In this article, our proposed kernel estimator, named as Gumbel kernel, which broadened the class of non-negative, asymmetric kernel density estimators. Such kernel estimator can be used in nonparametric estimation of...In this article, our proposed kernel estimator, named as Gumbel kernel, which broadened the class of non-negative, asymmetric kernel density estimators. Such kernel estimator can be used in nonparametric estimation of the probability density function (</span><i><span style="font-family:Verdana;">pdf</span></i><span style="font-family:Verdana;">). When the density functions have limited bounded support on [0, ∞) and they are liberated of boundary bias, always non-negative and obtain the optimal rate of convergence for the mean integrated squared error (MISE). The bias, variance and the optimal bandwidth of the proposed estimators are investigated on theoretical grounds as well as on simulation basis. Further, the applicability of the proposed estimator is compared to Weibul</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">l</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> kernel estimator, where performance of newly proposed kernel is outstanding.展开更多
There have been many papers presenting kernel density estimators for a strictly stationary continuous time process observed over the time interval [0, T ]. However the estimators do not satisfy the property of mean-sq...There have been many papers presenting kernel density estimators for a strictly stationary continuous time process observed over the time interval [0, T ]. However the estimators do not satisfy the property of mean-square continuity if the process is mean-square continuous. In this paper we present a modified kernel estimator and substantiate that the modified estimator satisfies the property of mean-square continuity. In a simulation study the results show the modified estimator is better than the original estimator in some cases.展开更多
In this paper, we establish asymptotically optimal simultaneous confidence bands for the copula function based on the local linear kernel estimator proposed by Chen and Huang [1]. For this, we prove under smoothness c...In this paper, we establish asymptotically optimal simultaneous confidence bands for the copula function based on the local linear kernel estimator proposed by Chen and Huang [1]. For this, we prove under smoothness conditions on the derivatives of the copula a uniform in bandwidth law of the iterated logarithm for the maximal deviation of this estimator from its expectation. We also show that the bias term converges uniformly to zero with a precise rate. The performance of these bands is illustrated by a simulation study. An application based on pseudo-panel data is also provided for modeling the dependence structure of Senegalese households’ expense data in 2001 and 2006.展开更多
Let fn be a non-parametric kernel density estimator based on a kernel function K. and a sequence of independent and identically distributed random variables taking values in R. The goal of this article is to prove mod...Let fn be a non-parametric kernel density estimator based on a kernel function K. and a sequence of independent and identically distributed random variables taking values in R. The goal of this article is to prove moderate deviations and large deviations for the statistic sup |fn(x) - fn(-x) |.展开更多
A kernel-type estimator of the quantile function Q(p) = inf{t:F(t) ≥ p}, 0 ≤ p ≤ 1, is proposed based on the kernel smoother when the data are subjected to random truncation. The Bahadur-type representations o...A kernel-type estimator of the quantile function Q(p) = inf{t:F(t) ≥ p}, 0 ≤ p ≤ 1, is proposed based on the kernel smoother when the data are subjected to random truncation. The Bahadur-type representations of the kernel smooth estimator are established, and from Bahadur representations the authors can show that this estimator is strongly consistent, asymptotically normal, and weakly convergent.展开更多
LetX 1,…,X n be iid observations of a random variableX with probability density functionf(x) on the q-dimensional unit sphere Ωq in Rq+1,q ? 1. Let $f_n (x) = n^{ - 1} c(h)\sum\nolimits_{i = 1}^n {K[(1 - x'X_i )...LetX 1,…,X n be iid observations of a random variableX with probability density functionf(x) on the q-dimensional unit sphere Ωq in Rq+1,q ? 1. Let $f_n (x) = n^{ - 1} c(h)\sum\nolimits_{i = 1}^n {K[(1 - x'X_i )/h^2 ]} $ be a kernel estimator off(x). In this paper we establish a central limit theorem for integrated square error off n under some mild conditions.展开更多
