We explore some interesting phenomena in a simple non-Hermitian ladder system.Special modes with energy eigenvalues closely related to the inter-chain-coupling strength appear in the non-Hermitian ladder system.We sho...We explore some interesting phenomena in a simple non-Hermitian ladder system.Special modes with energy eigenvalues closely related to the inter-chain-coupling strength appear in the non-Hermitian ladder system.We show that a phase transition occurs whereby special modes with pure real eigenvalues can switch to special modes with pure imaginary eigenvalues,when the inter-chain-coupling strength changes from symmetric to asymmetric.We find that the density profiles of all the special modes are completely identical under certain conditions,even if the inter-chain-coupling strength is added into the non-Hermitian ladder system in different ways.Moreover,we also demonstrate that the different inter-chain couplings are fundamentally equivalent to adding different on-site potential energies into the non-Hermitian ladder system.展开更多
This paper studies a spin ladder model which possesses frustrating interactions. By using both the bosonization and the density matrix renormalization group techniques, it shows that the intermediate columnar dimerize...This paper studies a spin ladder model which possesses frustrating interactions. By using both the bosonization and the density matrix renormalization group techniques, it shows that the intermediate columnar dimerized phase, which exists in a narrow parameter region of the so-called ~/1 - J2 model, vanishes if the interchain frustration is weak and anisotropic. Therefore, it concludes that the frustrating interaction indeed plays an important role in producing such a phase. As a complementary to our previous investigation, it reaches a more complete picture of the quantum phase transition in the frustrated spin ladder systems.展开更多
A four-level double-ladder cold atoms system with spontaneously generated coherence trapped in a moving optical lattice is explored to achieve optical nonreciprocity. When spontaneously generated coherence(SGC) is p...A four-level double-ladder cold atoms system with spontaneously generated coherence trapped in a moving optical lattice is explored to achieve optical nonreciprocity. When spontaneously generated coherence(SGC) is present, the remarkable contrast optical nonreciprocity of light transmission and reflection can be generated at each induced photonic bandgap in the optical lattice with a velocity of a few m/s. However, when the SGC effect is absent, the optical nonreciprocity becomes weak or even vanishing due to the strong absorption. It is found that the optical nonreciprocity is related to the asymmetric Doppler effect in transmission and reflection, meanwhile the degree and position of optical nonreciprocity can be tuned by the SGC effect and the Rabi frequency of the trigger field.展开更多
Objective To systematically evaluate the overall efficacy of external application of traditional Chinese medicine(EA-TCM)in combination with oral three-step analgesic ladder therapy for patients suffering from cancer-...Objective To systematically evaluate the overall efficacy of external application of traditional Chinese medicine(EA-TCM)in combination with oral three-step analgesic ladder therapy for patients suffering from cancer-induced bone pain(CIBP).Methods We conducted a literature search of randomized controlled trials on the combination of EA-TCM and three-step analgesic ladder therapy for CIBP across ten databases and two registration systems.It included four Chinese databases[Chinese Biomedical Literature Database(SinoMed),China National Knowledge Infrastructure(CNKI),Wanfang Database,and China Science and Technology Journal Database(VIP)],six English databases(Scopus,Embase,Web of Science,PubMed,Cochrane Library,and OpenGrey),and two registration systems(Chinese Clinical Trial Registry and ClinicalTrials.gov).The timeframe for the literature search extended from the inception of each database to December 31,2023.Meta-analysis was performed using RevMan(v5.4.1),and the outcome indicators(pain relief rate,analgesic duration,quality of life,pain intensity,breakthrough pain frequency,and adverse reactions)were graded using GRADE profiler(v3.6).Results According to the established inclusion and exclusion criteria,a total of 43 studies was deemed eligible,involving 3142 participants with CIBP.The results of meta-analysis showed that compared with oral three-step analgesic ladder therapy alone,the combined therapy of EA-TCM and three-step analgesic ladder has a significant improvement in pain relief rate[risk ratio(RR)=1.32,95%confidence interval(CI):1.24 to 1.41,P<0.00001],analgesic duration[mean difference(MD)=1.33,95%CI:0.97 to 1.69,P<0.00001],and quality of life(MD=5.66,95%CI:4.88 to 6.44,P<0.00001).Furthermore,the combined therapy significantly reduced pain intensity(MD=-1.00,95%CI:-1.19 to-0.80,P<0.00001),breakthrough pain frequency(MD=-0.43,95%CI:-0.51 to-0.36,P<0.00001),and adverse reactions(RR=0.60,95%CI:0.53 to 0.68,P<0.00001)in CIBP patients.Based on the GRADE assessment,the level of evidence varied from low to moderate.Conclusion EA-TCM combined with the three-step analgesic ladder therapy can effectively alleviate pain symptoms in patients with CIBP and improve their quality of life.Additionally,the EA-TCM can effectively reduce the incidence of adverse reactions associated with threestep analgesic therapy.展开更多
