyril Mauclair Bahia Najih +2 位作者 Vincent Comte Florent Bourquard Martin Delaigue 《Opto-Electronic Science》 2025年第8期14-43,共30页
This review examines the state-of-the-art in spatial manipulation of ultrafast laser processing using dynamic light modulators,with a particular focus on liquid crystal-based systems.We discuss phase modulation strate... This review examines the state-of-the-art in spatial manipulation of ultrafast laser processing using dynamic light modulators,with a particular focus on liquid crystal-based systems.We discuss phase modulation strategies and highlight the current limitations and challenges in surface and bulk processing.Specifically,we emphasize the delicate balance between high-fidelity beam shaping and energy efficiency,both critical for surface and bulk processing applications.Given the inherent physical limitations of spatial light modulators such as spatial resolution,fill factor,and phase modulation range.We explore techniques developed to bridge the gap between desired intensity distributions and actual experimental beam profiles.We present various laser light modulation technologies and the main algorithmic strategies for obtaining modulation patterns.The paper includes application examples across a wide range of fields,from surgery to surface structuring,cutting,bulk photo-inscription of optical functions,and additive manufacturing,highlighting the significant enhancements in processing speed and precision due to spatial beam shaping.The diverse applications and the technological limitations underscore the need for adapted modulation pattern calculation methods.We discuss several advancements addressing these challenges,involving both experimental and algorithmic developments,including the recent incorporation of artificial intelligence.Additionally,we cover recent progress in phase and pulse front control based on spatial modulators,which introduces an extra control parameter for light excitation with high potential for achieving more controlled processing outcomes. 展开更多
关键词 spatial light modulator ultrafast laser processing spatial beam shaping laser surface structuring laser bullk structuring
在线阅读 下载PDF
Defect evolution and color center generation of high energy density femtosecond laser processed IIa diamond
3
作者 Bing Dong Qingqing Sun +3 位作者 Jianshi Wang Ying Song Fei Ren Zongwei Xu 《Nanotechnology and Precision Engineering》 2025年第4期37-49,共13页
This study investigated the effects of high-energy-density femtosecond laser pulses on diamond under different pulse counts,revealing the resulting structural changes and defect-formation mechanisms.Raman spectroscopy... This study investigated the effects of high-energy-density femtosecond laser pulses on diamond under different pulse counts,revealing the resulting structural changes and defect-formation mechanisms.Raman spectroscopy and low-temperature fluorescence spectroscopy were used to examine the surface damage,stress,and defect evolution of diamond under varying numbers of pulses.The results revealed the generation of nitrogen-vacancy color centers in diamond under high-energy-density pulsed laser irradiation without requiring annealing treatment.Additionally,confocal spectroscopy provided a distribution model for the evolution of damage and defects in diamond after femtosecond laser processing.This research provides valuable insights into optimizing femtosecond laser processing techniques and improves our understanding of the structural changes and defect-formation mechanisms in diamond. 展开更多
关键词 Femtosecond laser processing Confocal spectrum Diamond defects
在线阅读 下载PDF
Osteogenic and antibacterial ability of micro-nano structures coated with ZnO on Ti-6Al-4V implant fabricated by two-step laser processing 被引量:4
4
作者 Yi Wan Zihe Zhao +5 位作者 Mingzhi Yu Zhenbing Ji Teng Wang Yukui Cai Chao Liu Zhanqiang Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第36期240-252,共13页
The biological performance of Ti-6Al-4V implant is primarily determined by their surface properties.However,traditional surface modification methods,such as acid etching,hardly make improvement in their osseointegrati... The biological performance of Ti-6Al-4V implant is primarily determined by their surface properties.However,traditional surface modification methods,such as acid etching,hardly make improvement in their osseointegration ability and antibacterial capacity.In this study,we prepared a multi-scale composite structure coated with zinc oxide(ZnO)on Ti-6Al-4V implant by an innovative technology of two-step laser processing combined with solution-assistant.Compared with the acid etching method,the physicochemical properties of surface significantly improved.The in vitro results showed that the particular dimension of micro-nano structure and the multifaceted nature of ZnO synergistically affected MC3T3-E1 osteogenesis and bacterial activities:(1)The surface morphology showed a‘contact guidance'effect on cell arrangement,which was conducive to the adhesion of filopodia and cell spreading,and the osteogenesis level of MC3T3-E1 was enhanced due to the release of zinc ions(Zn^(2+));(2)the characterization of bacterial response revealed that periodic nanostructures and Zn^(2+)released could cause damage to the cell wall of E.coli and reduce the adhesion and aggregation of S.aureus.In conclusion,the modified surface showed a synergistic effect of physical topography and chemical composition,making this a promising method and providing new insight into bone defect repairment. 展开更多