Monitoring sensors in complex engineering environments often record abnormal data,leading to significant positioning errors.To reduce the influence of abnormal arrival times,we introduce an innovative,outlier-robust l...Monitoring sensors in complex engineering environments often record abnormal data,leading to significant positioning errors.To reduce the influence of abnormal arrival times,we introduce an innovative,outlier-robust localization method that integrates kernel density estimation(KDE)with damping linear correction to enhance the precision of microseismic/acoustic emission(MS/AE)source positioning.Our approach systematically addresses abnormal arrival times through a three-step process:initial location by 4-arrival combinations,elimination of outliers based on three-dimensional KDE,and refinement using a linear correction with an adaptive damping factor.We validate our method through lead-breaking experiments,demonstrating over a 23%improvement in positioning accuracy with a maximum error of 9.12 mm(relative error of 15.80%)—outperforming 4 existing methods.Simulations under various system errors,outlier scales,and ratios substantiate our method’s superior performance.Field blasting experiments also confirm the practical applicability,with an average positioning error of 11.71 m(relative error of 7.59%),compared to 23.56,66.09,16.95,and 28.52 m for other methods.This research is significant as it enhances the robustness of MS/AE source localization when confronted with data anomalies.It also provides a practical solution for real-world engineering and safety monitoring applications.展开更多
This paper derives some uniform convergence rates for kernel regression of some index functions that may depend on infinite dimensional parameter. The rates of convergence are computed for independent, strongly mixing...This paper derives some uniform convergence rates for kernel regression of some index functions that may depend on infinite dimensional parameter. The rates of convergence are computed for independent, strongly mixing and weakly dependent data respectively. These results extend the existing literature and are useful for the derivation of large sample properties of the estimators in some semiparametric and nonparametric models.展开更多
Assume that f_(n)is the nonparametric kernel density estimator of directional data based on a kernel function K and a sequence of independent and identically distributed random variables taking values in d-dimensional...Assume that f_(n)is the nonparametric kernel density estimator of directional data based on a kernel function K and a sequence of independent and identically distributed random variables taking values in d-dimensional unit sphere S^(d-1).We established that the large deviation principle for{sup_(x∈S^(d-1))|fn(x)-fn(-x)|,n≥1}holds if the kernel function is a function with bounded variation,and the density function f of the random variables is continuous and symmetric.展开更多
A kernel density estimator is proposed when tile data are subject to censorship in multivariate case. The asymptotic normality, strong convergence and asymptotic optimal bandwidth which minimize the mean square error ...A kernel density estimator is proposed when tile data are subject to censorship in multivariate case. The asymptotic normality, strong convergence and asymptotic optimal bandwidth which minimize the mean square error of the estimator are studied.展开更多
In real-world applications, datasets frequently contain outliers, which can hinder the generalization ability of machine learning models. Bayesian classifiers, a popular supervised learning method, rely on accurate pr...In real-world applications, datasets frequently contain outliers, which can hinder the generalization ability of machine learning models. Bayesian classifiers, a popular supervised learning method, rely on accurate probability density estimation for classifying continuous datasets. However, achieving precise density estimation with datasets containing outliers poses a significant challenge. This paper introduces a Bayesian classifier that utilizes optimized robust kernel density estimation to address this issue. Our proposed method enhances the accuracy of probability density distribution estimation by mitigating the impact of outliers on the training sample’s estimated distribution. Unlike the conventional kernel density estimator, our robust estimator can be seen as a weighted kernel mapping summary for each sample. This kernel mapping performs the inner product in the Hilbert space, allowing the kernel density estimation to be considered the average of the samples’ mapping in the Hilbert space using a reproducing kernel. M-estimation techniques are used to obtain accurate mean values and solve the weights. Meanwhile, complete cross-validation is used as the objective function to search for the optimal bandwidth, which impacts the estimator. The Harris Hawks Optimisation optimizes the objective function to improve the estimation accuracy. The experimental results show that it outperforms other optimization algorithms regarding convergence speed and objective function value during the bandwidth search. The optimal robust kernel density estimator achieves better fitness performance than the traditional kernel density estimator when the training data contains outliers. The Naïve Bayesian with optimal robust kernel density estimation improves the generalization in the classification with outliers.展开更多
