As an emergency and auxiliary power source for aircraft,lithium(Li)-ion batteries are important components of aerospace power systems.The Remaining Useful Life(RUL)prediction of Li-ion batteries is a key technology to...As an emergency and auxiliary power source for aircraft,lithium(Li)-ion batteries are important components of aerospace power systems.The Remaining Useful Life(RUL)prediction of Li-ion batteries is a key technology to ensure the reliable operation of aviation power systems.Particle Filter(PF)is an effective method to predict the RUL of Li-ion batteries because of its uncertainty representation and management ability.However,there are problems that particle weights cannot be updated in the prediction stage and particles degradation.To settle these issues,an innovative technique of F-distribution PF and Kernel Smoothing(FPFKS)algorithm is proposed.In the prediction stage,the weights of the particles are dynamically updated by the F kernel instead of being fixed all the time.Meanwhile,a first-order independent Markov capacity degradation model is established.Moreover,the kernel smoothing algorithm is integrated into PF,so that the variance of the parameters of capacity degradation model keeps invariant.Experiments based on NASA battery data sets show that FPFKS can be excellently applied to RUL prediction of Liion batteries.展开更多
There are already a lot of models to fit a set of stationary time series, such as AR, MA, and ARMA models. For the non-stationary data, an ARIMA or seasonal ARIMA models can be used to fit the given data. Moreover, th...There are already a lot of models to fit a set of stationary time series, such as AR, MA, and ARMA models. For the non-stationary data, an ARIMA or seasonal ARIMA models can be used to fit the given data. Moreover, there are also many statistical softwares that can be used to build a stationary or non-stationary time series model for a given set of time series data, such as SAS, SPLUS, etc. However, some statistical softwares wouldn't work well for small samples with or without missing data, especially for small time series data with seasonal trend. A nonparametric smoothing technique to build a forecasting model for a given small seasonal time series data is carried out in this paper. And then, both the method provided in this paper and that in SAS package are applied to the modeling of international airline passengers data respectively, the comparisons between the two methods are done afterwards. The results of the comparison show us the method provided in this paper has superiority over SAS's method.展开更多
The issue of selection of bandwidth in kernel smoothing method is considered within the context of partially linear models, hi this paper, we study the asymptotic behavior of the bandwidth choice based on generalized ...The issue of selection of bandwidth in kernel smoothing method is considered within the context of partially linear models, hi this paper, we study the asymptotic behavior of the bandwidth choice based on generalized cross-validation (CCV) approach and prove that this bandwidth choice is asymptotically optimal. Numerical simulation are also conducted to investigate the empirical performance of generalized cross-valldation.展开更多
This paper is concerned with certain multilinear commutators of BMO functions and multilinear singular integral operators with non-smooth kernels. By the sharp maximal functions estimates, the weighted norm inequaliti...This paper is concerned with certain multilinear commutators of BMO functions and multilinear singular integral operators with non-smooth kernels. By the sharp maximal functions estimates, the weighted norm inequalities for this kind of commutators are established.展开更多
This paper is devoted to studying the commutators of the multilinear singular integral operators with the non-smooth kernels and the weighted Lipschitz functions. Some mapping properties for two types of commutators o...This paper is devoted to studying the commutators of the multilinear singular integral operators with the non-smooth kernels and the weighted Lipschitz functions. Some mapping properties for two types of commutators on the weighted Lebesgue spaces, which extend and generalize some previous results, are obtained.展开更多
Kernel gradient free-smoothed particle hydrodynamics (KGF-SPH) is a modified smoothed particle hydrodynamics (SPH) method which has higher precision than the conventional SPH. However, the Laplacian in KGF-SPH is ...Kernel gradient free-smoothed particle hydrodynamics (KGF-SPH) is a modified smoothed particle hydrodynamics (SPH) method which has higher precision than the conventional SPH. However, the Laplacian in KGF-SPH is approximated by the two-pass model which increases computational cost. A new kind of discretization scheme for the Laplacian is proposed in this paper, then a method with higher precision and better stability, called Improved KGF-SPH, is developed by modifying KGF-SPH with this new Laplacian model. One-dimensional (1D) and two-dimensional (2D) heat conduction problems are used to test the precision and stability of the Improved KGF-SPH. The numerical results demonstrate that the Improved KGF-SPH is more accurate than SPH, and stabler than KGF-SPH. Natural convection in a closed square cavity at different Rayleigh numbers are modeled by the Improved KGF-SPH with shifting particle position, and the Improved KGF-SPH results are presented in comparison with those of SPH and finite volume method (FVM). The numerical results demonstrate that the Improved KGF-SPH is a more accurate method to study and model the heat transfer problems.展开更多
In this paper, we establish the boundedness of commutators of singular integral operators with non-smooth kernels on weighted Lipschitz spaces Lipβ,ω. The condition on the kernel in this paper is weaker than the usu...In this paper, we establish the boundedness of commutators of singular integral operators with non-smooth kernels on weighted Lipschitz spaces Lipβ,ω. The condition on the kernel in this paper is weaker than the usual pointwise HSrmander condition.展开更多