关键词 Ti-6Al-4V implant laser processing Micro-nano structure Zinc oxide Osseointegration ability Antibacterial capacity
原文传递
Model heat source using actual distribution of laser power density for simulation of laser processing 被引量:4
5
作者 WANG Gen-wang DING Ye +2 位作者 GUAN Yan-chao WANG Yang YANG Li-jun 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第10期3277-3293,共17页
The model of heat source(MHS) which reflects the thermal interaction between materials and laser during processing determines the accuracy of simulation results. To acquire desirable simulations results, although vari... The model of heat source(MHS) which reflects the thermal interaction between materials and laser during processing determines the accuracy of simulation results. To acquire desirable simulations results, although various modifications of heat sources in the aspect of absorption process of laser by materials have been purposed, the distribution of laser power density(DLPD) in MHS is still modeled theoretically. However, in the actual situations of laser processing, the DLPD is definitely different from the ideal models. So, it is indispensable to build MHS using actual DLPD to improve the accuracy of simulation results. Besides, an automatic modeling method will be benefit to simplify the tedious pre-processing of simulations. This paper presents a modeling method and corresponding algorithm to model heat source using measured DLPD. This algorithm automatically processes original data to get modeling parameters and provides a step MHS combining with absorption models. Simulations and experiments of heat transfer in steel plates irradiated by laser prove the mothed and the step MHS. Moreover, the investigations of laser induced thermal-crack propagation in glass highlight the signification of modeling heat source based on actual DLPD and demonstrate the enormous application of this method in the simulation of laser processing. 展开更多
关键词 heat source laser processing distribution of power density digital images processing heat transfer
在线阅读 下载PDF
Omnidirectional iridescence via cylindricallypolarized femtosecond laser processing 被引量:17
6
作者 Nikolaos Livakas Evangelos Skoulas Emmanuel Stratakis 《Opto-Electronic Advances》 2020年第5期11-18,共8页
We report the femtosecond(fs)laser fabrication of biomimetic omnidirectional iridescent metallic surfaces exhibiting efficient diffraction for practically any angle of light incidence.Such diffractive behavior is real... We report the femtosecond(fs)laser fabrication of biomimetic omnidirectional iridescent metallic surfaces exhibiting efficient diffraction for practically any angle of light incidence.Such diffractive behavior is realized by means of multi-directional low-spatial-frequency,laser-induced periodic surface structures(LSFL)formed upon exploiting the cylindrical symmetry of a cylindrical vector(CV)fs field.We particularly demonstrate that the multi-directional gratings formed on stainless steel surface by a radially polarized fs beam,could mimic the omnidirectional structural coloration properties found in some natural species.Accordingly,the fabricated grating structures can spatially disperse the incident light into individual wavelength with high efficiency,exhibiting structural iridescence at all viewing angles.Analytical calculations using the grating equation reproduced the characteristic variation of the vivid colors observed as a function of incident angle.We envisage that our results will significantly contribute to the development of new photonic and light sensing devices. 展开更多
关键词 laser processing structural colors radial polarisation
在线阅读 下载PDF
Analytical and numerical investigations of displaced thermal state evolutions in a laser process 被引量:2
7
作者 杜传勋 孟祥国 +1 位作者 张冉 王继锁 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第12期102-108,共7页
We investigate how displaced thermal states (DTSs) evolve in a laser channel. Remarkably, the initial DTS, an example of a mixed state, still remains mixed and thermal. At long times, they finally decay to a highly ... We investigate how displaced thermal states (DTSs) evolve in a laser channel. Remarkably, the initial DTS, an example of a mixed state, still remains mixed and thermal. At long times, they finally decay to a highly classical thermal field only related to the laser parameters κ and g. The normal ordering product of density operator of the DTS in the laser channel leads to obtaining the analytical time-evolution expressions of the photon number, Wigner function, and von Neumann entropy. Also, some interesting results are presented via numerically investigating these explicit time-dependent expressions. 展开更多
