Though the Butterfly Bptimization Algorithm(BOA)has already proved its effectiveness as a robust optimization algorithm,it has certain disadvantages.So,a new variant of BOA,namely mLBOA,is proposed here to improve its...Though the Butterfly Bptimization Algorithm(BOA)has already proved its effectiveness as a robust optimization algorithm,it has certain disadvantages.So,a new variant of BOA,namely mLBOA,is proposed here to improve its performance.The proposed algorithm employs a self-adaptive parameter setting,Lagrange interpolation formula,and a new local search strategy embedded with Levy flight search to enhance its searching ability to make a better trade-off between exploration and exploitation.Also,the fragrance generation scheme of BOA is modified,which leads for exploring the domain effectively for better searching.To evaluate the performance,it has been applied to solve the IEEE CEC 2017 benchmark suite.The results have been compared to that of six state-of-the-art algorithms and five BOA variants.Moreover,various statistical tests,such as the Friedman rank test,Wilcoxon rank test,convergence analysis,and complexity analysis,have been conducted to justify the rank,significance,and complexity of the proposed mLBOA.Finally,the mLBOA has been applied to solve three real-world engineering design problems.From all the analyses,it has been found that the proposed mLBOA is a competitive algorithm compared to other popular state-of-the-art algorithms and BOA variants.展开更多
The convergence analysis of a nonlinear Lagrange algorithm for solving nonlinear constrained optimization problems with both inequality and equality constraints is explored in detail. The estimates for the derivatives...The convergence analysis of a nonlinear Lagrange algorithm for solving nonlinear constrained optimization problems with both inequality and equality constraints is explored in detail. The estimates for the derivatives of the multiplier mapping and the solution mapping of the proposed algorithm are discussed via the technique of the singular value decomposition of matrix. Based on the estimates, the local convergence results and the rate of convergence of the algorithm are presented when the penalty parameter is less than a threshold under a set of suitable conditions on problem functions. Furthermore, the condition number of the Hessian of the nonlinear Lagrange function with respect to the decision variables is analyzed, which is closely related to efficiency of the algorithm. Finally, the preliminary numericM results for several typical test problems are reported.展开更多
为提高网络入侵检测系统中检测算法的分类精度,降低训练样本及学习时间,在基于支持向量回归机的基础上,提出一种新的利用Lagrange支持向量回归机设计IDS的检测算法。使用KDD CUP 1999数据集进行仿真实验,结果表明该算法较基于支持向量...为提高网络入侵检测系统中检测算法的分类精度,降低训练样本及学习时间,在基于支持向量回归机的基础上,提出一种新的利用Lagrange支持向量回归机设计IDS的检测算法。使用KDD CUP 1999数据集进行仿真实验,结果表明该算法较基于支持向量回归机的检测算法具有更良好的泛化性能、更快的迭代速度、更高的检测精度和更低的误报率。展开更多
文摘Though the Butterfly Bptimization Algorithm(BOA)has already proved its effectiveness as a robust optimization algorithm,it has certain disadvantages.So,a new variant of BOA,namely mLBOA,is proposed here to improve its performance.The proposed algorithm employs a self-adaptive parameter setting,Lagrange interpolation formula,and a new local search strategy embedded with Levy flight search to enhance its searching ability to make a better trade-off between exploration and exploitation.Also,the fragrance generation scheme of BOA is modified,which leads for exploring the domain effectively for better searching.To evaluate the performance,it has been applied to solve the IEEE CEC 2017 benchmark suite.The results have been compared to that of six state-of-the-art algorithms and five BOA variants.Moreover,various statistical tests,such as the Friedman rank test,Wilcoxon rank test,convergence analysis,and complexity analysis,have been conducted to justify the rank,significance,and complexity of the proposed mLBOA.Finally,the mLBOA has been applied to solve three real-world engineering design problems.From all the analyses,it has been found that the proposed mLBOA is a competitive algorithm compared to other popular state-of-the-art algorithms and BOA variants.
基金Supported by the National Natural Science Foundation of China(11201357,81271513 and 91324201)the Fundamental Research Funds for the Central Universities under project(2014-Ia-001)
文摘The convergence analysis of a nonlinear Lagrange algorithm for solving nonlinear constrained optimization problems with both inequality and equality constraints is explored in detail. The estimates for the derivatives of the multiplier mapping and the solution mapping of the proposed algorithm are discussed via the technique of the singular value decomposition of matrix. Based on the estimates, the local convergence results and the rate of convergence of the algorithm are presented when the penalty parameter is less than a threshold under a set of suitable conditions on problem functions. Furthermore, the condition number of the Hessian of the nonlinear Lagrange function with respect to the decision variables is analyzed, which is closely related to efficiency of the algorithm. Finally, the preliminary numericM results for several typical test problems are reported.
文摘为提高网络入侵检测系统中检测算法的分类精度,降低训练样本及学习时间,在基于支持向量回归机的基础上,提出一种新的利用Lagrange支持向量回归机设计IDS的检测算法。使用KDD CUP 1999数据集进行仿真实验,结果表明该算法较基于支持向量回归机的检测算法具有更良好的泛化性能、更快的迭代速度、更高的检测精度和更低的误报率。