期刊文献+
共找到129篇文章
< 1 2 7 >
每页显示 20 50 100
Functional Kernel Estimation of the Conditional Extreme Quantile under Random Right Censoring
1
作者 Justin Ushize Rutikanga Aliou Diop 《Open Journal of Statistics》 2021年第1期162-177,共16页
The study of estimation of conditional extreme quantile in incomplete data frameworks is of growing interest. Specially, the estimation of the extreme value index in a censorship framework has been the purpose of many... The study of estimation of conditional extreme quantile in incomplete data frameworks is of growing interest. Specially, the estimation of the extreme value index in a censorship framework has been the purpose of many inves<span style="font-family:Verdana;">tigations when finite dimension covariate information has been considered. In this paper, the estimation of the conditional extreme quantile of a </span><span style="font-family:Verdana;">heavy-tailed distribution is discussed when some functional random covariate (</span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;"> valued in some infinite-dimensional space) information is available and the scalar response variable is right-censored. A Weissman-type estimator of conditional extreme quantiles is proposed and its asymptotic normality is established under mild assumptions. A simulation study is conducted to assess the finite-sample behavior of the proposed estimator and a comparison with two simple estimations strategies is provided.</span> 展开更多
关键词 kernel Estimator Functional Data Censored Data Conditional Extreme Quantile Heavy-Tailed Distributions
在线阅读 下载PDF
Enhancing microseismic/acoustic emission source localization accuracy with an outlier-robust kernel density estimation approach 被引量:2
2
作者 Jie Chen Huiqiong Huang +4 位作者 Yichao Rui Yuanyuan Pu Sheng Zhang Zheng Li Wenzhong Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第7期943-956,共14页
Monitoring sensors in complex engineering environments often record abnormal data,leading to significant positioning errors.To reduce the influence of abnormal arrival times,we introduce an innovative,outlier-robust l... Monitoring sensors in complex engineering environments often record abnormal data,leading to significant positioning errors.To reduce the influence of abnormal arrival times,we introduce an innovative,outlier-robust localization method that integrates kernel density estimation(KDE)with damping linear correction to enhance the precision of microseismic/acoustic emission(MS/AE)source positioning.Our approach systematically addresses abnormal arrival times through a three-step process:initial location by 4-arrival combinations,elimination of outliers based on three-dimensional KDE,and refinement using a linear correction with an adaptive damping factor.We validate our method through lead-breaking experiments,demonstrating over a 23%improvement in positioning accuracy with a maximum error of 9.12 mm(relative error of 15.80%)—outperforming 4 existing methods.Simulations under various system errors,outlier scales,and ratios substantiate our method’s superior performance.Field blasting experiments also confirm the practical applicability,with an average positioning error of 11.71 m(relative error of 7.59%),compared to 23.56,66.09,16.95,and 28.52 m for other methods.This research is significant as it enhances the robustness of MS/AE source localization when confronted with data anomalies.It also provides a practical solution for real-world engineering and safety monitoring applications. 展开更多
关键词 Microseismic source/acoustic emission(MS/AE) kernel density estimation(KDE) Damping linear correction Source location Abnormal arrivals
在线阅读 下载PDF
Bayesian Classifier Based on Robust Kernel Density Estimation and Harris Hawks Optimisation
3
作者 Bi Iritie A-D Boli Chenghao Wei 《International Journal of Internet and Distributed Systems》 2024年第1期1-23,共23页
In real-world applications, datasets frequently contain outliers, which can hinder the generalization ability of machine learning models. Bayesian classifiers, a popular supervised learning method, rely on accurate pr... In real-world applications, datasets frequently contain outliers, which can hinder the generalization ability of machine learning models. Bayesian classifiers, a popular supervised learning method, rely on accurate probability density estimation for classifying continuous datasets. However, achieving precise density estimation with datasets containing outliers poses a significant challenge. This paper introduces a Bayesian classifier that utilizes optimized robust kernel density estimation to address this issue. Our proposed method enhances the accuracy of probability density distribution estimation by mitigating the impact of outliers on the training sample’s estimated distribution. Unlike the conventional kernel density estimator, our robust estimator can be seen as a weighted kernel mapping summary for each sample. This kernel mapping performs the inner product in the Hilbert space, allowing the kernel density estimation to be considered the average of the samples’ mapping in the Hilbert space using a reproducing kernel. M-estimation techniques are used to obtain accurate mean values and solve the weights. Meanwhile, complete cross-validation is used as the objective function to search for the optimal bandwidth, which impacts the estimator. The Harris Hawks Optimisation optimizes the objective function to improve the estimation accuracy. The experimental results show that it outperforms other optimization algorithms regarding convergence speed and objective function value during the bandwidth search. The optimal robust kernel density estimator achieves better fitness performance than the traditional kernel density estimator when the training data contains outliers. The Naïve Bayesian with optimal robust kernel density estimation improves the generalization in the classification with outliers. 展开更多