关键词 displaced thermal state laser process infinitive operator-sum representation photon number Wigner function von Neumann entropy
原文传递
Recent developments in selective laser processes for wearable devices 被引量:2
8
作者 Youngchan Kim Eunseung Hwang +3 位作者 Chang Kai Kaichen Xu Heng Pan Sukjoon Hong 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第4期517-547,共31页
Recently,the increasing interest in wearable technology for personal healthcare and smart virtual/augmented reality applications has led to the development of facile fabrication methods.Lasers have long been used to d... Recently,the increasing interest in wearable technology for personal healthcare and smart virtual/augmented reality applications has led to the development of facile fabrication methods.Lasers have long been used to develop original solutions to such challenging technological problems due to their remote,sterile,rapid,and site-selective processing of materials.In this review,recent developments in relevant laser processes are summarized under two separate categories.First,transformative approaches,such as for laser-induced graphene,are introduced.In addition to design optimization and the alteration of a native substrate,the latest advances under a transformative approach now enable more complex material compositions and multilayer device configurations through the simultaneous transformation of heterogeneous precursors,or the sequential addition of functional layers coupled with other electronic elements.In addition,the more conventional laser techniques,such as ablation,sintering,and synthesis,can still be used to enhance the functionality of an entire system through the expansion of applicable materials and the adoption of new mechanisms.Later,various wearable device components developed through the corresponding laser processes are discussed,with an emphasis on chemical/physical sensors and energy devices.In addition,special attention is given to applications that use multiple laser sources or processes,which lay the foundation for the all-laser fabrication of wearable devices. 展开更多
关键词 Selective laser process Wearable device Transformative approach laser-induced graphene Ablation SINTERING Synthesis
在线阅读 下载PDF
Microstructure of Laser Processed T10 Carbon Tool Steel 被引量:1
9
作者 Xianzhang BU Fine Mech.Mater.and Technol.Dept.,Changchun Institute of Optics and Fine Mechanics,Changchun,130022,ChinaHongying WANG Zhang LI Jiandong HU Microanalysis Center,Jilin University of Technology,Changchun,130025,China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1993年第4期289-292,共4页
The microstructure of the laser melted 1.0%C tool steel have been investigated.The region affected by the laser can be subdivided into 3 zones,which consist of a melted region at the surface,a zone with solid state tr... The microstructure of the laser melted 1.0%C tool steel have been investigated.The region affected by the laser can be subdivided into 3 zones,which consist of a melted region at the surface,a zone with solid state transformation and the area adjacent to the unaffected substrate where cementite is slightly dissolved.The melted zone possessed a cellular growth morphology consisting of austenite and martensite.The carbon content of the austenite was measured to be over 1 wt-%.A great deal of retained austenite and twinned martensite were found in the first two zones(the melted and solid transformed). 展开更多
关键词 laser process MICROSTRUCTURE melted zones
在线阅读 下载PDF
A Novel Approach for the Fabrication of Sharkskin Structured Bionic Surfaces with Hydrophobic Wettability:Laser Processing and Ordered Abrasive Belt Grinding 被引量:1
10
作者 Guijian Xiao Zhenyang Liu +3 位作者 Ouchuan Lin Yi He Shuai Liu Jianchao Huang 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第4期1687-1700,共14页
A new process for the fabrication of sharkskin bionic structures on metal surfaces is proposed.The sharkskin bionic surface was successfully machined on the surface of IN718 by laser sequencing of the abrasive belt su... A new process for the fabrication of sharkskin bionic structures on metal surfaces is proposed.The sharkskin bionic surface was successfully machined on the surface of IN718 by laser sequencing of the abrasive belt surface,laser processing of the layered scale-like structure,and ribbed texture grinding.The flexible contact properties of belt grinding allow ribbed structures to be machined uniformly on a hierarchical,scale-like microstructure.Sharkskin bionic microstructures with radii greater than 75µm were prepared after parameter optimisation.The influence of processing parameters on the geometrical accuracy of the microstructure was investigated,the microstructure microform and elemental distribution were analyzed,and the relationship between the ribbed microstructure and chemical properties of the surface of the bionic sharkskin on wettability was revealed.The results indicate that reducing the laser power and increasing the laser scan rate can reduce the laser thermal effect and improve the microstructure processing accuracy.The laser ablation process is accompanied by a violent chemical reaction that introduces a large amount of oxygen and carbon elements and infiltrates them at a certain depth.The wettability of the surface undergoes a transition from hydrophilic(contact angle 69.72°)to hydrophobic(contact angle 131.56°)due to the adsorption of C-C/C-H and the reduction of C=O/O=C-O during the placement process.The ribbed microstructure changes the solid-liquid contact on the surface into a solid-liquid-gas contact,which has an enhanced effect on hydrophobicity.This study is a valuable guide to the processing of hydrophobic layered bionic microstructures. 展开更多
