Achieving efficient thermal management urges to exploit high-thermal-conductivity materials to satisfy the boosted demand of heat dissipation.It is critical to adopt standardized characterization protocols to evaluate...Achieving efficient thermal management urges to exploit high-thermal-conductivity materials to satisfy the boosted demand of heat dissipation.It is critical to adopt standardized characterization protocols to evaluate the intrinsic thermal conductivity of thermal management materials.However,for the most representative laser flash method,the lack of standard measurement methodology and systematic description on the thermal diffusivity and influencing factors has led to significant deviations and confusion of the thermal conduction performance in the emerging thermal management application.Here,the measurement error factors of thermal diffusivity by the common laser flash analyzer(LFA)are discussed.Taking high-thermal-conductivity graphitic film(GF)as a typical case,the key factors are analyzed to guide the measurement protocol of related carbon-based thermal management materials.The basic principle of the LFA measurement,actual pre-processing conditions,instrument parameters setting,and data analysis are elaborated for accurate measurements.Furthermore,the graphene thick films and common isotropic materials are also extended to meet various thermal measurement requirements.Based on the existing practical problems,we propose a feasible test flow to achieve a unified and standardized thermal conductivity measurement,which is beneficial to the rapid development of carbon-based thermal management materials.展开更多
This paper presents an in-situ, non-contact, non-destructive "dual-wavelength laser flash Raman spectroscopy method" for measuring the thermal diffusivity. In this method, a heating pulse is used to heat the...This paper presents an in-situ, non-contact, non-destructive "dual-wavelength laser flash Raman spectroscopy method" for measuring the thermal diffusivity. In this method, a heating pulse is used to heat the sample and another pulsed laser with a different wavelength and negligible heating effect is used as a probe to measure the sample temperature changes during the heating and cooling periods from the Raman peak shifts. The sample temperature rise and fall curves are measured by changing the delay between the heating pulse and the probing pulse with the thermal diffusivity then characterized by fitting the temperature curves. The time delay between the heating and probing pulses can be precisely controlled with a minimum step of 100 ps. Hence, the temperature variation can be scanned with an ultra-high temporal resolution of up to 100 ps, which significantly improves the measurement accuracy of transient thermal parameters. The measurement accuracy of this method has been verified using a bulk material model and experiments. The measured thermal diffusivity of a silicon sample has been obtained to be 8.8×10^(-5 )m^2/s with a 3% difference between the measured value and the average result for bulk silicon in the literature which verifies the reliability and accuracy of this method.展开更多
Thermal barrier coatings (TBCs) are mostly applied to hot components of advanced turbine engines to insulate the compo- nents from hot gas. The effect of sintering on thermal conductivity and thermal barrier effects...Thermal barrier coatings (TBCs) are mostly applied to hot components of advanced turbine engines to insulate the compo- nents from hot gas. The effect of sintering on thermal conductivity and thermal barrier effects of conventional plasma sprayed and nanostructured yttria stabilized zirconia (YSZ) thermal barrier coatings (TBCs) are investigated. Remarkable increase in thermal conductivity occurs to both typical coatings after heat treatment, The change of porosity is just the opposite. The grain size of the nanostructured zirconia coating increases more drastically with annealing time compared to that of the conventional plasma sprayed coating, which indicates that coating sintering makes more contributions to the thermal conductivity of the nanostructured coating than that of the conventional coating. Thermal barrier effect tests using temperature difference technique are performed on both coatings. The thermal barrier effects decrease with the increase of thermal conductivity after heat treat- ment and the decline seems more drastic in low thermal conductivity range. The decline in thermal barrier effects is about 80℃ for nanostructured coating after 100 h heat treatment, while the conventional coating reduces by less than 60 ℃ compared to the as-sprayed coating.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52272046,52090030,52090031,52122301,51973191)the Natural Science Foundation of Zhejiang Province(LR23E020003)+4 种基金Shanxi-Zheda Institute of New Materials and Chemical Engineering(2021SZ-FR004,2022SZ-TD011,2022SZ-TD012,2022SZ-TD014)Hundred Talents Program of Zhejiang University(188020*194231701/113,112300+1944223R3/003,112300+1944223R3/004)the Fundamental Research Funds for the Central Universities(Nos.226-2023-00023,226-2023-00082,2021FZZX001-17,K20200060)National Key R&D Program of China(NO.2022YFA1205300,NO.2022YFA1205301,NO.2020YFF0204400,NO.2022YFF0609801)"Pioneer"and"Leading Goose"R&D Program of Zhejiang 2023C01190。