The sixth-generation fighter has superior stealth performance,but for the traditional kernel density estimation(KDE),precision requirements are difficult to satisfy when dealing with the fluctuation characteristics of...The sixth-generation fighter has superior stealth performance,but for the traditional kernel density estimation(KDE),precision requirements are difficult to satisfy when dealing with the fluctuation characteristics of complex radar cross section(RCS).To solve this problem,this paper studies the KDE algorithm for F/AXX stealth fighter.By considering the accuracy lack of existing fixed bandwidth algorithms,a novel adaptive kernel density estimation(AKDE)algorithm equipped with least square cross validation and integrated squared error criterion is proposed to optimize the bandwidth.Meanwhile,an adaptive RCS density estimation can be obtained according to the optimized bandwidth.Finally,simulations verify that the estimation accuracy of the adaptive bandwidth RCS density estimation algorithm is more than 50%higher than that of the traditional algorithm.Based on the proposed algorithm(i.e.,AKDE),statistical characteristics of the considered fighter are more accurately acquired,and then the significant advantages of the AKDE algorithm in solving cumulative distribution function estimation of RCS less than 1 m2 are analyzed.展开更多
This paper considers the local linear regression estimators for partially linear model with censored data. Which have some nice large-sample behaviors and are easy to implement. By many simulation runs, the author als...This paper considers the local linear regression estimators for partially linear model with censored data. Which have some nice large-sample behaviors and are easy to implement. By many simulation runs, the author also found that the estimators show remarkable in the small sample case yet.展开更多
Mechanical properties are critical to the quality of hot-rolled steel pipe products.Accurately understanding the relationship between rolling parameters and mechanical properties is crucial for effective prediction an...Mechanical properties are critical to the quality of hot-rolled steel pipe products.Accurately understanding the relationship between rolling parameters and mechanical properties is crucial for effective prediction and control.To address this,an industrial big data platform was developed to collect and process multi-source heterogeneous data from the entire production process,providing a complete dataset for mechanical property prediction.The adaptive bandwidth kernel density estimation(ABKDE)method was proposed to adjust bandwidth dynamically based on data density.Combining long short-term memory neural networks with ABKDE offers robust prediction interval capabilities for mechanical properties.The proposed method was deployed in a large-scale steel plant,which demonstrated superior prediction interval performance compared to lower upper bound estimation,mean variance estimation,and extreme learning machine-adaptive bandwidth kernel density estimation,achieving a prediction interval normalized average width of 0.37,a prediction interval coverage probability of 0.94,and the lowest coverage width-based criterion of 1.35.Notably,shapley additive explanations-based explanations significantly improved the proposed model’s credibility by providing a clear analysis of feature impacts.展开更多
The development of digital construction management is an important initiative to promote the digital transformation of the construction industry. But the attention to the regional differences in the development level ...The development of digital construction management is an important initiative to promote the digital transformation of the construction industry. But the attention to the regional differences in the development level of digital construction management in China from the industrial level is still relatively scarce. In this paper, the combination assignment method, Dagum’s Gini coefficient and Kernel density estimation method, are used to explore the regional differences and their dynamic evolution trends of China’s digital construction management development level. The study finds that the overall development level in China’s construction industry is on the rise, but it is still at a relatively low level. The overall Gini coefficient has increased, which is mainly due to uneven development between regions. There are large development differences between the eastern region and the other three regions. The interregional Gini coefficients for the Central-Northeastern and Central-Western regions are all growing at a higher rate.展开更多