关键词 laser processing Abrasive belt grinding Bionic sharkskin structure WETTABILITY
在线阅读 下载PDF
RETAINED AUSTENITE IN LASER PROCESSED STEELS
11
作者 S. Fedosov (Samara State Technical University, Galaktionovskaya 141, Samara 443010, Russia) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第1期40-44,共5页
This paper Presents experimental data on effect of carbon concentration and laser processing regimes on retained austenite quantity. The data on retained austenite decomposition during subsequent temperings at vario... This paper Presents experimental data on effect of carbon concentration and laser processing regimes on retained austenite quantity. The data on retained austenite decomposition during subsequent temperings at various temperatures as well as after holding at room temperature during 3 years are given.Correla- tion between structural broadening of the X - ray lines of retained gamma - phase and the amount of the latter has been discovered.Mechanisms responsible for the increased quantity of the retained austen- ite in carbon and low alloyed steels after laser hardening are described. 展开更多
关键词 retained austenite laser hardening laser heat treatment laser processing
在线阅读 下载PDF
The Characteristics of the Surface Topography of Excimer Laser Processed Al_2O_3 Ceramic
12
作者 刘莹 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2004年第B10期11-14,共4页
Surface of Al 2O 3 ceramic was processed by an excimer laser and the characteristics of topography were examined based on the application of the microelectromechanical system(MEMS). It is indicated that the statisti... Surface of Al 2O 3 ceramic was processed by an excimer laser and the characteristics of topography were examined based on the application of the microelectromechanical system(MEMS). It is indicated that the statistic parameters of surface topography processed by the excimer laser have an obvious regularity. The arithmetic-mean value R a and the root-mean square value R q change with the changing of processing parameters in the same step and trend, and there is a quantitative relation between them.A simplified model is proposed for the excimer laser processing surface profile, whose results of the analysis and calculation agree basically with the experimental data. Furthermore,the surfaces processed by excimer laser are greatly flat. Skewness root-mean-square value Z· q changed little with the change of the technological parameters. The above characteristics depend on the processing principle of excimer laser, quite different from the cutting processing. 展开更多
关键词 excimer laser processing surface topography characteristics of topography parameters
在线阅读 下载PDF
Emission of particulate and gaseous pollutants from household laser processing machine
13
作者 Hyun Sik Ko Sang Bin Jeong +2 位作者 Sooyeol Phyo Jiwon Lee Jae Hee Jung 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2021年第5期148-156,共9页
Indoor air quality(IAQ) directly affects the health of occupants. Household manufacturing equipment(HME) used for hobbies or educational purposes is a new and unexplored source of air pollution. In this study, we eval... Indoor air quality(IAQ) directly affects the health of occupants. Household manufacturing equipment(HME) used for hobbies or educational purposes is a new and unexplored source of air pollution. In this study, we evaluated the characteristics of particulate and gaseous pollutants produced by a household laser processing equipment(HLPE). Various target materials were tested using a commercial HLPE under various operating conditions of laser power and sheath air flow rate. The mode diameters of the emitted particles gradually decreased as laser power increased, while the particle number concentration(PNC) and particle emission rate(PER) increased. In addition, as the sheath air flow rate quadrupled from 10 to 40 L/min, the mode diameter of the emitted particles decreased by nearly 25%, but the effect on the PNC was insignificant. When the laser induced the target materials at 53 m W, the mode diameters of particles were < 150 nm, and PNCs were > 2.0 × 10^(4) particles/cm^(3). Particularly, analyses of sampled aerosols indicated that harmful substances such as sulfur and barium were present in particles emitted from leather. The carcinogenic gaseous pollutants such as acrylonitrile, acetaldehyde, 1,3-butadiene, benzene, and C 8 aromatics(ethylbenzene) were emitted from all target materials. In an actual indoor environment, the PNC of inhalable ultrafine particles(UFPs) was > 5 × 10^(4) particles/cm^(3) during 30 min of HLPE operation. Our results suggest that more meticulous control methods are needed, including the use of less harmful target materials along with filters or adsorbents that prevent emission of pollutants. 展开更多
