期刊文献+
共找到429,025篇文章
< 1 2 250 >
每页显示 20 50 100
Large-scale simulations of CO_(2) diffusion in metal-organic frameworks with open Cu sites
1
作者 Tongan Yan Minman Tong +3 位作者 Qingyuan Yang Dahuan Liu Yandong Guo Chongli Zhong 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第2期1-9,共9页
Understanding CO_(2) diffusion behavior in functional nanoporous materials is beneficial for improving the CO_(2) adsorption,separation,and conversion performances.However,it is a great challenge for studying the diff... Understanding CO_(2) diffusion behavior in functional nanoporous materials is beneficial for improving the CO_(2) adsorption,separation,and conversion performances.However,it is a great challenge for studying the diffusion process in experiments.Herein,CO_(2) diffusion in 962 metal–organic frameworks(MOFs)with open Cu sites was systematically investigated by theoretical methods in the combination of molecular dynamic simulations and density functional theory(DFT)calculations.A specific force field was derived from DFT-D2 method combined with Grimme’s dispersion-corrected(D2)density functional to well describe the interaction energies between Cu and CO_(2).It is observed that the suitable topology is conductive to CO_(2) diffusion,and 2D-MOFs are more flexible in tuning and balancing the CO_(2) adsorption and diffusion behaviors than 3D-MOFs.In addition,analysis of diffusive trajectories and the residence times on different positions indicate that CO_(2) diffusion is mainly along with the frameworks in these MOFs,jumping from one strong adsorption site to another.It is also influenced by the electrostatic interaction of the frameworks.Therefore,the obtained information may provide useful guidance for the rational design and synthesis of MOFs with enhanced CO_(2) diffusion performance for specific applications. 展开更多
关键词 Metal-organic frameworks Open Cusites Molecular simulations Carbon dioxide DIFFUSION
在线阅读 下载PDF
An improved efficient adaptive method for large-scale multiexplosives explosion simulations
2
作者 Tao Li Cheng Wang Baojun Shi 《Defence Technology(防务技术)》 2025年第3期28-47,共20页
Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise re... Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise results is inefficient in terms of computational resource.This is particularly evident when large-scale fluid field simulations are conducted with significant differences in computational domain size.In this work,a variable-domain-size adaptive mesh enlargement(vAME)method is developed based on the proposed adaptive mesh enlargement(AME)method for modeling multi-explosives explosion problems.The vAME method reduces the division of numerous empty areas or unnecessary computational domains by adaptively suspending enlargement operation in one or two directions,rather than in all directions as in AME method.A series of numerical tests via AME and vAME with varying nonintegral enlargement ratios and different mesh numbers are simulated to verify the efficiency and order of accuracy.An estimate of speedup ratio is analyzed for further efficiency comparison.Several large-scale near-ground explosion experiments with single/multiple explosives are performed to analyze the shock wave superposition formed by the incident wave,reflected wave,and Mach wave.Additionally,the vAME method is employed to validate the accuracy,as well as to investigate the performance of the fluid field and shock wave propagation,considering explosive quantities ranging from 1 to 5 while maintaining a constant total mass.The results show a satisfactory correlation between the overpressure versus time curves for experiments and numerical simulations.The vAME method yields a competitive efficiency,increasing the computational speed to 3.0 and approximately 120,000 times in comparison to AME and the fully fine mesh method,respectively.It indicates that the vAME method reduces the computational cost with minimal impact on the results for such large-scale high-energy release problems with significant differences in computational domain size. 展开更多