We conduct a dynamical Gutzwiller mean-field study of interacting bosons on a four-leg ladder,subject to a uniform flux.The ground states dependent on the magnetic flux and kinetic tunneling strength are explored.Cons...We conduct a dynamical Gutzwiller mean-field study of interacting bosons on a four-leg ladder,subject to a uniform flux.The ground states dependent on the magnetic flux and kinetic tunneling strength are explored.Consequently,we identify the super-vortical lattice,as well as the inner-Meissner phase,which presents Meissner currents just along the intimal legs within the flux ladder.The staggered-current phase is also allowed,with its formation condition altered because of the four-leg construction.The number of legs on the flux ladder can make an effect.展开更多
Low dielectric constant(low-k)materials are critical for advanced packaging in high-density microelectronic devices and high-frequency communication technologies.Ladder polysiloxanes,which are characterized by their u...Low dielectric constant(low-k)materials are critical for advanced packaging in high-density microelectronic devices and high-frequency communication technologies.Ladder polysiloxanes,which are characterized by their unique double-chain structure and intrinsic microporosity,offer remarkable advantages in terms of thermal stability,oxidation resistance,and dielectric performance.However,structural defects in ladder polysiloxanes,such as cage-like and irregular oligomers,and their effects on dielectric properties remain underexplored.In this study,a series of ladder-like polysiloxanes(X-TMS)with diverse side groups weresynthesized via a one-step base-catalyzed method.The influence of the benzocyclobutene(BCB)side groups on the formation of regular ladder structures was systematically investigated.Notably,BCB incorporation disrupted the structural regularity,favoring the formation of cage-like and irregular topologies,which were extensively characterized using 29silicon nuclear magnetic resonance spectroscopy(^(29)Si-NMR),Fourier transform infrared spectroscopy(FTIR),gel permeation chromatography(GPC),and X-ray diffraction(XRD).These structural defects were beneficial for improving the hydrophobicity and thermal stability.Copolymerization of X-TMS with commercial DVS-BCB resins further enhanced the mechanical properties,with the elastic modulus increasing from 3.6 GPa to 4.4 GPa and water absorption reduced from 0.33 wt%to 0.06 wt%.This study establishes a clear correlation between topological structures and material properties.These findings not only advance the understanding of the structure-property relationships in ladder polysiloxanes but also provide a novel approach for designing high-performance interlayer dielectric materials for next-generation microelectronics.展开更多
Ultrasound guided breast biopsy navigation system with a graphical user interface and a passive robotic needle holder is developed to increase the performance and reliability of the radiologist.Ultrasound calibration ...Ultrasound guided breast biopsy navigation system with a graphical user interface and a passive robotic needle holder is developed to increase the performance and reliability of the radiologist.Ultrasound calibration and tool tip calibration are required before using the system.A ladder phantom is developed to be used for ultrasound calibration in real time system with only one ultrasound image required.The passive robotic needle holder structure results in an identity matrix for the makes the rotation matrix;therefore,only translation and scaling are required in the system.This method can be applied to multiple ultrasound depths,which has a relationship at each depth and a relationship to the ultrasound image on the display.The results show high accuracy(<1 mm.)and rapid calibration(5–10 minutes)which is suitable for a real time system like a breast biopsy navigation system based on tests with a breast phantom.展开更多
An approach to design and implement the control function of LD (Ladder Diagram) in the hydropower simulation system based on all paths searching algorithm is proposed in this paper. LD is widely used as a programming ...An approach to design and implement the control function of LD (Ladder Diagram) in the hydropower simulation system based on all paths searching algorithm is proposed in this paper. LD is widely used as a programming language for PLC (Programmable Logic Controller), but it doesn’t be executed automatically in the hydropower simulation system which is a software system, and there is no compiler or interpretation for LD in it. The approach in this paper is not only to present a graphical interface to design LD, but also implement its control function through transforming it to a corresponding undigraph, in which, all paths be-tween two vertexes (live wire and null line) are searched by the proposed algorithm. An application example is presented to verify the validity of the algorithm and shows that the algorithm is correct and practicable. In addition, how to implement the control function based on object-oriented thought is introduced. The running time is shown at last, which proves that the system with the algorithm can meet the real-time request in the hydropower simulation system.展开更多