Urban air pollution has brought great troubles to physical and mental health,economic development,environmental protection,and other aspects.Predicting the changes and trends of air pollution can provide a scientific ...Urban air pollution has brought great troubles to physical and mental health,economic development,environmental protection,and other aspects.Predicting the changes and trends of air pollution can provide a scientific basis for governance and prevention efforts.In this paper,we propose an interval prediction method that considers the spatio-temporal characteristic information of PM_(2.5)signals from multiple stations.K-nearest neighbor(KNN)algorithm interpolates the lost signals in the process of collection,transmission,and storage to ensure the continuity of data.Graph generative network(GGN)is used to process time-series meteorological data with complex structures.The graph U-Nets framework is introduced into the GGN model to enhance its controllability to the graph generation process,which is beneficial to improve the efficiency and robustness of the model.In addition,sparse Bayesian regression is incorporated to improve the dimensional disaster defect of traditional kernel density estimation(KDE)interval prediction.With the support of sparse strategy,sparse Bayesian regression kernel density estimation(SBR-KDE)is very efficient in processing high-dimensional large-scale data.The PM_(2.5)data of spring,summer,autumn,and winter from 34 air quality monitoring sites in Beijing verified the accuracy,generalization,and superiority of the proposed model in interval prediction.展开更多
The reliable,rapid,and accurate Remaining Useful Life(RUL)prognostics of aircraft power supply and distribution system are essential for enhancing the reliability and stability of system and reducing the life-cycle co...The reliable,rapid,and accurate Remaining Useful Life(RUL)prognostics of aircraft power supply and distribution system are essential for enhancing the reliability and stability of system and reducing the life-cycle costs.To achieve the reliable,rapid,and accurate RUL prognostics,the balance between accuracy and computational burden deserves more attention.In addition,the uncertainty is intrinsically present in RUL prognostic process.Due to the limitation of the uncertainty quantification,the point-wise prognostics strategy is not trustworthy.A Dual Adaptive Sliding-window Hybrid(DASH)RUL probabilistic prognostics strategy is proposed to tackle these deficiencies.The DASH strategy contains two adaptive mechanisms,the adaptive Long Short-Term Memory-Polynomial Regression(LSTM-PR)hybrid prognostics mechanism and the adaptive sliding-window Kernel Density Estimation(KDE)probabilistic prognostics mechanism.Owing to the dual adaptive mechanisms,the DASH strategy can achieve the balance between accuracy and computational burden and obtain the trustworthy probabilistic prognostics.Based on the degradation dataset of aircraft electromagnetic contactors,the superiority of DASH strategy is validated.In terms of probabilistic,point-wise and integrated prognostics performance,the proposed strategy increases by 66.89%,81.73% and 25.84%on average compared with the baseline methods and their variants.展开更多
The study of estimation of conditional extreme quantile in incomplete data frameworks is of growing interest. Specially, the estimation of the extreme value index in a censorship framework has been the purpose of many...The study of estimation of conditional extreme quantile in incomplete data frameworks is of growing interest. Specially, the estimation of the extreme value index in a censorship framework has been the purpose of many inves<span style="font-family:Verdana;">tigations when finite dimension covariate information has been considered. In this paper, the estimation of the conditional extreme quantile of a </span><span style="font-family:Verdana;">heavy-tailed distribution is discussed when some functional random covariate (</span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;"> valued in some infinite-dimensional space) information is available and the scalar response variable is right-censored. A Weissman-type estimator of conditional extreme quantiles is proposed and its asymptotic normality is established under mild assumptions. A simulation study is conducted to assess the finite-sample behavior of the proposed estimator and a comparison with two simple estimations strategies is provided.</span>展开更多
Road network is a critical component of public infrastructure,and the supporting system of social and economic development.Based on a modified kernel density estimate(KDE)algorithm,this study evaluated the road servic...Road network is a critical component of public infrastructure,and the supporting system of social and economic development.Based on a modified kernel density estimate(KDE)algorithm,this study evaluated the road service capacity provided by a road network composed of multi-level roads(i.e.national,provincial,county and rural roads),by taking account of the differences of effect extent and intensity for roads of different levels.Summarized at town scale,the population burden and the annual rural economic income of unit road service capacity were used as the surrogates of social and economic demands for road service.This method was applied to the road network of the Three Parallel River Region,the northwestern Yunnan Province,China to evaluate the development of road network in this region.In results,the total road length of this region in 2005 was 3.70×104km,and the length ratio between national,provincial,county and rural roads was 1∶2∶8∶47.From 1989 to 2005,the regional road service capacity increased by 13.1%,of which the contributions from the national,provincial,county and rural roads were 11.1%,19.4%,22.6%,and 67.8%,respectively,revealing the effect of′All Village Accessible′policy of road development in the mountainous regions in the last decade.The spatial patterns of population burden and economic requirement of unit road service suggested that the areas farther away from the national and provincial roads have higher road development priority(RDP).Based on the modified KDE model and the framework of RDP evaluation,this study provided a useful approach for developing an optimal plan of road development at regional scale.展开更多