关键词 large-scale explosion Shock wave Adaptive method Fluid field simulations Efficient method
在线阅读 下载PDF
Review of Large-Scale Simulation Optimization
3
作者 Wei-Wei Fan L.Jeff Hong +1 位作者 Guang-Xin Jiang Jun Luo 《Journal of the Operations Research Society of China》 2025年第3期688-722,共35页
Large-scale simulation optimization(SO)problems encompass both large-scale ranking-and-selection problems and high-dimensional discrete or continuous SO problems,presenting significant challenges to existing SO theori... Large-scale simulation optimization(SO)problems encompass both large-scale ranking-and-selection problems and high-dimensional discrete or continuous SO problems,presenting significant challenges to existing SO theories and algorithms.This paper begins by providing illustrative examples that highlight the differences between large-scale SO problems and those of a more moderate scale.Subsequently,it reviews several widely employed techniques for addressing large-scale SOproblems,such as divide-and-conquer,dimension reduction,and gradient-based algorithms.Additionally,the paper examines parallelization techniques leveraging widely accessible parallel computing environments to facilitate the resolution of large-scale SO problems. 展开更多
关键词 simulation optimization large-scale problems Ranking and selection·Dimension reduction Gradient-based algorithms Parallel algorithms
原文传递
Assessment of Wet Season Precipitation in the Central United States by the Regional Climate Simulation of the WRFG Member in NARCCAP and Its Relationship with Large-Scale Circulation Biases 被引量:1
4
作者 Yating ZHAO Ming XUE +2 位作者 Jing JIANG Xiao-Ming HU Anning HUANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第4期619-638,共20页
Assessment of past-climate simulations of regional climate models(RCMs)is important for understanding the reliability of RCMs when used to project future regional climate.Here,we assess the performance and discuss pos... Assessment of past-climate simulations of regional climate models(RCMs)is important for understanding the reliability of RCMs when used to project future regional climate.Here,we assess the performance and discuss possible causes of biases in a WRF-based RCM with a grid spacing of 50 km,named WRFG,from the North American Regional Climate Change Assessment Program(NARCCAP)in simulating wet season precipitation over the Central United States for a period when observational data are available.The RCM reproduces key features of the precipitation distribution characteristics during late spring to early summer,although it tends to underestimate the magnitude of precipitation.This dry bias is partially due to the model’s lack of skill in simulating nocturnal precipitation related to the lack of eastward propagating convective systems in the simulation.Inaccuracy in reproducing large-scale circulation and environmental conditions is another contributing factor.The too weak simulated pressure gradient between the Rocky Mountains and the Gulf of Mexico results in weaker southerly winds in between,leading to a reduction of warm moist air transport from the Gulf to the Central Great Plains.The simulated low-level horizontal convergence fields are less favorable for upward motion than in the NARR and hence,for the development of moist convection as well.Therefore,a careful examination of an RCM’s deficiencies and the identification of the source of errors are important when using the RCM to project precipitation changes in future climate scenarios. 展开更多
