A polynomial interior-point algorithm is presented for monotone linear complementarity problem (MLCP) based on a class of kernel functions with the general barrier term, which are called general kernel functions. Un...A polynomial interior-point algorithm is presented for monotone linear complementarity problem (MLCP) based on a class of kernel functions with the general barrier term, which are called general kernel functions. Under the mild conditions for the barrier term, the complexity bound of algorithm in terms of such kernel function and its derivatives is obtained. The approach is actually an extension of the existing work which only used the specific kernel functions for the MLCP.展开更多
Presents the iterative method of solving Cauchy problem with reproducing kernel for nonlinear hyperbolic equations, and the application of the computational technique of reproducing kernel space to simplify, the itera...Presents the iterative method of solving Cauchy problem with reproducing kernel for nonlinear hyperbolic equations, and the application of the computational technique of reproducing kernel space to simplify, the iterative computation and increase the convergence rate and points out that this method is still effective. Even if the initial condition is discrete.展开更多
A recursive Kernel eigenspace updating algorithm was proposed to build the soft sensor for end-product quality.The updating procedure was composed of two sub-stages,i.e.firstly performing forward increasing updating a...A recursive Kernel eigenspace updating algorithm was proposed to build the soft sensor for end-product quality.The updating procedure was composed of two sub-stages,i.e.firstly performing forward increasing updating and then followed by backward decreasing updating,which drastically decreased the required computation workload.Further,the whole Kernel matrix did not need to be stored.Simulation study on the Tennessee Eastman process showed that the consequent impurity component model had satisfying precision under both normal and faulty operations,which was obviously superior to the offline batch model and meanwhile approximated the performance of model obtained by successively applying the time-consuming traditional eigenvalue numerical algorithm.展开更多
It is well known that the problem on the stability of the solutions for Fredholm integral equation of the first kind is an ill-posed problem in C[a, b] or L2 [a, b]. In this paper, the representation of the solution f...It is well known that the problem on the stability of the solutions for Fredholm integral equation of the first kind is an ill-posed problem in C[a, b] or L2 [a, b]. In this paper, the representation of the solution for Fredholm integral equation of the first kind is given if it has a unique solution. The stability of the solution is proved in the reproducing kernel space, namely, the measurement errors of the experimental data cannot result in unbounded errors of the true solution. The computation of approximate solution is also stable with respect to ||· ||c or ||L2· A numerical experiment shows that the method given in this paper is stable in the reproducing kernel space.展开更多
This paper studies the influence of a finite container on an ideal gas.The trace of the heat kernel (t) =exp, where are the eigenvalues of the negative Laplacian -in Rn(n = 2 or 3), is studied for a general multi-conn...This paper studies the influence of a finite container on an ideal gas.The trace of the heat kernel (t) =exp, where are the eigenvalues of the negative Laplacian -in Rn(n = 2 or 3), is studied for a general multi-connected bounded drum ft which is surrounded by simply connected bounded domains Ωi with smooth boundaries Ωi(i = 1,… ,m) where the Dirichlet, Neumann and Robin boundary conditions on Ωi(i = 1,…,m) are considered. Some geometrical properties of Ω are determined. The thermodynamic quantities for an ideal gas enclosed in Ω are examined by using the asymptotic expansions of (t) for short-time t. It is shown that the ideal gas can not feel the shape of its container Ω, although it can feel some geometrical properties of it.展开更多
Using the method of localization, the authors obtain the permutation formula of singular integrals with Bochner-Martinelli kernel for a relative compact domain with C^(1) smooth boundary on a Stein manifold. As an a...Using the method of localization, the authors obtain the permutation formula of singular integrals with Bochner-Martinelli kernel for a relative compact domain with C^(1) smooth boundary on a Stein manifold. As an application the authors discuss the regularization problem for linear singular integral equations with Bochner-Martinelli kernel and variable coefficients; using permutation formula, the singular integral equation can be reduced to a fredholm equation.展开更多
In this article, our proposed kernel estimator, named as Gumbel kernel, which broadened the class of non-negative, asymmetric kernel density estimators. Such kernel estimator can be used in nonparametric estimation of...In this article, our proposed kernel estimator, named as Gumbel kernel, which broadened the class of non-negative, asymmetric kernel density estimators. Such kernel estimator can be used in nonparametric estimation of the probability density function (</span><i><span style="font-family:Verdana;">pdf</span></i><span style="font-family:Verdana;">). When the density functions have limited bounded support on [0, ∞) and they are liberated of boundary bias, always non-negative and obtain the optimal rate of convergence for the mean integrated squared error (MISE). The bias, variance and the optimal bandwidth of the proposed estimators are investigated on theoretical grounds as well as on simulation basis. Further, the applicability of the proposed estimator is compared to Weibul</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">l</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> kernel estimator, where performance of newly proposed kernel is outstanding.展开更多
