This is the first of a three-part series of pape rs which introduces a general background of building trajectory-oriented road net work data models, including motivation, related works, and basic concepts. The p urpos...This is the first of a three-part series of pape rs which introduces a general background of building trajectory-oriented road net work data models, including motivation, related works, and basic concepts. The p urpose of the series is to develop a trajectory-oriented road network data mode l, namely carriageway-based road network data model (CRNM). Part 1 deals with t he modeling background. Part 2 proposes the principle and architecture of the CR NM. Part 3 investigates the implementation of the CRNM in a case study. In the p resent paper, the challenges of managing trajectory data are discussed. Then, de veloping trajectory-oriented road network data models is proposed as a solution and existing road network data models are reviewed. Basic representation approa ches of a road network are introduced as well as its constitution.展开更多
This is the second of a three-part series of papers which presents the principle and architecture of the CRNM, a trajectory-oriented, carriageway-based road network data model. The first part of the series has introdu...This is the second of a three-part series of papers which presents the principle and architecture of the CRNM, a trajectory-oriented, carriageway-based road network data model. The first part of the series has introduced a general background of building trajectory-oriented road network data models, including motivation, related works, and basic concepts. Based on it, this paper describs the CRNM in detail. At first, the notion of basic roadway entity is proposed and discussed. Secondly, carriageway is selected as the basic roadway entity after compared with other kinds of roadway, and approaches to representing other roadways with carriageways are introduced. At last, an overall architecture of the CRNM is proposed.展开更多
This is the final of a three-part series of papers which mainly discusses the implementation issues of the CRNM. The first two papers in the series have introduced the modeling background and methodology, respectively...This is the final of a three-part series of papers which mainly discusses the implementation issues of the CRNM. The first two papers in the series have introduced the modeling background and methodology, respectively. An overall architecture of the CRNM has been proposed in the last paper. On the basis of the above discusses, a linear reference method (LRM) for providing spatial references for location points of a trajectory is developed. A case study is introduced to illustrate the application of the CRNM for modeling a road network in the real world is given. A comprehensive conclusion is given for the series of papers.展开更多
The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation sy...The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation system is in charge of storing incremental data,and the spatio-temporal data model for storing incremental data does affect the efficiency of the response of the data center to the requirements of incremental data from the vehicle terminal.According to the analysis on the shortcomings of several typical spatio-temporal data models used in the data center and based on the base map with overlay model,the reverse map with overlay model (RMOM) was put forward for the data center to make rapid response to incremental data request.RMOM supports the data center to store not only the current complete road network data,but also the overlays of incremental data from the time when each road network changed to the current moment.Moreover,the storage mechanism and index structure of the incremental data were designed,and the implementation algorithm of RMOM was developed.Taking navigational road network in Guangzhou City as an example,the simulation test was conducted to validate the efficiency of RMOM.Results show that the navigation database in the data center can response to the requirements of incremental data by only one query with RMOM,and costs less time.Compared with the base map with overlay model,the data center does not need to temporarily overlay incremental data with RMOM,so time-consuming of response is significantly reduced.RMOM greatly improves the efficiency of response and provides strong support for the real-time situation of navigational road network.展开更多
针对现代城市复杂交通网络现状,提出以交通地理信息系统(transportation-geographic information system,T-GIS)数据模型来描述、城市复杂道路网络的复杂特性.首先以复杂网络理论验证城市道路网络的复杂特性,其次从道路网络综合描述属...针对现代城市复杂交通网络现状,提出以交通地理信息系统(transportation-geographic information system,T-GIS)数据模型来描述、城市复杂道路网络的复杂特性.首先以复杂网络理论验证城市道路网络的复杂特性,其次从道路网络综合描述属性表达和网络数据逻辑关系3个方面构建城市复杂道路网络T-GIS数据模型.实践证明,本T-GIS模型具有很好的应用效果,很好表达道路网络空间信息及复杂逻辑关系,为道路拥堵和路径诱导及城市道路网络演化研究提供所需数据,且具有较好的推广价值.展开更多
文摘This is the first of a three-part series of pape rs which introduces a general background of building trajectory-oriented road net work data models, including motivation, related works, and basic concepts. The p urpose of the series is to develop a trajectory-oriented road network data mode l, namely carriageway-based road network data model (CRNM). Part 1 deals with t he modeling background. Part 2 proposes the principle and architecture of the CR NM. Part 3 investigates the implementation of the CRNM in a case study. In the p resent paper, the challenges of managing trajectory data are discussed. Then, de veloping trajectory-oriented road network data models is proposed as a solution and existing road network data models are reviewed. Basic representation approa ches of a road network are introduced as well as its constitution.
文摘This is the second of a three-part series of papers which presents the principle and architecture of the CRNM, a trajectory-oriented, carriageway-based road network data model. The first part of the series has introduced a general background of building trajectory-oriented road network data models, including motivation, related works, and basic concepts. Based on it, this paper describs the CRNM in detail. At first, the notion of basic roadway entity is proposed and discussed. Secondly, carriageway is selected as the basic roadway entity after compared with other kinds of roadway, and approaches to representing other roadways with carriageways are introduced. At last, an overall architecture of the CRNM is proposed.
文摘This is the final of a three-part series of papers which mainly discusses the implementation issues of the CRNM. The first two papers in the series have introduced the modeling background and methodology, respectively. An overall architecture of the CRNM has been proposed in the last paper. On the basis of the above discusses, a linear reference method (LRM) for providing spatial references for location points of a trajectory is developed. A case study is introduced to illustrate the application of the CRNM for modeling a road network in the real world is given. A comprehensive conclusion is given for the series of papers.
基金Under the auspices of National High Technology Research and Development Program of China (No.2007AA12Z242)
文摘The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation system is in charge of storing incremental data,and the spatio-temporal data model for storing incremental data does affect the efficiency of the response of the data center to the requirements of incremental data from the vehicle terminal.According to the analysis on the shortcomings of several typical spatio-temporal data models used in the data center and based on the base map with overlay model,the reverse map with overlay model (RMOM) was put forward for the data center to make rapid response to incremental data request.RMOM supports the data center to store not only the current complete road network data,but also the overlays of incremental data from the time when each road network changed to the current moment.Moreover,the storage mechanism and index structure of the incremental data were designed,and the implementation algorithm of RMOM was developed.Taking navigational road network in Guangzhou City as an example,the simulation test was conducted to validate the efficiency of RMOM.Results show that the navigation database in the data center can response to the requirements of incremental data by only one query with RMOM,and costs less time.Compared with the base map with overlay model,the data center does not need to temporarily overlay incremental data with RMOM,so time-consuming of response is significantly reduced.RMOM greatly improves the efficiency of response and provides strong support for the real-time situation of navigational road network.
文摘针对现代城市复杂交通网络现状,提出以交通地理信息系统(transportation-geographic information system,T-GIS)数据模型来描述、城市复杂道路网络的复杂特性.首先以复杂网络理论验证城市道路网络的复杂特性,其次从道路网络综合描述属性表达和网络数据逻辑关系3个方面构建城市复杂道路网络T-GIS数据模型.实践证明,本T-GIS模型具有很好的应用效果,很好表达道路网络空间信息及复杂逻辑关系,为道路拥堵和路径诱导及城市道路网络演化研究提供所需数据,且具有较好的推广价值.