关键词 NARCCAP Central United States PRECIPITATION low-level jet large-scale environment diurnal variation
在线阅读 下载PDF
Large-scale physical simulation of injection and production of hot dry rock in Gonghe Basin,Qinghai Province,China 被引量:2
5
作者 ZHAO Peng ZHU Haiyan +4 位作者 LI Gensheng CHEN Zuo CHEN Shijie SHANGGUAN Shuantong QI Xiaofei 《Petroleum Exploration and Development》 SCIE 2024年第3期741-752,共12页
Based on the independently developed true triaxial multi-physical field large-scale physical simulation system of in-situ injection and production,we conducted physical simulation of long-term multi-well injection and... Based on the independently developed true triaxial multi-physical field large-scale physical simulation system of in-situ injection and production,we conducted physical simulation of long-term multi-well injection and production in the hot dry rocks of the Gonghe Basin,Qinghai Province,NW China.Through multi-well connectivity experiments,the spatial distribution characteristics of the natural fracture system in the rock samples and the connectivity between fracture and wellbore were clarified.The injection and production wells were selected to conduct the experiments,namely one injection well and two production wells,one injection well and one production well.The variation of several physical parameters in the production well was analyzed,such as flow rate,temperature,heat recovery rate and fluid recovery.The results show that under the combination of thermal shock and injection pressure,the fracture conductivity was enhanced,and the production temperature showed a downward trend.The larger the flow rate,the faster the decrease.When the local closed area of the fracture was gradually activated,new heat transfer areas were generated,resulting in a lower rate of increase or decrease in the mining temperature.The heat recovery rate was mainly controlled by the extraction flow rate and the temperature difference between injection and production fluid.As the conductivity of the leak-off channel increased,the fluid recovery of the production well rapidly decreased.The influence mechanisms of dominant channels and fluid leak-off on thermal recovery performance are different.The former limits the heat exchange area,while the latter affects the flow rate of the produced fluid.Both of them are important factors affecting the long-term and efficient development of hot dry rock. 展开更多
关键词 hot dry rock simulation of injection and production heat extraction performance CONDUCTIVITY dominant channel fluid leak-off
在线阅读 下载PDF
Assessing cutter-rock interaction during TBM tunnelling in granite:Large-scale standing rotary cutting tests and 3D DEM simulations
6
作者 Xin Huang Miaoyuan Tang +4 位作者 Shuaifeng Wang Yixin Zhai Qianwei Zhuang Chi Zhang Qinghua Lei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3595-3615,共21页
The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standi... The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standing rotary cutting tests on granite in conjunction with high-fidelity numerical simulations based on a particle-type discrete element method(DEM)to explore the effects of key cutting parameters on the TBM cutter performance and the distribution of cutter-rock contact stresses.The assessment results of cutter performance obtained from the cutting tests and numerical simulations reveal similar dependencies on the key cutting parameters.More specifically,the normal and rolling forces exhibit a positive correlation with penetration but are slightly influenced by the cutting radius.In contrast,the side force decreases as the