The population transfer in a ladder-type atomic system driven by linearly polarized sech-shape femtosecond laser pulses is investigated by numerically solving Schr6dinger equation without including the rotating wave a...The population transfer in a ladder-type atomic system driven by linearly polarized sech-shape femtosecond laser pulses is investigated by numerically solving Schr6dinger equation without including the rotating wave approximation (RWA). It is shown that population transfer is mainly determined by the Rabi frequency (strength) of the driving laser field and the chirp rate, and that the ratio of the dipole moments and the pulse width also have a prominent effect on the population transfer. By choosing appropriate values of the above parameters, complete population transfer can be realized.展开更多
We investigate the topological properties of a two-chain quantum ladder with uneven legs,i.e.,the two chains differ in their periods by a factor of 2.Such an uneven ladder presents rich band structures classified by t...We investigate the topological properties of a two-chain quantum ladder with uneven legs,i.e.,the two chains differ in their periods by a factor of 2.Such an uneven ladder presents rich band structures classified by the closure of either direct or indirect bandgaps.It also provides opportunities to explore fundamental concepts concerning band topology and edge modes,including the difference of intracellular and intercellular Zak phases,and the role of the inversion symmetry(IS).We calculate the Zak phases of the two kinds and find excellent agreement with the dipole moment and extra charge accumulation.We also find that configurations with IS feature a pair of degenerate two-side edge modes emerging as the closure of the direct bandgap,while configurations without IS feature one-side edge modes emerging as not only the closure of both direct and indirect bandgaps but also within the band continuum.Furthermore,by projecting to the two sublattices,we find that the effective Bloch Hamiltonian corresponds to that of a generalized Su–Schrieffer–Heeger model or the Rice–Mele model whose hopping amplitudes depend on the quasimomentum.In this way,the topological phases can be efficiently extracted through winding numbers.We propose that uneven ladders can be realized by spin-dependent optical lattices and their rich topological characteristics can be examined by near future experiments.展开更多
Objective:To analyze the feasibility of adopting a combined ladder and case teaching method in otolaryngology nursing teaching.Method:Nursing students in the otolaryngology department were selected.According to the ad...Objective:To analyze the feasibility of adopting a combined ladder and case teaching method in otolaryngology nursing teaching.Method:Nursing students in the otolaryngology department were selected.According to the admission time of nursing students,30 nursing students formed a control group(conventional nursing teaching),and 30 nursing students who were admitted later formed an observation group(ladder and case teaching method).The learning performance and teaching effectiveness of nursing students under different teaching methods were analyzed.Result:The academic performance and teaching effectiveness of the observation group were higher than those of the control group(P<0.05).Conclusion:The implementation of the ladder and case teaching method during the teaching of otolaryngology nursing significantly improved the student’s academic performance and teaching effectiveness.This method has great practical value.展开更多
为降低区域综合能源系统(regional integrated energy system, RIES)的碳排放、促进可再生能源消纳、优化系统运行成本,提出了碳交易机制下计及电转气(power to gas, P2G)及负荷柔性特征的RIES低碳经济调度策略。建立了阶梯式碳交易机制...为降低区域综合能源系统(regional integrated energy system, RIES)的碳排放、促进可再生能源消纳、优化系统运行成本,提出了碳交易机制下计及电转气(power to gas, P2G)及负荷柔性特征的RIES低碳经济调度策略。建立了阶梯式碳交易机制,两阶段、多模块P2G及柔性电、热、冷负荷的数学模型,并将其纳入RIES优化调度的框架;综合考虑碳交易成本、运行成本、负荷响应成本及弃风/弃光惩罚成本,建立了RIES的多能量耦合、多目标协同的优化调度模型;编制了RIES能量优化调度程序,开展了多种运行方式下的算例研究。结果表明:阶梯式碳交易机制能有效地降低碳排放,碳减排成本增量及微增率可作为配置碳交易机制参数的重要依据;“EL+MR+HFC+储氢罐”的4模块、两阶段精细化模型更准确地反映了P2G的运行特性;负荷侧全要素的柔性调度能够缓解用能高峰时段的供能压力,提升系统的综合运行效益。展开更多
文摘We explore some interesting phenomena in a simple non-Hermitian ladder system.Special modes with energy eigenvalues closely related to the inter-chain-coupling strength appear in the non-Hermitian ladder system.We show that a phase transition occurs whereby special modes with pure real eigenvalues can switch to special modes with pure imaginary eigenvalues,when the inter-chain-coupling strength changes from symmetric to asymmetric.We find that the density profiles of all the special modes are completely identical under certain conditions,even if the inter-chain-coupling strength is added into the non-Hermitian ladder system in different ways.Moreover,we also demonstrate that the different inter-chain couplings are fundamentally equivalent to adding different on-site potential energies into the non-Hermitian ladder system.