In machines learning problems, Support Vector Machine is a method of classification. For non-linearly separable data, kernel functions are a basic ingredient in the SVM technic. In this paper, we briefly recall some u...In machines learning problems, Support Vector Machine is a method of classification. For non-linearly separable data, kernel functions are a basic ingredient in the SVM technic. In this paper, we briefly recall some useful results on decomposition of RKHS. Based on orthogonal polynomial theory and Mercer theorem, we construct the high power Legendre polynomial kernel on the cube [-1,1]<sup>d</sup>. Following presentation of the theoretical background of SVM, we evaluate the performance of this kernel on some illustrative examples in comparison with Rbf, linear and polynomial kernels.展开更多
Steady-state heat conduction problems arisen in connection with various physical and engineering problems where the functions satisfy a given partial differential equation and particular boundary conditions, have attr...Steady-state heat conduction problems arisen in connection with various physical and engineering problems where the functions satisfy a given partial differential equation and particular boundary conditions, have attracted much attention and research recently. These problems are independent of time and involve only space coordinates, as in Poisson's equation or the Laplace equation with Dirichlet, Neuman, or mixed conditions. When the problems are too complex, it is difficult to find an analytical solution, the only choice left is an approximate numerical solution. This paper deals with the numerical solution of three-dimensional steady-state heat conduction problems using the meshless reproducing kernel particle method (RKPM). A variational method is used to obtain the discrete equations. The essential boundary conditions are enforced by the penalty method. The effectiveness of RKPM for three-dimensional steady-state heat conduction problems is investigated by two numerical examples.展开更多
The regularized integrodifferential equation for the first kind of Fredholm, integral equation with a complex kernel is derived by generalizing the Tikhonov regularization method and the convergence of approximate reg...The regularized integrodifferential equation for the first kind of Fredholm, integral equation with a complex kernel is derived by generalizing the Tikhonov regularization method and the convergence of approximate regularized solutions is discussed. As an application of the method, an inverse problem in the two-dimensional wave-making problem of a flat plate is solved numerically, and a practical approach of choosing optimal regularization parameter is given.展开更多
In this article, a class of Dirichlet problem with Lp boundary data for poly-harmonic function in the upper half plane is mainly investigated. By introducing a sequence of kernel functions called higher order Poisson ...In this article, a class of Dirichlet problem with Lp boundary data for poly-harmonic function in the upper half plane is mainly investigated. By introducing a sequence of kernel functions called higher order Poisson kernels and a hierarchy of integral operators called higher order Pompeiu operators, we obtain a main result on integral representation solution as well as the uniqueness of the polyharmonic Dirichlet problem under a certain estimate.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.10771133)the Shanghai Pujiang Program (Grant No.06PJ14039)
文摘A polynomial interior-point algorithm is presented for monotone linear complementarity problem (MLCP) based on a class of kernel functions with the general barrier term, which are called general kernel functions. Under the mild conditions for the barrier term, the complexity bound of algorithm in terms of such kernel function and its derivatives is obtained. The approach is actually an extension of the existing work which only used the specific kernel functions for the MLCP.
文摘Presents the iterative method of solving Cauchy problem with reproducing kernel for nonlinear hyperbolic equations, and the application of the computational technique of reproducing kernel space to simplify, the iterative computation and increase the convergence rate and points out that this method is still effective. Even if the initial condition is discrete.
文摘A recursive Kernel eigenspace updating algorithm was proposed to build the soft sensor for end-product quality.The updating procedure was composed of two sub-stages,i.e.firstly performing forward increasing updating and then followed by backward decreasing updating,which drastically decreased the required computation workload.Further,the whole Kernel matrix did not need to be stored.Simulation study on the Tennessee Eastman process showed that the consequent impurity component model had satisfying precision under both normal and faulty operations,which was obviously superior to the offline batch model and meanwhile approximated the performance of model obtained by successively applying the time-consuming traditional eigenvalue numerical algorithm.