cutting radius increases.Additionally,the side force shows a positive relationship with the penetration for smaller cutting radii but tends to become negative as the cutting radius increases.The cutter's relative effectiveness in rock breaking is significantly impacted by the penetration but shows little dependency on the cutting radius.Consequently,an optimal penetration is identified,leading to a low boreability index and specific energy.A combined Hertz-Weibull function is developed to fit the cutter-rock contact stress distribution obtained in DEM simulations,whereby an improved CSM(Colorado School of Mines)model is proposed by replacing the original monotonic cutting force distribution with this combined Hertz-Weibull model.The proposed model outperforms the original CSM model as demonstrated by a comparison of the estimated cutting forces with those from the tests/simulations.The findings from this work that advance our understanding of TBM cutter performance have important implications for improving the efficiency and reliability of TBM tunnelling in granite. 展开更多
关键词 large-scale standing rotary cutting test Discrete element method(DEM)simulation Cutter-rock interaction Improved CSM(Colorado School of Mines) model Cutting force
在线阅读 下载PDF
基于Plant Simulation的装配生产线规划方法 被引量:1
7
作者 陈光霞 《机械管理开发》 2025年第3期278-280,共3页
在工厂进行智能化改造或新建厂时,为节约开发成本,提高开发效率,必须进行工厂装配线规划。论述了利用Plant Simulation工厂仿真软件进行装配线规划的具体方法与过程,对规划过程中的功能模型的建立、装配过程的制定、Petri图及建模仿真... 在工厂进行智能化改造或新建厂时,为节约开发成本,提高开发效率,必须进行工厂装配线规划。论述了利用Plant Simulation工厂仿真软件进行装配线规划的具体方法与过程,对规划过程中的功能模型的建立、装配过程的制定、Petri图及建模仿真进行了分析描述,并利用仿真软件对所建立的装配线模型进行相关分析,利用智能工厂装配线仿真规划方法可以提高规划效率,节约规划成本,并为数字化工厂建设与数字孪生的应用提供了基础。 展开更多
关键词 智能制造 Plant simulation 装配线规划
在线阅读 下载PDF
基于Plant Simulation的双离合器装配线仿真优化 被引量:1
8
作者 江涛 刘雪梅 《农业装备与车辆工程》 2025年第6期97-102,共6页
在工程项目制定后,通过搭建仿真模型,对项目方案进行分析评估、优化与改进,有助于解决实际工程项目可能出现的问题,减少人力物力浪费,提高优化效率。以某企业DC300双离合器装配线为研究对象,结合装配工艺流程,利用仿真软件Plant Simulat... 在工程项目制定后,通过搭建仿真模型,对项目方案进行分析评估、优化与改进,有助于解决实际工程项目可能出现的问题,减少人力物力浪费,提高优化效率。以某企业DC300双离合器装配线为研究对象,结合装配工艺流程,利用仿真软件Plant Simulation构建装配线仿真模型,并进行装配线运行过程仿真。通过对生产线节拍、设备利用率等相关数据进行分析评估,找出生产线的瓶颈工位,通过工艺结构调整,实现了生产线节拍的优化与改善,达到了生产要求指标。同时进行了多组仿真实验,完成了托盘数量的优化。 展开更多
关键词 Plant simulation 双离合器 装配线
在线阅读 下载PDF
基于Plant Simulation的产线车辆调度问题
9
作者 刘浩然 刘松凯 陈斌 《科学技术与工程》 北大核心 2025年第6期2406-2418,共13页
随着“中国制造2025计划”的进行,军工工业要推行产线无人化,而自动引导车(automated guided vehicle,AGV)作为全自动化生产线的主要物流载体,其调度的优劣直接决定了整个产线的产能和效率。由于军工场所对于安全性的要求,无法采用无线... 随着“中国制造2025计划”的进行,军工工业要推行产线无人化,而自动引导车(automated guided vehicle,AGV)作为全自动化生产线的主要物流载体,其调度的优劣直接决定了整个产线的产能和效率。由于军工场所对于安全性的要求,无法采用无线通信等手段,只能采用点对点的光通讯方式,这也使得AGV通讯的实时性变差。基于Plant Simulation软件,建立了仿真系统模型,打通了该物流仿真软件与现场控制器的实时数据交互通道,实现了仿真系统与现实同步运行,完成了物流仿真软件与现场控制器的无缝连接,有效地解决了军工工业没有无线造成AGV调度实时性差的难题。实验证明,这种方法有效地简化了调度系统的编写难度,并使系统整体的实时性能提高了0.058 s。与传统方法相比,编写时间缩短了9.7倍,调试时间更缩短了22倍。为军工产线实现全自动化奠定基础,并为在危险场所使用脉动生产线提供技术支持。 展开更多
关键词 AGV调度 Plant simulation 离散仿真 实时性 智能调度
在线阅读 下载PDF
基于Plant Simulation仿真技术的装配生产线优化研究 被引量:1
10
作者 崔俊杰 马臻 郭海青 《南方农机》 2025年第2期145-149,共5页
【目的】优化装备生产线,缩短产品交付周期。【方法】基于Plant Simulation仿真技术,对装配生产线进行建模、编程、仿真、分析和优化,有效计算产品产量和成本,识别并优化装配生产线的瓶颈工位。【结果】优化后的三维产线仿真模型产量增... 【目的】优化装备生产线,缩短产品交付周期。【方法】基于Plant Simulation仿真技术,对装配生产线进行建模、编程、仿真、分析和优化,有效计算产品产量和成本,识别并优化装配生产线的瓶颈工位。【结果】优化后的三维产线仿真模型产量增幅接近10%,生产效率明显提升。【结论】通过将智能制造技能竞赛和科研教学活动相结合,能够凝练总结竞赛内容,促使教师紧盯前沿知识,创新改革教学内容,实现以赛促教、以赛促学、以赛促改、以赛促建的多重目标。 展开更多
关键词 Plant simulation仿真技术 生产优化 瓶颈工位
在线阅读 下载PDF
基于Solidworks Flow Simulation的换热器翅片形状对换热量影响研究
11
作者 张蓬菲 李俊 +2 位作者 孙丽婷 张慧跃 张宇 《山东化工》 2025年第7期205-209,共5页
利用Solidworks Flow Simulation软件,对不同翅片形状的翅片管式换热器进行数值模拟研究,探讨了在相同翅片面积、不考虑翅片厚度的前提下,翅片形状分别为正三角形、正方形、正六边形、正八边形、圆形时换热量的差异。通过建立不同翅片... 利用Solidworks Flow Simulation软件,对不同翅片形状的翅片管式换热器进行数值模拟研究,探讨了在相同翅片面积、不考虑翅片厚度的前提下,翅片形状分别为正三角形、正方形、正六边形、正八边形、圆形时换热量的差异。通过建立不同翅片形状的翅片管式换热器三维模型,设定合理的边界条件和物理属性,在保证其他所有物理参数、材料属性保持不变的前提下,分析了不同翅片形状的翅片管式换热器的热传递过程,计算出热交换系数、热通量、壁面温度、流体平均温度等数值,从而总结换热量的差异,归纳出翅片形状带给换热量的影响。研究表明,翅片形状对换热器的换热量有显著影响,若翅片形状为边数更多的正多边形,即翅片更接近于圆形,则换热量更小。换热量趋于稳态后,通过提取相同迭代次数区间的换热量数值,计算区间内换热量数值方差,发现三角形至六边形换热稳定性渐变稳定,从六边形至圆形稳定性逐渐降低。此研究为翅片管式换热器设计优化提供了理论依据。 展开更多