关键词 Indoor air quality(IAQ) EMISSION laser processing Ultrafine particles(UFPs) Volatile organic compounds(VOCs)
原文传递
Laser processing induced nonvolatile memory in chaotic graphene oxide films for flexible reservoir computing applications
14
作者 Bo Chen Baojie Zhu +4 位作者 Yifan Wu Pengpeng Sang Jixuan Wu Xuepeng Zhan Jiezhi Chen 《Journal of Semiconductors》 EI CAS CSCD 2024年第12期130-134,共5页
Graphene oxide,as a 2D material with nanometer thickness,offers ultra-high mobility,chaotic properties,and low cost.These make graphene oxide memristors beneficial for reservoir computing(RC)networks.In this study,con... Graphene oxide,as a 2D material with nanometer thickness,offers ultra-high mobility,chaotic properties,and low cost.These make graphene oxide memristors beneficial for reservoir computing(RC)networks.In this study,continuous-wave(CW)laser processing is used to reduce chaotic graphene oxide(CGO)films,resulting in the non-volatile storage capability based on the reduced chaotic graphene oxide(rCGO)films.Laser power significantly impacts the characteristics of the rCGO memristor.Material characterization indicates that laser radiation can effectively reduce the oxygen content in CGO films.With optimized laser power,the rCGO memristor achieves a large ratio at 18 mW laser power.Benefiting from the short-term mem-ory characteristics,distinct conductive states are achieved,which are further utilized to construct RC networks.With a third con-trol probe,the rCGO memristor can express rich reservoir states,demonstrating accuracy in predicting the Hénon map with an NRMSE below 0.3.These findings provide the potential for developing flexible RC networks based on graphene oxide memris-tors via laser processing. 展开更多
关键词 chaotic graphene oxide laser processing reservoir computing
在线阅读 下载PDF
Femtosecond laser processing stainless steel foil and its Fourier spectrum detection
15
作者 TU Dong-ming MA Hao-yue +4 位作者 JIANG Xiao-rui LIU Hong-liang WU Peng-fei SONG Li-wei WANG Ming-wei 《Optoelectronics Letters》 EI 2020年第6期471-476,共6页
In this paper, we use femtosecond laser pulse to scribe 304 stainless steel foil, detect the Fourier transform infrared spectrum of the sample before and after processing, confirm the "cold processing" and &... In this paper, we use femtosecond laser pulse to scribe 304 stainless steel foil, detect the Fourier transform infrared spectrum of the sample before and after processing, confirm the "cold processing" and "thermal processing" and their mutual conversion, and determine the "cold processing" parameter window. The ablation threshold and incubation coefficient of 304 stainless steel foil are calculated, and the effects of scanning speed and effective pulse number on the ablation threshold are analyzed. The ANSYS software is used to simulate the radial and axial temperature distributions of the surface on 304 stainless steel foil sample and the heat-affected zone with a femtosecond laser fluence of 10 J/cm2 and an effective number of pulses of 1 200 are obtained. In the aspect of spectral detection, the Fourier transform infrared spectra of the sample before and after processing are measured and two processing mechanisms of "cold processing" and "hot processing" are confirmed, which proves that we can achieve the conversion between "cold processing" and "hot processing" by changing the laser fluence and determine the "cold processing" laser fluence range. 展开更多
关键词 Gaussian Femtosecond laser processing stainless steel foil and its Fourier spectrum detection FOURIER
原文传递
The Application of Laser Processing on Clutch Manufacture
16
作者 ZHU Qigen School of Mechanical and Electronic Engineering,Wuhan University of Technology,Wuhan 430070,China, 《武汉理工大学学报》 CAS CSCD 北大核心 2006年第S3期936-939,共4页
The first multi-function laser processing system in the domestic for clutch manufacture,with abilities of cutting, jointing and heat treatment,was reported in this paper.One external optical path,double laser heads,ad... The first multi-function laser processing system in the domestic for clutch manufacture,with abilities of cutting, jointing and heat treatment,was reported in this paper.One external optical path,double laser heads,adjust device by manual operation,automatically track were employed in this system Also the other parts of vehicles can be fabricated by this system,as well as clutches.The special processing to manufacture the clutches of heavy vehicles,which was developed by the project of this laser processing system,achieved the international standards and satisfied the economic development and nation defense in the do- mestic. 展开更多