In this paper, the normal approximation rate and the random weighting approximation rate of error distribution of the kernel estimator of conditional density function f(y|x) are studied. The results may be used to...In this paper, the normal approximation rate and the random weighting approximation rate of error distribution of the kernel estimator of conditional density function f(y|x) are studied. The results may be used to construct the confidence interval of f(y|x) .展开更多
文摘In this article, our proposed kernel estimator, named as Gumbel kernel, which broadened the class of non-negative, asymmetric kernel density estimators. Such kernel estimator can be used in nonparametric estimation of the probability density function (</span><i><span style="font-family:Verdana;">pdf</span></i><span style="font-family:Verdana;">). When the density functions have limited bounded support on [0, ∞) and they are liberated of boundary bias, always non-negative and obtain the optimal rate of convergence for the mean integrated squared error (MISE). The bias, variance and the optimal bandwidth of the proposed estimators are investigated on theoretical grounds as well as on simulation basis. Further, the applicability of the proposed estimator is compared to Weibul</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">l</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> kernel estimator, where performance of newly proposed kernel is outstanding.
基金Project supported by the National Natural Science Foundation of China (Grant No.60773081)the Shanghai Leading Academic Discipline Project (Grant No.S30104)
文摘There have been many papers presenting kernel density estimators for a strictly stationary continuous time process observed over the time interval [0, T ]. However the estimators do not satisfy the property of mean-square continuity if the process is mean-square continuous. In this paper we present a modified kernel estimator and substantiate that the modified estimator satisfies the property of mean-square continuity. In a simulation study the results show the modified estimator is better than the original estimator in some cases.
文摘In this paper, we establish asymptotically optimal simultaneous confidence bands for the copula function based on the local linear kernel estimator proposed by Chen and Huang [1]. For this, we prove under smoothness conditions on the derivatives of the copula a uniform in bandwidth law of the iterated logarithm for the maximal deviation of this estimator from its expectation. We also show that the bias term converges uniformly to zero with a precise rate. The performance of these bands is illustrated by a simulation study. An application based on pseudo-panel data is also provided for modeling the dependence structure of Senegalese households’ expense data in 2001 and 2006.
基金Research supported by the National Natural Science Foundation of China (10271091)
文摘Let fn be a non-parametric kernel density estimator based on a kernel function K. and a sequence of independent and identically distributed random variables taking values in R. The goal of this article is to prove moderate deviations and large deviations for the statistic sup |fn(x) - fn(-x) |.
基金Zhou's research was partially supported by the NNSF of China (10471140, 10571169)Wu's research was partially supported by NNSF of China (0571170)
文摘A kernel-type estimator of the quantile function Q(p) = inf{t:F(t) ≥ p}, 0 ≤ p ≤ 1, is proposed based on the kernel smoother when the data are subjected to random truncation. The Bahadur-type representations of the kernel smooth estimator are established, and from Bahadur representations the authors can show that this estimator is strongly consistent, asymptotically normal, and weakly convergent.
文摘LetX 1,…,X n be iid observations of a random variableX with probability density functionf(x) on the q-dimensional unit sphere Ωq in Rq+1,q ? 1. Let $f_n (x) = n^{ - 1} c(h)\sum\nolimits_{i = 1}^n {K[(1 - x'X_i )/h^2 ]} $ be a kernel estimator off(x). In this paper we establish a central limit theorem for integrated square error off n under some mild conditions.
基金the financial support provided by the National Key Research and Development Program for Young Scientists(No.2021YFC2900400)Postdoctoral Fellowship Program of China Postdoctoral Science Foundation(CPSF)(No.GZB20230914)+2 种基金National Natural Science Foundation of China(No.52304123)China Postdoctoral Science Foundation(No.2023M730412)Chongqing Outstanding Youth Science Foundation Program(No.CSTB2023NSCQ-JQX0027).