关键词 翅片管式换热器 翅片形状 Solidworks Flow simulation 换热量 CFD 数值模拟
在线阅读 下载PDF
Challenges in the Large-Scale Deployment of CCUS 被引量:2
12
作者 Zhenhua Rui Lianbo Zeng Birol Dindoruk 《Engineering》 2025年第1期17-20,共4页
1.Introduction Climate change mitigation pathways aimed at limiting global anthropogenic carbon dioxide(CO_(2))emissions while striving to constrain the global temperature increase to below 2℃—as outlined by the Int... 1.Introduction Climate change mitigation pathways aimed at limiting global anthropogenic carbon dioxide(CO_(2))emissions while striving to constrain the global temperature increase to below 2℃—as outlined by the Intergovernmental Panel on Climate Change(IPCC)—consistently predict the widespread implementation of CO_(2)geological storage on a global scale. 展开更多
关键词 large-scale Deployment CCUS CHALLENGES Climate Change Mitigation
在线阅读 下载PDF
基于Plant Simulation的零件生产线规划方法
13
作者 陈光霞 《机械管理开发》 2025年第2期267-268,271,共3页
利用PlantSimulation工厂仿真软件进行生产线规划的具体方法与过程,对规划过程中的功能模型的建立、加工工序的制定、PERT图及建模仿真进行了分析描述,并利用仿真软件对所建立的生产线模型进行瓶颈分析,利用生产线仿真规划方法可以提高... 利用PlantSimulation工厂仿真软件进行生产线规划的具体方法与过程,对规划过程中的功能模型的建立、加工工序的制定、PERT图及建模仿真进行了分析描述,并利用仿真软件对所建立的生产线模型进行瓶颈分析,利用生产线仿真规划方法可以提高规划效率,节约规划成本,并为数字化工厂建设与数字孪生的应用提供了基础。 展开更多
关键词 数字化 智能制造 Plantsimulation 生产线规划
在线阅读 下载PDF
Microstructure Analysis of TC4/Al 6063/Al 7075 Explosive Welded Composite Plate via Multi-scale Simulation and Experiment 被引量:1
14
作者 Zhou Jianan Luo Ning +3 位作者 Liang Hanliang Chen Jinhua Liu Zhibing Zhou Xiaohong 《稀有金属材料与工程》 北大核心 2025年第1期27-38,共12页
Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ... Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces. 展开更多
关键词 TC4/Al 6063/Al 7075 composite plate explosive welding microstructure analysis multi-scale simulation
原文传递
Influence of Friction Condition on Cavity Filling for Large-Scale Titanium Alloy Strut Forging
15
作者 Hu Yanghu Zhang Dawei +2 位作者 Tian Chong Chai Xing Zhao Shengdun 《稀有金属材料与工程》 北大核心 2025年第6期1462-1466,共5页
The titanium alloy strut serves as a key load-bearing component of aircraft landing gear,typically manufactured via forging.The friction condition has important influence on material flow and cavity filling during the... The titanium alloy strut serves as a key load-bearing component of aircraft landing gear,typically manufactured via forging.The friction condition has important influence on material flow and cavity filling during the forging process.Using the previously optimized shape and initial position of preform,the influence of the friction condition(friction factor m=0.1–0.3)on material flow and cavity filling was studied by numerical method with a shear friction model.A novel filling index was defined to reflect material flow into left and right flashes and zoom in on friction-induced results.The results indicate that the workpiece moves rigidly to the right direction,with the displacement decreasing as m increases.When m<0.18,the underfilling defect will occur in the left side of strut forging,while overflow occurs in the right forging die cavity.By combining the filling index and analyses of material flow and filling status,a reasonable friction factor interval of m=0.21–0.24 can be determined.Within this interval,the cavity filling behavior demonstrates robustness,with friction fluctuations exerting minimal influence. 展开更多
关键词 large-scale strut titanium alloy friction condition rigid movement cavity filling
原文传递
基于Plant Simulation的钣金生产线仿真与优化
16
作者 彭杰 叶霞 +1 位作者 潘艳飞 李仲树 《锻压技术》 北大核心 2025年第6期277-284,共8页