文摘Achieving efficient thermal management urges to exploit high-thermal-conductivity materials to satisfy the boosted demand of heat dissipation.It is critical to adopt standardized characterization protocols to evaluate the intrinsic thermal conductivity of thermal management materials.However,for the most representative laser flash method,the lack of standard measurement methodology and systematic description on the thermal diffusivity and influencing factors has led to significant deviations and confusion of the thermal conduction performance in the emerging thermal management application.Here,the measurement error factors of thermal diffusivity by the common laser flash analyzer(LFA)are discussed.Taking high-thermal-conductivity graphitic film(GF)as a typical case,the key factors are analyzed to guide the measurement protocol of related carbon-based thermal management materials.The basic principle of the LFA measurement,actual pre-processing conditions,instrument parameters setting,and data analysis are elaborated for accurate measurements.Furthermore,the graphene thick films and common isotropic materials are also extended to meet various thermal measurement requirements.Based on the existing practical problems,we propose a feasible test flow to achieve a unified and standardized thermal conductivity measurement,which is beneficial to the rapid development of carbon-based thermal management materials.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51827807 and 51636002)
文摘This paper presents an in-situ, non-contact, non-destructive "dual-wavelength laser flash Raman spectroscopy method" for measuring the thermal diffusivity. In this method, a heating pulse is used to heat the sample and another pulsed laser with a different wavelength and negligible heating effect is used as a probe to measure the sample temperature changes during the heating and cooling periods from the Raman peak shifts. The sample temperature rise and fall curves are measured by changing the delay between the heating pulse and the probing pulse with the thermal diffusivity then characterized by fitting the temperature curves. The time delay between the heating and probing pulses can be precisely controlled with a minimum step of 100 ps. Hence, the temperature variation can be scanned with an ultra-high temporal resolution of up to 100 ps, which significantly improves the measurement accuracy of transient thermal parameters. The measurement accuracy of this method has been verified using a bulk material model and experiments. The measured thermal diffusivity of a silicon sample has been obtained to be 8.8×10^(-5 )m^2/s with a 3% difference between the measured value and the average result for bulk silicon in the literature which verifies the reliability and accuracy of this method.
基金National Natural Science Foundation of China (50771009, 50731001, 51071013)
文摘Thermal barrier coatings (TBCs) are mostly applied to hot components of advanced turbine engines to insulate the compo- nents from hot gas. The effect of sintering on thermal conductivity and thermal barrier effects of conventional plasma sprayed and nanostructured yttria stabilized zirconia (YSZ) thermal barrier coatings (TBCs) are investigated. Remarkable increase in thermal conductivity occurs to both typical coatings after heat treatment, The change of porosity is just the opposite. The grain size of the nanostructured zirconia coating increases more drastically with annealing time compared to that of the conventional plasma sprayed coating, which indicates that coating sintering makes more contributions to the thermal conductivity of the nanostructured coating than that of the conventional coating. Thermal barrier effect tests using temperature difference technique are performed on both coatings. The thermal barrier effects decrease with the increase of thermal conductivity after heat treat- ment and the decline seems more drastic in low thermal conductivity range. The decline in thermal barrier effects is about 80℃ for nanostructured coating after 100 h heat treatment, while the conventional coating reduces by less than 60 ℃ compared to the as-sprayed coating.