期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Application of Particle Swarm Optimization to Fault Condition Recognition Based on Kernel Principal Component Analysis 被引量:1
1
作者 WEI Xiu-ye PAN Hong-xia HUANG Jin-ying WANG Fu-jie 《International Journal of Plant Engineering and Management》 2009年第3期129-135,共7页
Panicle swarm optimization (PSO) is an optimization algorithm based on the swarm intelligent principle. In this paper the modified PSO is applied to a kernel principal component analysis ( KPCA ) for an optimal ke... Panicle swarm optimization (PSO) is an optimization algorithm based on the swarm intelligent principle. In this paper the modified PSO is applied to a kernel principal component analysis ( KPCA ) for an optimal kernel function parameter. We first comprehensively considered within-class scatter and between-class scatter of the sample features. Then, the fitness function of an optimized kernel function parameter is constructed, and the particle swarm optimization algorithm with adaptive acceleration (CPSO) is applied to optimizing it. It is used for gearbox condi- tion recognition, and the result is compared with the recognized results based on principal component analysis (PCA). The results show that KPCA optimized by CPSO can effectively recognize fault conditions of the gearbox by reducing bind set-up of the kernel function parameter, and its results of fault recognition outperform those of PCA. We draw the conclusion that KPCA based on CPSO has an advantage in nonlinear feature extraction of mechanical failure, and is helpful for fault condition recognition of complicated machines. 展开更多
关键词 particle swarm optimization kernel principal component analysis kernel function parameter feature extraction gearbox condition recognition
在线阅读 下载PDF
声波方程参数化模式及多参数全波形反演去耦合化策略 被引量:5
2
作者 何兵红 方伍宝 +2 位作者 胡光辉 刘定进 孙思宇 《石油物探》 EI CSCD 北大核心 2018年第5期705-716,725,共13页
参数耦合化是制约多参数全波形反演应用的关键因素之一。从速度-密度方程出发,基于介质弱扰动线性假设,利用波动方程的格林函数积分解推导了速度-密度、模量-密度、阻抗-密度、阻抗-速度、模量-速度及模量-阻抗6种参数化模式下的敏感核... 参数耦合化是制约多参数全波形反演应用的关键因素之一。从速度-密度方程出发,基于介质弱扰动线性假设,利用波动方程的格林函数积分解推导了速度-密度、模量-密度、阻抗-密度、阻抗-速度、模量-速度及模量-阻抗6种参数化模式下的敏感核函数;研究了每种参数化模式下各参数辐射模式,分析总结了参数化模式下参数耦合性态;提出在阻抗-速度参数化模式下先利用大角度地震数据进行速度反演,再利用小角度地震数据进行阻抗反演的声波方程全波形反演优化策略。通过理论模型数值实验实现了速度-密度、模量-密度、阻抗-密度以及阻抗-速度4种参数化模式下的反演,反演结果与理论推导一致。 展开更多
关键词 全波形反演 耦合化 参数化 敏感核函数 声波方程
在线阅读 下载PDF
THE STUDY OF RETRIEVAL THEORY AND METHODS FROM SATELLITE REMOTE SENSING FOR METEOROLOGICAL PARAMETERS OVER EASTERN ASIA—PART Ⅱ:ISPRM AND VSPRM2
3
作者 黎光清 董超华 +6 位作者 张文建 张凤英 王保华 冉茂农 吴雪宝 王维和 潘宁 《Acta meteorologica Sinica》 SCIE 2000年第4期475-489,共15页
Based on the practice of improved simultaneous physical retrieval model(ISPRM),in the light of the functional analysis approach,the variational simultaneous physical retrieval model (VSPRM)has been developed.Its appro... Based on the practice of improved simultaneous physical retrieval model(ISPRM),in the light of the functional analysis approach,the variational simultaneous physical retrieval model (VSPRM)has been developed.Its approximation of 1st degree is VSPRM1,which is identical with the ISPRM.Its approximation of 2nd degree is VSPRM2,more advanced than the VSPRM1. This paper has analyzed the function of VSPRM2,pointing out the potentiality of synergy retrieval of this model.Also,it has dealt with the problem of parameterization of water vapor's kernel functions and retrieval of water vapor remote sensing. Because of the characteristics of this strong ill posed inverse problem,prior information must be used wisely in order to get the accurate calculation of radiance R.In the previous paper,we discussed how to build the best first guess field,the way to determine the P_s and to correct the calculation of radiance.In this paper,we continue discussing in depth about the calculation of transmittance,the determination of surface parameters and the selection for an optimum combination of channels for the low-level sounding. The long-term experiment and comparison work under operational environment have shown that the ISPRM is useful for retrieval of temperature and water vapor parameters over China including the Tibetan Plateau,and it further proves the scientific nature of well-posed inverse theory. 展开更多
关键词 improved simultaneous physical retrieval model(ISPRM) variational simultaneous physical retrieval model(VSPRM) synergy remote sensing retrieval parameterization for kernel functions of water vapor
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部