针对江苏长江智能制造研究院有限责任公司钣金生产线设备平均利用率较低和产能不足的问题,提出了基于Plant Simulation的生产线优化方案。首先,根据工艺路线建立了生产线数字化模型,运行仿真实验得到了生产线运行数据;其次,运用解释结... 针对江苏长江智能制造研究院有限责任公司钣金生产线设备平均利用率较低和产能不足的问题,提出了基于Plant Simulation的生产线优化方案。首先,根据工艺路线建立了生产线数字化模型,运行仿真实验得到了生产线运行数据;其次,运用解释结构模型法,确定了影响生产线高效运行的深层因素为缓存区的设置问题;最后,利用遗传算法,通过仿真实验得到了缓存区数量与容量的配置,再次优化生产线并进行了验证。结果表明,经过优化的钣金生产线的设备平均利用率提高了24%,每小时产量从55件提升至127件,提高了130%,为同类型生产线的优化提供了参考。 展开更多
关键词 生产线 Plant simulation 解释结构模型法 遗传算法 缓存区
原文传递
Synthesis and high frequency structure simulator electromagnetic simulation of hollow NC@CeO_(2)nanospheres for broad absorption bandwidth 被引量:1
17
作者 Shuhao Yang Peiyan Zhao +5 位作者 Xianyong Lu Xiaoyuan Hao Yufan Wu Huiya Wang Tao Zhou Guangsheng Wang 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期678-688,共11页
Recent progress in microwave absorption materials stimulates the extensive exploration of rare earth oxide materials.Herein,we report the synthesis of a hollow sphere-based carbon material compounded with rare earth o... Recent progress in microwave absorption materials stimulates the extensive exploration of rare earth oxide materials.Herein,we report the synthesis of a hollow sphere-based carbon material compounded with rare earth oxides.Hollow N-doped carbon nano-spheres loaded ceria composites(H-NC@CeO_(2))were designed and prepared by the template method,combined with in-situ coating,pyrolysis and chemical etching.By controlling the loading content of H-NC@CeO_(2)and adjusting the impedance matching of the material,the H-NC@CeO_(2)/PS(polystyrene)composite exhibited a minimum reflection loss(RL)of-50.8 dB and an effective absorption band-width(EAB)of 4.64 GHz at a filler ratio of 20wt%and a thickness of 2 mm.In accordance with measured electromagnetic parameters,simulations using the high frequency structure simulator(HFSS)software were conducted to investigate the impact of the honeycomb structure on the electromagnetic wave performance of H-NC@CeO_(2)/PS.By calculating the surface electric field and the material’s bulk loss density,the mechanism of electromagnetic loss for the honeycomb structure was elaborated.A method for structural design and man-ufacturing of broadband absorbing devices was proposed and a broadband absorber with an EAB of 11.9 GHz was prepared.This study presents an innovative approach to designing advanced electromagnetic(EM)wave absorbing materials with broad absorption band-widths. 展开更多
关键词 rare earth oxides carbon matrix composites hollow structure electromagnetic simulation
在线阅读 下载PDF
Dynamic impact simulation tests of deep roadways affected by high stress and fault slip 被引量:1
18
作者 Qi Wang Yuncai Wang +3 位作者 Zhenhua Jiang Hongpu Kang Chong Zhang Bei Jiang 《International Journal of Mining Science and Technology》 2025年第4期519-537,共19页
As coal mining depth increases,the combined effects of high stress,mining stress,and fault structures make dynamic impact hazards more frequent.The reproduction of dynamic impact phenomena is basis for studying their ... As coal mining depth increases,the combined effects of high stress,mining stress,and fault structures make dynamic impact hazards more frequent.The reproduction of dynamic impact phenomena is basis for studying their occurrence patterns and control mechanisms.Physical simulation test represents an efficacious methodology.However,there is currently a lack of simulation devices that can effectively simulate two types of dynamic impact phenomena,including high stress and fault slip dynamic impact.To solve aforementioned issues,the physical simulation test system for dynamic impact in deep roadways developed by authors is employed to carry out comparative tests of high stress and fault slip dynamic impact.The phenomena of high stress