基金supported by the National Natural Science Foundation of China (Grant No. 10874003)Ministry of Science and Technology of China (Grant No. 2006CB921300)
文摘This paper studies a spin ladder model which possesses frustrating interactions. By using both the bosonization and the density matrix renormalization group techniques, it shows that the intermediate columnar dimerized phase, which exists in a narrow parameter region of the so-called ~/1 - J2 model, vanishes if the interchain frustration is weak and anisotropic. Therefore, it concludes that the frustrating interaction indeed plays an important role in producing such a phase. As a complementary to our previous investigation, it reaches a more complete picture of the quantum phase transition in the frustrated spin ladder systems.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11347137,11247201,and 11247005)the Twelfth Five-year Program for Science and Technology of Education Department of Jilin Province,China(Grant No.20150215)
文摘A four-level double-ladder cold atoms system with spontaneously generated coherence trapped in a moving optical lattice is explored to achieve optical nonreciprocity. When spontaneously generated coherence(SGC) is present, the remarkable contrast optical nonreciprocity of light transmission and reflection can be generated at each induced photonic bandgap in the optical lattice with a velocity of a few m/s. However, when the SGC effect is absent, the optical nonreciprocity becomes weak or even vanishing due to the strong absorption. It is found that the optical nonreciprocity is related to the asymmetric Doppler effect in transmission and reflection, meanwhile the degree and position of optical nonreciprocity can be tuned by the SGC effect and the Rabi frequency of the trigger field.
基金Provincial Key Research and Development Project of Hunan(2018SK2127)Hunan Province Traditional Chinese Medicine Research and Development Project(201946).
文摘Objective To systematically evaluate the overall efficacy of external application of traditional Chinese medicine(EA-TCM)in combination with oral three-step analgesic ladder therapy for patients suffering from cancer-induced bone pain(CIBP).Methods We conducted a literature search of randomized controlled trials on the combination of EA-TCM and three-step analgesic ladder therapy for CIBP across ten databases and two registration systems.It included four Chinese databases[Chinese Biomedical Literature Database(SinoMed),China National Knowledge Infrastructure(CNKI),Wanfang Database,and China Science and Technology Journal Database(VIP)],six English databases(Scopus,Embase,Web of Science,PubMed,Cochrane Library,and OpenGrey),and two registration systems(Chinese Clinical Trial Registry and ClinicalTrials.gov).The timeframe for the literature search extended from the inception of each database to December 31,2023.Meta-analysis was performed using RevMan(v5.4.1),and the outcome indicators(pain relief rate,analgesic duration,quality of life,pain intensity,breakthrough pain frequency,and adverse reactions)were graded using GRADE profiler(v3.6).Results According to the established inclusion and exclusion criteria,a total of 43 studies was deemed eligible,involving 3142 participants with CIBP.The results of meta-analysis showed that compared with oral three-step analgesic ladder therapy alone,the combined therapy of EA-TCM and three-step analgesic ladder has a significant improvement in pain relief rate[risk ratio(RR)=1.32,95%confidence interval(CI):1.24 to 1.41,P<0.00001],analgesic duration[mean difference(MD)=1.33,95%CI:0.97 to 1.69,P<0.00001],and quality of life(MD=5.66,95%CI:4.88 to 6.44,P<0.00001).Furthermore,the combined therapy significantly reduced pain intensity(MD=-1.00,95%CI:-1.19 to-0.80,P<0.00001),breakthrough pain frequency(MD=-0.43,95%CI:-0.51 to-0.36,P<0.00001),and adverse reactions(RR=0.60,95%CI:0.53 to 0.68,P<0.00001)in CIBP patients.Based on the GRADE assessment,the level of evidence varied from low to moderate.Conclusion EA-TCM combined with the three-step analgesic ladder therapy can effectively alleviate pain symptoms in patients with CIBP and improve their quality of life.Additionally,the EA-TCM can effectively reduce the incidence of adverse reactions associated with threestep analgesic therapy.