文摘Monitoring sensors in complex engineering environments often record abnormal data,leading to significant positioning errors.To reduce the influence of abnormal arrival times,we introduce an innovative,outlier-robust localization method that integrates kernel density estimation(KDE)with damping linear correction to enhance the precision of microseismic/acoustic emission(MS/AE)source positioning.Our approach systematically addresses abnormal arrival times through a three-step process:initial location by 4-arrival combinations,elimination of outliers based on three-dimensional KDE,and refinement using a linear correction with an adaptive damping factor.We validate our method through lead-breaking experiments,demonstrating over a 23%improvement in positioning accuracy with a maximum error of 9.12 mm(relative error of 15.80%)—outperforming 4 existing methods.Simulations under various system errors,outlier scales,and ratios substantiate our method’s superior performance.Field blasting experiments also confirm the practical applicability,with an average positioning error of 11.71 m(relative error of 7.59%),compared to 23.56,66.09,16.95,and 28.52 m for other methods.This research is significant as it enhances the robustness of MS/AE source localization when confronted with data anomalies.It also provides a practical solution for real-world engineering and safety monitoring applications.
基金National Natural Science Foundation of China (Grant No. 70971082)Shanghai Leading Academic Discipline Project at Shanghai University of Finance and Economics (SHUFE) (Grant No. B803)Key Laboratory of Mathematical Economics (SHUFE), Ministry of Education
文摘This paper derives some uniform convergence rates for kernel regression of some index functions that may depend on infinite dimensional parameter. The rates of convergence are computed for independent, strongly mixing and weakly dependent data respectively. These results extend the existing literature and are useful for the derivation of large sample properties of the estimators in some semiparametric and nonparametric models.
基金Supported by the Doctoral Scientific Research Starting Foundation of Jingdezhen Ceramic University(Grant No.102/01003002031)Program of Department of Education of Jiangxi Province of China(Grant Nos.GJJ190732,GJJ180737)the Natural Science Foundation Program of Jiangxi Province(Grant No.20202BABL211005).
文摘Assume that f_(n)is the nonparametric kernel density estimator of directional data based on a kernel function K and a sequence of independent and identically distributed random variables taking values in d-dimensional unit sphere S^(d-1).We established that the large deviation principle for{sup_(x∈S^(d-1))|fn(x)-fn(-x)|,n≥1}holds if the kernel function is a function with bounded variation,and the density function f of the random variables is continuous and symmetric.
文摘A kernel density estimator is proposed when tile data are subject to censorship in multivariate case. The asymptotic normality, strong convergence and asymptotic optimal bandwidth which minimize the mean square error of the estimator are studied.
文摘In real-world applications, datasets frequently contain outliers, which can hinder the generalization ability of machine learning models. Bayesian classifiers, a popular supervised learning method, rely on accurate probability density estimation for classifying continuous datasets. However, achieving precise density estimation with datasets containing outliers poses a significant challenge. This paper introduces a Bayesian classifier that utilizes optimized robust kernel density estimation to address this issue. Our proposed method enhances the accuracy of probability density distribution estimation by mitigating the impact of outliers on the training sample’s estimated distribution. Unlike the conventional kernel density estimator, our robust estimator can be seen as a weighted kernel mapping summary for each sample. This kernel mapping performs the inner product in the Hilbert space, allowing the kernel density estimation to be considered the average of the samples’ mapping in the Hilbert space using a reproducing kernel. M-estimation techniques are used to obtain accurate mean values and solve the weights. Meanwhile, complete cross-validation is used as the objective function to search for the optimal bandwidth, which impacts the estimator. The Harris Hawks Optimisation optimizes the objective function to improve the estimation accuracy. The experimental results show that it outperforms other optimization algorithms regarding convergence speed and objective function value during the bandwidth search. The optimal robust kernel density estimator achieves better fitness performance than the traditional kernel density estimator when the training data contains outliers. The Naïve Bayesian with optimal robust kernel density estimation improves the generalization in the classification with outliers.
