Impact of texture type on the magnetic properties of ultrahigh density perpendicular magnetic recording media L1_(0)-FePt thin film was investigated,so were the texture formation and evolution mechanism.Reuss,Voigt,an...Impact of texture type on the magnetic properties of ultrahigh density perpendicular magnetic recording media L1_(0)-FePt thin film was investigated,so were the texture formation and evolution mechanism.Reuss,Voigt,and Hill models were used to determine the anisotropic elastic modulus of L1_(0)-FePt thin film with fiber texture.Then,the elastic strain energies of thin films under various stress conditions were calculated.Results reveal that the stress condition has a significant influence on the fiber texture evolution.When the L1_(0)-FePt thin film is subjected to compressive in-plane strain prior to ordering phase transformation,the formation of{100}fiber texture is promoted.On the contrary,the ordering phase transformation under tensile in-plane strain promotes the{001}fiber texture formation.展开更多
L1_(0)-FePt nanoparticles(NPs)are urgently anticipated because of their promising applications.However,the preparation of the NPs with both of high ordering degree and super-fine size is still a challenge.Inspired by ...L1_(0)-FePt nanoparticles(NPs)are urgently anticipated because of their promising applications.However,the preparation of the NPs with both of high ordering degree and super-fine size is still a challenge.Inspired by recent studies on the effect of vacancy defects on structural ordering,we proposed an intentional vacancy defect design strategy for directly synthesizing highly ordered FePt NPs.In the present work,we used the first-principle calculations to investigate the influence of doping typical elements(Cu,Ag,and Pb)on the vacancy formation energy(E_(vac))of FePt NPs.The vacancy defects were effectively formed by introducing elements of larger atomic radii and higher propensity for segregation into the FePt lattice,facilitating the diffusion of Fe and Pt atoms.The Pb doping showed remarkable efficacy in promoting the ordering transition.Experimentally,wet-chemical synthesis confirmed the success of the proposed strategy in achieving highly ordered L1_(0)-FePt NPs with exceptional magnetic properties and super-fine size(ordering degree of 0.896,impressive coercivity of 21.74 kOe,and small particle size of 9.02 nm).Additionally,we have deduced a diffusion model elucidating the formation process of the ordered FePt NPs,focusing on the migration of Pb atoms from the center to the surface of the particles.This migration is demonstrated to generate more vacancies and promote the transition to the ordered L1_(0)-FePt phase.The findings of this research offer valuable insights into synthesizing highly ordered and ultrafine L1_(0)-type nanomaterials.展开更多
平滑范数(Smoothed l0,SL0)压缩感知重构算法通过引入平滑函数序列将求解最小l0范数问题转化为平滑函数优化问题,可以有效地用于稀疏信号重构。针对平滑函数的选取和算法稳健性问题,提出一种新的平滑函数序列近似范数,结合梯度投影法优...平滑范数(Smoothed l0,SL0)压缩感知重构算法通过引入平滑函数序列将求解最小l0范数问题转化为平滑函数优化问题,可以有效地用于稀疏信号重构。针对平滑函数的选取和算法稳健性问题,提出一种新的平滑函数序列近似范数,结合梯度投影法优化求解,并进一步提出采用奇异值分解(Singular value decomposition,SVD)方法改进算法的稳健性,实现稀疏度信号的精确重构。仿真结果表明,在相同的测试条件下,本文算法相比OMP算法、SL0算法以及L1-magic算法在重构精度、峰值信噪比方面都有较大改善。展开更多
基金Inner Mongolia Natural Science Foundation Project(2020LH05028)。
文摘Impact of texture type on the magnetic properties of ultrahigh density perpendicular magnetic recording media L1_(0)-FePt thin film was investigated,so were the texture formation and evolution mechanism.Reuss,Voigt,and Hill models were used to determine the anisotropic elastic modulus of L1_(0)-FePt thin film with fiber texture.Then,the elastic strain energies of thin films under various stress conditions were calculated.Results reveal that the stress condition has a significant influence on the fiber texture evolution.When the L1_(0)-FePt thin film is subjected to compressive in-plane strain prior to ordering phase transformation,the formation of{100}fiber texture is promoted.On the contrary,the ordering phase transformation under tensile in-plane strain promotes the{001}fiber texture formation.
基金supported by the National Key Research and Development Program of China(Nos.2020YFA0907300 and 2021YFB3501404)the National Natural Science Foundation of China(Nos.52301234,52371179,and 52071070)+1 种基金the Doctoral Start-up Foundation of Liaoning Province(No.2023-BS-059)the Fundamental Research Funds for the Central Universities(No.N2309002).
文摘L1_(0)-FePt nanoparticles(NPs)are urgently anticipated because of their promising applications.However,the preparation of the NPs with both of high ordering degree and super-fine size is still a challenge.Inspired by recent studies on the effect of vacancy defects on structural ordering,we proposed an intentional vacancy defect design strategy for directly synthesizing highly ordered FePt NPs.In the present work,we used the first-principle calculations to investigate the influence of doping typical elements(Cu,Ag,and Pb)on the vacancy formation energy(E_(vac))of FePt NPs.The vacancy defects were effectively formed by introducing elements of larger atomic radii and higher propensity for segregation into the FePt lattice,facilitating the diffusion of Fe and Pt atoms.The Pb doping showed remarkable efficacy in promoting the ordering transition.Experimentally,wet-chemical synthesis confirmed the success of the proposed strategy in achieving highly ordered L1_(0)-FePt NPs with exceptional magnetic properties and super-fine size(ordering degree of 0.896,impressive coercivity of 21.74 kOe,and small particle size of 9.02 nm).Additionally,we have deduced a diffusion model elucidating the formation process of the ordered FePt NPs,focusing on the migration of Pb atoms from the center to the surface of the particles.This migration is demonstrated to generate more vacancies and promote the transition to the ordered L1_(0)-FePt phase.The findings of this research offer valuable insights into synthesizing highly ordered and ultrafine L1_(0)-type nanomaterials.
文摘平滑范数(Smoothed l0,SL0)压缩感知重构算法通过引入平滑函数序列将求解最小l0范数问题转化为平滑函数优化问题,可以有效地用于稀疏信号重构。针对平滑函数的选取和算法稳健性问题,提出一种新的平滑函数序列近似范数,结合梯度投影法优化求解,并进一步提出采用奇异值分解(Singular value decomposition,SVD)方法改进算法的稳健性,实现稀疏度信号的精确重构。仿真结果表明,在相同的测试条件下,本文算法相比OMP算法、SL0算法以及L1-magic算法在重构精度、峰值信噪比方面都有较大改善。