基金supported by the Scientific Research Foundation of Hainan Tropical Ocean University(Grant No.RHDRC202301)。
文摘We conduct a dynamical Gutzwiller mean-field study of interacting bosons on a four-leg ladder,subject to a uniform flux.The ground states dependent on the magnetic flux and kinetic tunneling strength are explored.Consequently,we identify the super-vortical lattice,as well as the inner-Meissner phase,which presents Meissner currents just along the intimal legs within the flux ladder.The staggered-current phase is also allowed,with its formation condition altered because of the four-leg construction.The number of legs on the flux ladder can make an effect.
基金financially supported by the National Natural Science Foundation of China(Nos.52373316,22075298,and52373020)the Beijing Municipal Natural Science Foundation(No.2212053)。
文摘Low dielectric constant(low-k)materials are critical for advanced packaging in high-density microelectronic devices and high-frequency communication technologies.Ladder polysiloxanes,which are characterized by their unique double-chain structure and intrinsic microporosity,offer remarkable advantages in terms of thermal stability,oxidation resistance,and dielectric performance.However,structural defects in ladder polysiloxanes,such as cage-like and irregular oligomers,and their effects on dielectric properties remain underexplored.In this study,a series of ladder-like polysiloxanes(X-TMS)with diverse side groups weresynthesized via a one-step base-catalyzed method.The influence of the benzocyclobutene(BCB)side groups on the formation of regular ladder structures was systematically investigated.Notably,BCB incorporation disrupted the structural regularity,favoring the formation of cage-like and irregular topologies,which were extensively characterized using 29silicon nuclear magnetic resonance spectroscopy(^(29)Si-NMR),Fourier transform infrared spectroscopy(FTIR),gel permeation chromatography(GPC),and X-ray diffraction(XRD).These structural defects were beneficial for improving the hydrophobicity and thermal stability.Copolymerization of X-TMS with commercial DVS-BCB resins further enhanced the mechanical properties,with the elastic modulus increasing from 3.6 GPa to 4.4 GPa and water absorption reduced from 0.33 wt%to 0.06 wt%.This study establishes a clear correlation between topological structures and material properties.These findings not only advance the understanding of the structure-property relationships in ladder polysiloxanes but also provide a novel approach for designing high-performance interlayer dielectric materials for next-generation microelectronics.
基金the Computer-Integrated Intelligent Medical System Project under the National Research University Grant through Mahidol Universitythe Integration of Surgical Navigation and Surgical Robotics for Breast Biopsy in Breast Cancer using Mammogram and ultrasound Images on Breast Mathematical Model Project under the Government Research Budget through Mahidol University(Grant 111-2558)。
文摘Ultrasound guided breast biopsy navigation system with a graphical user interface and a passive robotic needle holder is developed to increase the performance and reliability of the radiologist.Ultrasound calibration and tool tip calibration are required before using the system.A ladder phantom is developed to be used for ultrasound calibration in real time system with only one ultrasound image required.The passive robotic needle holder structure results in an identity matrix for the makes the rotation matrix;therefore,only translation and scaling are required in the system.This method can be applied to multiple ultrasound depths,which has a relationship at each depth and a relationship to the ultrasound image on the display.The results show high accuracy(<1 mm.)and rapid calibration(5–10 minutes)which is suitable for a real time system like a breast biopsy navigation system based on tests with a breast phantom.