and fault slip dynamic impact are reproduced successfully.A comparative analysis is conducted on dynamic phenomena,stress evolution,roadway deformation,and support force.The high stress dynamic impact roadway instability mode,which is characterized by the release of high energy accompanied by symmetric damage,and the fault slip dynamic impact roadway instability mode,which is characterized by the propagation of unilateral stress waves accompanied by asymmetric damage,are clarified.On the basis,the differentiated control concepts for different types of dynamic impact in deep roadways are proposed. 展开更多
关键词 Deep roadway Dynamic impact simulation High stress Fault slip Occurrence law
在线阅读 下载PDF
Boundary fluid constraints during electrochemical jet machining of large size emerging titanium alloy aerospace parts in gas–liquid flows:Experimental and numerical simulation 被引量:1
19
作者 Yang LIU Ningsong QU +1 位作者 Hansong LI Zhaoyang ZHANG 《Chinese Journal of Aeronautics》 2025年第1期115-130,共16页
Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising techn... Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising technology to achieve high efficiency,because it has high machining flexibility and no machining tool wear.However,reports on the macro electrochemical jet machining of large size titanium alloy parts are very scarce,because it is difficult to achieve effective constraint of the flow field in macro electrochemical jet machining.In addition,titanium alloy is very sensitive to fluctuation of the flow field,and a turbulent flow field would lead to serious stray corrosion.This paper reports a series of investigations of the electrochemical jet machining of titanium alloy parts.Based on the flow analysis and experiments,the machining flow field was effectively constrained.TB6 titanium alloy part with a perimeter of one meter was machined.The machined surface was smooth with no obvious machining defects.The machining process was particularly stable with no obvious spark discharge.The research provides a reference for the application of electrochemical jet machining technology to achieve large allowance material removal in the machining of large titanium alloy parts. 展开更多
关键词 Electrochemical jet machining Titanium alloys Large size parts Flow simulation Turbulent flow
原文传递
Analysis of Micromechanical Properties at the Interface of Pre-wet SBS Modified Asphalt Mixture Based on Molecular Simulation Technology
20
作者 CHEN Wuxing CHEN Shuang +3 位作者 YU Yan ZHANG Jiangyi XU Haiyang GUO Wei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期103-113,共11页
The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggre... The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggregate was analyzed by molecular dynamics simulation.The diffusion coefficient and concentration distribution of SBS modified asphalt on aggregate surface are included.The simulation results show that the diffusion coefficient of the aggregate surface of SBS modified asphalt is increased by 47.6%and 70.5%respectively after 110#asphalt and 130#asphalt are pre-wetted.The concentration distribution of SBS modified asphalt on the aggregate surface after pre-wetting is more uniform.According to the results of interface energy calculation,the interface energy of SBS modified bitumen and aggregate can be increased by about 5%after pre-wetting.According to the results of molecular dynamics simulation,the pre-wetting technology can effectively improve the interface workability of SBS modified bitumen and aggregate,so as to improve the interface performance. 展开更多
关键词 pre-wet oil-stone interface interface interaction interface mechanics molecular dynamics simulation
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部