基金the National Natural Science Foundation of China(Nos.61074090 and 60804025)。
文摘The sixth-generation fighter has superior stealth performance,but for the traditional kernel density estimation(KDE),precision requirements are difficult to satisfy when dealing with the fluctuation characteristics of complex radar cross section(RCS).To solve this problem,this paper studies the KDE algorithm for F/AXX stealth fighter.By considering the accuracy lack of existing fixed bandwidth algorithms,a novel adaptive kernel density estimation(AKDE)algorithm equipped with least square cross validation and integrated squared error criterion is proposed to optimize the bandwidth.Meanwhile,an adaptive RCS density estimation can be obtained according to the optimized bandwidth.Finally,simulations verify that the estimation accuracy of the adaptive bandwidth RCS density estimation algorithm is more than 50%higher than that of the traditional algorithm.Based on the proposed algorithm(i.e.,AKDE),statistical characteristics of the considered fighter are more accurately acquired,and then the significant advantages of the AKDE algorithm in solving cumulative distribution function estimation of RCS less than 1 m2 are analyzed.
文摘This paper considers the local linear regression estimators for partially linear model with censored data. Which have some nice large-sample behaviors and are easy to implement. By many simulation runs, the author also found that the estimators show remarkable in the small sample case yet.
基金supported by the National Key Research and Development Plan(Grant No.2023YFB3712400)the National Key Research and Development Plan(Grant No.2020YFB1713600).
文摘Mechanical properties are critical to the quality of hot-rolled steel pipe products.Accurately understanding the relationship between rolling parameters and mechanical properties is crucial for effective prediction and control.To address this,an industrial big data platform was developed to collect and process multi-source heterogeneous data from the entire production process,providing a complete dataset for mechanical property prediction.The adaptive bandwidth kernel density estimation(ABKDE)method was proposed to adjust bandwidth dynamically based on data density.Combining long short-term memory neural networks with ABKDE offers robust prediction interval capabilities for mechanical properties.The proposed method was deployed in a large-scale steel plant,which demonstrated superior prediction interval performance compared to lower upper bound estimation,mean variance estimation,and extreme learning machine-adaptive bandwidth kernel density estimation,achieving a prediction interval normalized average width of 0.37,a prediction interval coverage probability of 0.94,and the lowest coverage width-based criterion of 1.35.Notably,shapley additive explanations-based explanations significantly improved the proposed model’s credibility by providing a clear analysis of feature impacts.
文摘The development of digital construction management is an important initiative to promote the digital transformation of the construction industry. But the attention to the regional differences in the development level of digital construction management in China from the industrial level is still relatively scarce. In this paper, the combination assignment method, Dagum’s Gini coefficient and Kernel density estimation method, are used to explore the regional differences and their dynamic evolution trends of China’s digital construction management development level. The study finds that the overall development level in China’s construction industry is on the rise, but it is still at a relatively low level. The overall Gini coefficient has increased, which is mainly due to uneven development between regions. There are large development differences between the eastern region and the other three regions. The interregional Gini coefficients for the Central-Northeastern and Central-Western regions are all growing at a higher rate.
基金Project(2020YFC2008605)supported by the National Key Research and Development Project of ChinaProject(52072412)supported by the National Natural Science Foundation of ChinaProject(2021JJ30359)supported by the Natural Science Foundation of Hunan Province,China。
文摘Urban air pollution has brought great troubles to physical and mental health,economic development,environmental protection,and other aspects.Predicting the changes and trends of air pollution can provide a scientific basis for governance and prevention efforts.In this paper,we propose an interval prediction method that considers the spatio-temporal characteristic information of PM_(2.5)signals from multiple stations.K-nearest neighbor(KNN)algorithm interpolates the lost signals in the process of collection,transmission,and storage to ensure the continuity of data.Graph generative network(GGN)is used to process time-series meteorological data with complex structures.The graph U-Nets framework is introduced into the GGN model to enhance its controllability to the graph generation process,which is beneficial to improve the efficiency and robustness of the model.In addition,sparse Bayesian regression is incorporated to improve the dimensional disaster defect of traditional kernel density estimation(KDE)interval prediction.With the support of sparse strategy,sparse Bayesian regression kernel density estimation(SBR-KDE)is very efficient in processing high-dimensional large-scale data.The PM_(2.5)data of spring,summer,autumn,and winter from 34 air quality monitoring sites in Beijing verified the accuracy,generalization,and superiority of the proposed model in interval prediction.