文摘It is well known that the problem on the stability of the solutions for Fredholm integral equation of the first kind is an ill-posed problem in C[a, b] or L2 [a, b]. In this paper, the representation of the solution for Fredholm integral equation of the first kind is given if it has a unique solution. The stability of the solution is proved in the reproducing kernel space, namely, the measurement errors of the experimental data cannot result in unbounded errors of the true solution. The computation of approximate solution is also stable with respect to ||· ||c or ||L2· A numerical experiment shows that the method given in this paper is stable in the reproducing kernel space.
文摘This paper studies the influence of a finite container on an ideal gas.The trace of the heat kernel (t) =exp, where are the eigenvalues of the negative Laplacian -in Rn(n = 2 or 3), is studied for a general multi-connected bounded drum ft which is surrounded by simply connected bounded domains Ωi with smooth boundaries Ωi(i = 1,… ,m) where the Dirichlet, Neumann and Robin boundary conditions on Ωi(i = 1,…,m) are considered. Some geometrical properties of Ω are determined. The thermodynamic quantities for an ideal gas enclosed in Ω are examined by using the asymptotic expansions of (t) for short-time t. It is shown that the ideal gas can not feel the shape of its container Ω, although it can feel some geometrical properties of it.
基金The project was supported by the Natural Science Foundation of Fujian Province of China (Z0511002)the National Science Foundation of China (10271097,10571144)+1 种基金Foundation of Tianyuan (10526033)Chen L P, the Corresponding author
文摘Using the method of localization, the authors obtain the permutation formula of singular integrals with Bochner-Martinelli kernel for a relative compact domain with C^(1) smooth boundary on a Stein manifold. As an application the authors discuss the regularization problem for linear singular integral equations with Bochner-Martinelli kernel and variable coefficients; using permutation formula, the singular integral equation can be reduced to a fredholm equation.
文摘In this article, our proposed kernel estimator, named as Gumbel kernel, which broadened the class of non-negative, asymmetric kernel density estimators. Such kernel estimator can be used in nonparametric estimation of the probability density function (</span><i><span style="font-family:Verdana;">pdf</span></i><span style="font-family:Verdana;">). When the density functions have limited bounded support on [0, ∞) and they are liberated of boundary bias, always non-negative and obtain the optimal rate of convergence for the mean integrated squared error (MISE). The bias, variance and the optimal bandwidth of the proposed estimators are investigated on theoretical grounds as well as on simulation basis. Further, the applicability of the proposed estimator is compared to Weibul</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">l</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> kernel estimator, where performance of newly proposed kernel is outstanding.
文摘In machines learning problems, Support Vector Machine is a method of classification. For non-linearly separable data, kernel functions are a basic ingredient in the SVM technic. In this paper, we briefly recall some useful results on decomposition of RKHS. Based on orthogonal polynomial theory and Mercer theorem, we construct the high power Legendre polynomial kernel on the cube [-1,1]<sup>d</sup>. Following presentation of the theoretical background of SVM, we evaluate the performance of this kernel on some illustrative examples in comparison with Rbf, linear and polynomial kernels.
基金supported by the Natural Science Foundation of Ningbo,China (Grant Nos.2009A610014 and 2009A610154)the Natural Science Foundation of Zhejiang Province,China (Grant No.Y6090131)
文摘Steady-state heat conduction problems arisen in connection with various physical and engineering problems where the functions satisfy a given partial differential equation and particular boundary conditions, have attracted much attention and research recently. These problems are independent of time and involve only space coordinates, as in Poisson's equation or the Laplace equation with Dirichlet, Neuman, or mixed conditions. When the problems are too complex, it is difficult to find an analytical solution, the only choice left is an approximate numerical solution. This paper deals with the numerical solution of three-dimensional steady-state heat conduction problems using the meshless reproducing kernel particle method (RKPM). A variational method is used to obtain the discrete equations. The essential boundary conditions are enforced by the penalty method. The effectiveness of RKPM for three-dimensional steady-state heat conduction problems is investigated by two numerical examples.
文摘The regularized integrodifferential equation for the first kind of Fredholm, integral equation with a complex kernel is derived by generalizing the Tikhonov regularization method and the convergence of approximate regularized solutions is discussed. As an application of the method, an inverse problem in the two-dimensional wave-making problem of a flat plate is solved numerically, and a practical approach of choosing optimal regularization parameter is given.
文摘In this article, a class of Dirichlet problem with Lp boundary data for poly-harmonic function in the upper half plane is mainly investigated. By introducing a sequence of kernel functions called higher order Poisson kernels and a hierarchy of integral operators called higher order Pompeiu operators, we obtain a main result on integral representation solution as well as the uniqueness of the polyharmonic Dirichlet problem under a certain estimate.