Let T1 be a singular integral with non-smooth kernel or ±I, let T2 and T4 be the linear operators and let T3 = ± I. Denote the Toeplitz type operator by Tb = T1M^b Ia T2 + T3IaMbT4,where M^bf = bf, and Ib i...Let T1 be a singular integral with non-smooth kernel or ±I, let T2 and T4 be the linear operators and let T3 = ± I. Denote the Toeplitz type operator by Tb = T1M^b Ia T2 + T3IaMbT4,where M^bf = bf, and Ib is the fractional integral operator. In this paper, we investigate the boundedness of the operator Tb on the weighted Morrey space when b belongs to the weighted BMO space.展开更多
基金co-supported by Aeronautical Science Foundation of China (No. 20183352030)Fund Project of Equipment Pre-research Field of China (No. JZX7Y20190243016301)
文摘As an emergency and auxiliary power source for aircraft,lithium(Li)-ion batteries are important components of aerospace power systems.The Remaining Useful Life(RUL)prediction of Li-ion batteries is a key technology to ensure the reliable operation of aviation power systems.Particle Filter(PF)is an effective method to predict the RUL of Li-ion batteries because of its uncertainty representation and management ability.However,there are problems that particle weights cannot be updated in the prediction stage and particles degradation.To settle these issues,an innovative technique of F-distribution PF and Kernel Smoothing(FPFKS)algorithm is proposed.In the prediction stage,the weights of the particles are dynamically updated by the F kernel instead of being fixed all the time.Meanwhile,a first-order independent Markov capacity degradation model is established.Moreover,the kernel smoothing algorithm is integrated into PF,so that the variance of the parameters of capacity degradation model keeps invariant.Experiments based on NASA battery data sets show that FPFKS can be excellently applied to RUL prediction of Liion batteries.
基金Supported by the National Natural Science Foundation of China(No.10371034)
文摘There are already a lot of models to fit a set of stationary time series, such as AR, MA, and ARMA models. For the non-stationary data, an ARIMA or seasonal ARIMA models can be used to fit the given data. Moreover, there are also many statistical softwares that can be used to build a stationary or non-stationary time series model for a given set of time series data, such as SAS, SPLUS, etc. However, some statistical softwares wouldn't work well for small samples with or without missing data, especially for small time series data with seasonal trend. A nonparametric smoothing technique to build a forecasting model for a given small seasonal time series data is carried out in this paper. And then, both the method provided in this paper and that in SAS package are applied to the modeling of international airline passengers data respectively, the comparisons between the two methods are done afterwards. The results of the comparison show us the method provided in this paper has superiority over SAS's method.
文摘The issue of selection of bandwidth in kernel smoothing method is considered within the context of partially linear models, hi this paper, we study the asymptotic behavior of the bandwidth choice based on generalized cross-validation (CCV) approach and prove that this bandwidth choice is asymptotically optimal. Numerical simulation are also conducted to investigate the empirical performance of generalized cross-valldation.
基金Supported by the National Natural Science Foundation of China (10771054, 10771221, 11071200)the Youth Foundation of Wuyi University (No. xq0930)
文摘This paper is concerned with certain multilinear commutators of BMO functions and multilinear singular integral operators with non-smooth kernels. By the sharp maximal functions estimates, the weighted norm inequalities for this kind of commutators are established.
基金Supported by the National Natural Science Foundation of China (10771054,11071200)the NFS of Fujian Province of China (No. 2010J01013)
文摘This paper is devoted to studying the commutators of the multilinear singular integral operators with the non-smooth kernels and the weighted Lipschitz functions. Some mapping properties for two types of commutators on the weighted Lebesgue spaces, which extend and generalize some previous results, are obtained.
文摘Kernel gradient free-smoothed particle hydrodynamics (KGF-SPH) is a modified smoothed particle hydrodynamics (SPH) method which has higher precision than the conventional SPH. However, the Laplacian in KGF-SPH is approximated by the two-pass model which increases computational cost. A new kind of discretization scheme for the Laplacian is proposed in this paper, then a method with higher precision and better stability, called Improved KGF-SPH, is developed by modifying KGF-SPH with this new Laplacian model. One-dimensional (1D) and two-dimensional (2D) heat conduction problems are used to test the precision and stability of the Improved KGF-SPH. The numerical results demonstrate that the Improved KGF-SPH is more accurate than SPH, and stabler than KGF-SPH. Natural convection in a closed square cavity at different Rayleigh numbers are modeled by the Improved KGF-SPH with shifting particle position, and the Improved KGF-SPH results are presented in comparison with those of SPH and finite volume method (FVM). The numerical results demonstrate that the Improved KGF-SPH is a more accurate method to study and model the heat transfer problems.
文摘In this paper, we establish the boundedness of commutators of singular integral operators with non-smooth kernels on weighted Lipschitz spaces Lipβ,ω. The condition on the kernel in this paper is weaker than the usual pointwise HSrmander condition.
文摘Let T1 be a singular integral with non-smooth kernel or ±I, let T2 and T4 be the linear operators and let T3 = ± I. Denote the Toeplitz type operator by Tb = T1M^b Ia T2 + T3IaMbT4,where M^bf = bf, and Ib is the fractional integral operator. In this paper, we investigate the boundedness of the operator Tb on the weighted Morrey space when b belongs to the weighted BMO space.