关键词 The Application of laser processing on Clutch Manufacture
在线阅读 下载PDF
Effect of pulsed laser process parameters on welding quality of automobile fuel injector 被引量:1
17
作者 崔厚学 胡伦骥 余圣甫 《China Welding》 EI CAS 2011年第3期75-80,共6页
In this research, pulverization plate and base of a fuel injector in an automobile electronic-controlled engine was joined by pulsed laser welding. The different welding parameters were evaluated and effect of process... In this research, pulverization plate and base of a fuel injector in an automobile electronic-controlled engine was joined by pulsed laser welding. The different welding parameters were evaluated and effect of process parameters on joint characteristics was analyzed. The optimal process parameters were obtained as follows: welding current 120 A, welding speed 600 ram/rain, pulse duration 1.80 ms and pulse frequency 60 Hz. The microstructure of weld metal was investigated. Results show that the fusion zone is austenitic dendrite, the weld center is equiaxed grain, while the transition zone between fusion zone and weld center is mixed crystal with austenitic dendrite and equiaxed grain. The weld layered phenomenon was observed, and eddy caused by keyhole effect is the main reason for the formation of layered structure in molten pool. 展开更多
关键词 fuel injector pulsed laser welding process parameters MICROSTRUCTURE
在线阅读 下载PDF
Fourier hologram method using Gerchberg-Saxton algorithm for parallel femtosecond laser processing
18
作者 汪金礼 苏亚辉 +2 位作者 崔洪涛 杨亮 方志伟 《Journal of Measurement Science and Instrumentation》 CAS 2012年第3期304-306,共3页
In order to improve femtosecond laser throughput,a parallel processing system consisting of liquid crystal on silicon(LCOS)device as spatial light modulator is put forward.A method is described for displaying Fourier ... In order to improve femtosecond laser throughput,a parallel processing system consisting of liquid crystal on silicon(LCOS)device as spatial light modulator is put forward.A method is described for displaying Fourier hologram on LCOS,and a high uniformity of several diffraction peaks in the computer reconstruction is achieved.Application of this method to the parallel femtosecond laser processing is also demonstrated,and two intersecting rings and three tangent rings are fabricated respectively by one time in the photoresist. 展开更多
关键词 femtosecond laser parallel processing liquid crystal on silicon(LCOS) Fourier hologram Gerchberg-Saxton(GS)algorithm
在线阅读 下载PDF
Present Situation and Developing Trend on Laser Processing Industry in China
19
《光机电信息》 2005年第7期1-6,共6页
Developing trend and present situation on laser processing industry in China are mainly reviewed.The market analysis on laser processing systems are given,some new and rapidly developed laser processing systems are in... Developing trend and present situation on laser processing industry in China are mainly reviewed.The market analysis on laser processing systems are given,some new and rapidly developed laser processing systems are introduced.Finally,the paper also introduces some new kinds of laser systems and equipment. 展开更多
关键词 激光器 中国 发展趋势 处理设备 发展技术 市场分析
在线阅读 下载PDF
Bioinspired superwetting SERS substrate based onfemtosecond laser processing: Principles, methods, andapplications
20
作者 Jinglan Huo Xubo Huang Jiangfeng Zhu 《Droplet》 2025年第4期1-16,共16页
The growing demand for surface-enhanced Raman scattering sensors in biochemical detection,environmental monitoring,microfluidics,and other fields has promoted the development of highly sensitive and stable substrates.... The growing demand for surface-enhanced Raman scattering sensors in biochemical detection,environmental monitoring,microfluidics,and other fields has promoted the development of highly sensitive and stable substrates.Femtosecond laser-fabricated surfaces with controlled wettability,unique micro/nanostructure designs,and tunable extreme wetting properties can significantly enhance the signal amplification and reproducibility of surface-enhanced Raman scattering techniques.In this review,we offer a comprehensive overview of recent advancements in surface-enhanced Raman scattering techniques based on superwetting surfaces fabricated by femtosecond laser processing,including fully superhydrophobic surfaces,hybrid wettability surfaces,and visual localization surfaces.The main research areas,such as pattern optimization,dynamic measurements,hot spot enhancement,and stability improvement,are highlighted.We also summarize the practical applications of surface-enhanced Raman scattering in chemical detection,microfluidic control,medical diagnosis,and food safety evaluation.Finally,the current challenges and limitations in the development of femtosecond laser-processed superwetting substrates for surface-enhanced Raman scattering are described. 展开更多
关键词 surface enhanced raman scattering highly sensitive stable substratesfemtosecond WETTABILITY micro nanostructure sensitivity superwetting BIOINSPIRED femtosecond laser processing
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部