文摘An approach to design and implement the control function of LD (Ladder Diagram) in the hydropower simulation system based on all paths searching algorithm is proposed in this paper. LD is widely used as a programming language for PLC (Programmable Logic Controller), but it doesn’t be executed automatically in the hydropower simulation system which is a software system, and there is no compiler or interpretation for LD in it. The approach in this paper is not only to present a graphical interface to design LD, but also implement its control function through transforming it to a corresponding undigraph, in which, all paths be-tween two vertexes (live wire and null line) are searched by the proposed algorithm. An application example is presented to verify the validity of the algorithm and shows that the algorithm is correct and practicable. In addition, how to implement the control function based on object-oriented thought is introduced. The running time is shown at last, which proves that the system with the algorithm can meet the real-time request in the hydropower simulation system.
基金supported by National Basic Research Program of China (Grant No 2006CB806003)the Natural Science Foundation of Shandong Province,China (Grant No Y2006A21)+1 种基金the National Natural Science Foundation of China (Grant No 10675076)State Key Laboratory of High Field Laser Physics,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,China
文摘The population transfer in a ladder-type atomic system driven by linearly polarized sech-shape femtosecond laser pulses is investigated by numerically solving Schr6dinger equation without including the rotating wave approximation (RWA). It is shown that population transfer is mainly determined by the Rabi frequency (strength) of the driving laser field and the chirp rate, and that the ratio of the dipole moments and the pulse width also have a prominent effect on the population transfer. By choosing appropriate values of the above parameters, complete population transfer can be realized.
基金supported by the Natural Science Foundation of Zhejiang Province,China (Grant Nos.LR22A040001 and LY21A040004)the National Natural Science Foundation of China (Grant Nos.12074342 and 11835011)。
文摘We investigate the topological properties of a two-chain quantum ladder with uneven legs,i.e.,the two chains differ in their periods by a factor of 2.Such an uneven ladder presents rich band structures classified by the closure of either direct or indirect bandgaps.It also provides opportunities to explore fundamental concepts concerning band topology and edge modes,including the difference of intracellular and intercellular Zak phases,and the role of the inversion symmetry(IS).We calculate the Zak phases of the two kinds and find excellent agreement with the dipole moment and extra charge accumulation.We also find that configurations with IS feature a pair of degenerate two-side edge modes emerging as the closure of the direct bandgap,while configurations without IS feature one-side edge modes emerging as not only the closure of both direct and indirect bandgaps but also within the band continuum.Furthermore,by projecting to the two sublattices,we find that the effective Bloch Hamiltonian corresponds to that of a generalized Su–Schrieffer–Heeger model or the Rice–Mele model whose hopping amplitudes depend on the quasimomentum.In this way,the topological phases can be efficiently extracted through winding numbers.We propose that uneven ladders can be realized by spin-dependent optical lattices and their rich topological characteristics can be examined by near future experiments.
文摘Objective:To analyze the feasibility of adopting a combined ladder and case teaching method in otolaryngology nursing teaching.Method:Nursing students in the otolaryngology department were selected.According to the admission time of nursing students,30 nursing students formed a control group(conventional nursing teaching),and 30 nursing students who were admitted later formed an observation group(ladder and case teaching method).The learning performance and teaching effectiveness of nursing students under different teaching methods were analyzed.Result:The academic performance and teaching effectiveness of the observation group were higher than those of the control group(P<0.05).Conclusion:The implementation of the ladder and case teaching method during the teaching of otolaryngology nursing significantly improved the student’s academic performance and teaching effectiveness.This method has great practical value.
文摘为降低区域综合能源系统(regional integrated energy system, RIES)的碳排放、促进可再生能源消纳、优化系统运行成本,提出了碳交易机制下计及电转气(power to gas, P2G)及负荷柔性特征的RIES低碳经济调度策略。建立了阶梯式碳交易机制,两阶段、多模块P2G及柔性电、热、冷负荷的数学模型,并将其纳入RIES优化调度的框架;综合考虑碳交易成本、运行成本、负荷响应成本及弃风/弃光惩罚成本,建立了RIES的多能量耦合、多目标协同的优化调度模型;编制了RIES能量优化调度程序,开展了多种运行方式下的算例研究。结果表明:阶梯式碳交易机制能有效地降低碳排放,碳减排成本增量及微增率可作为配置碳交易机制参数的重要依据;“EL+MR+HFC+储氢罐”的4模块、两阶段精细化模型更准确地反映了P2G的运行特性;负荷侧全要素的柔性调度能够缓解用能高峰时段的供能压力,提升系统的综合运行效益。