基金co-supported by the National Natural Science Foundation of China(Nos.52272403,52402506)Natural Science Basic Research Program of Shaanxi,China(Nos.2022JC-27,2023-JC-QN-0599)。
文摘The reliable,rapid,and accurate Remaining Useful Life(RUL)prognostics of aircraft power supply and distribution system are essential for enhancing the reliability and stability of system and reducing the life-cycle costs.To achieve the reliable,rapid,and accurate RUL prognostics,the balance between accuracy and computational burden deserves more attention.In addition,the uncertainty is intrinsically present in RUL prognostic process.Due to the limitation of the uncertainty quantification,the point-wise prognostics strategy is not trustworthy.A Dual Adaptive Sliding-window Hybrid(DASH)RUL probabilistic prognostics strategy is proposed to tackle these deficiencies.The DASH strategy contains two adaptive mechanisms,the adaptive Long Short-Term Memory-Polynomial Regression(LSTM-PR)hybrid prognostics mechanism and the adaptive sliding-window Kernel Density Estimation(KDE)probabilistic prognostics mechanism.Owing to the dual adaptive mechanisms,the DASH strategy can achieve the balance between accuracy and computational burden and obtain the trustworthy probabilistic prognostics.Based on the degradation dataset of aircraft electromagnetic contactors,the superiority of DASH strategy is validated.In terms of probabilistic,point-wise and integrated prognostics performance,the proposed strategy increases by 66.89%,81.73% and 25.84%on average compared with the baseline methods and their variants.
文摘The study of estimation of conditional extreme quantile in incomplete data frameworks is of growing interest. Specially, the estimation of the extreme value index in a censorship framework has been the purpose of many inves<span style="font-family:Verdana;">tigations when finite dimension covariate information has been considered. In this paper, the estimation of the conditional extreme quantile of a </span><span style="font-family:Verdana;">heavy-tailed distribution is discussed when some functional random covariate (</span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;"> valued in some infinite-dimensional space) information is available and the scalar response variable is right-censored. A Weissman-type estimator of conditional extreme quantiles is proposed and its asymptotic normality is established under mild assumptions. A simulation study is conducted to assess the finite-sample behavior of the proposed estimator and a comparison with two simple estimations strategies is provided.</span>
基金Under the auspices of National Natural Science Foundation of China(No.41371190,31021001)Scientific and Tech-nical Projects of Western China Transportation Construction,Ministry of Transport of China(No.2008-318-799-17)
文摘Road network is a critical component of public infrastructure,and the supporting system of social and economic development.Based on a modified kernel density estimate(KDE)algorithm,this study evaluated the road service capacity provided by a road network composed of multi-level roads(i.e.national,provincial,county and rural roads),by taking account of the differences of effect extent and intensity for roads of different levels.Summarized at town scale,the population burden and the annual rural economic income of unit road service capacity were used as the surrogates of social and economic demands for road service.This method was applied to the road network of the Three Parallel River Region,the northwestern Yunnan Province,China to evaluate the development of road network in this region.In results,the total road length of this region in 2005 was 3.70×104km,and the length ratio between national,provincial,county and rural roads was 1∶2∶8∶47.From 1989 to 2005,the regional road service capacity increased by 13.1%,of which the contributions from the national,provincial,county and rural roads were 11.1%,19.4%,22.6%,and 67.8%,respectively,revealing the effect of′All Village Accessible′policy of road development in the mountainous regions in the last decade.The spatial patterns of population burden and economic requirement of unit road service suggested that the areas farther away from the national and provincial roads have higher road development priority(RDP).Based on the modified KDE model and the framework of RDP evaluation,this study provided a useful approach for developing an optimal plan of road development at regional scale.
基金Supported by Natural Science Foundation of Beijing City and National Natural Science Foundation ofChina(2 2 30 4 1 0 0 1 30 1
文摘In this paper, the normal approximation rate and the random weighting approximation rate of error distribution of the kernel estimator of conditional density function f(y|x) are studied. The results may be used to construct the confidence interval of f(y|x) .