关键词 CLASSIFICATION Robust kernel Density estimation M-estimation Harris Hawks Optimisation Algorithm Complete Cross-Validation
在线阅读 下载PDF
Statistical Characteristics Analysis Based on F/A-XX Fighter Using Adapative Kernel Density Estimation Algorithm
4
作者 FU Li JIANG Guanwu HUANG Quanjun 《Journal of Shanghai Jiaotong university(Science)》 2024年第6期1202-1210,共9页
The sixth-generation fighter has superior stealth performance,but for the traditional kernel density estimation(KDE),precision requirements are difficult to satisfy when dealing with the fluctuation characteristics of... The sixth-generation fighter has superior stealth performance,but for the traditional kernel density estimation(KDE),precision requirements are difficult to satisfy when dealing with the fluctuation characteristics of complex radar cross section(RCS).To solve this problem,this paper studies the KDE algorithm for F/AXX stealth fighter.By considering the accuracy lack of existing fixed bandwidth algorithms,a novel adaptive kernel density estimation(AKDE)algorithm equipped with least square cross validation and integrated squared error criterion is proposed to optimize the bandwidth.Meanwhile,an adaptive RCS density estimation can be obtained according to the optimized bandwidth.Finally,simulations verify that the estimation accuracy of the adaptive bandwidth RCS density estimation algorithm is more than 50%higher than that of the traditional algorithm.Based on the proposed algorithm(i.e.,AKDE),statistical characteristics of the considered fighter are more accurately acquired,and then the significant advantages of the AKDE algorithm in solving cumulative distribution function estimation of RCS less than 1 m2 are analyzed. 展开更多
关键词 radar cross section(RCS) kernel density estimation(KDE) statistical properties
原文传递
Asymptotics for Kernel Estimation of Slicing Average Third-Moment Estimation
5
作者 Li-ping Zhu Li-xing Zhu 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2006年第1期103-114,共12页
To estimate central dimension-reduction space in multivariate nonparametric rcgression, Sliced Inverse Regression (SIR), Sliced Average Variance Estimation (SAVE) and Slicing Average Third-moment Estimation (SAT... To estimate central dimension-reduction space in multivariate nonparametric rcgression, Sliced Inverse Regression (SIR), Sliced Average Variance Estimation (SAVE) and Slicing Average Third-moment Estimation (SAT) have been developed, Since slicing estimation has very different asymptotic behavior for SIR, and SAVE, the relevant study has been madc case by case, when the kernel estimators of SIH and SAVE share similar asymptotic properties. In this paper, we also investigate kernel estimation of SAT. We. prove the asymptotic normality, and show that, compared with tile existing results, the kernel Slnoothing for SIR, SAVE and SAT has very similar asymptotic behavior, 展开更多
关键词 Asymptotic normality bandwidth selection dimension reduction inverse regression method kernel estimation
原文传递
Probability distribution of wind power volatility based on the moving average method and improved nonparametric kernel density estimation 被引量:4
6
作者 Peizhe Xin Ying Liu +2 位作者 Nan Yang Xuankun Song Yu Huang 《Global Energy Interconnection》 2020年第3期247-258,共12页
In the process of large-scale,grid-connected wind power operations,it is important to establish an accurate probability distribution model for wind farm fluctuations.In this study,a wind power fluctuation modeling met... In the process of large-scale,grid-connected wind power operations,it is important to establish an accurate probability distribution model for wind farm fluctuations.In this study,a wind power fluctuation modeling method is proposed based on the method of moving average and adaptive nonparametric kernel density estimation(NPKDE)method.Firstly,the method of moving average is used to reduce the fluctuation of the sampling wind power component,and the probability characteristics of the modeling are then determined based on the NPKDE.Secondly,the model is improved adaptively,and is then solved by using constraint-order optimization.The simulation results show that this method has a better accuracy and applicability compared with the modeling method based on traditional parameter estimation,and solves the local adaptation problem of traditional NPKDE. 展开更多
关键词 Moving average method Signal decomposition Wind power fluctuation characteristics kernel density estimation Constrained order optimization
在线阅读 下载PDF
An Independent Component Analysis Algorithm through Solving Gradient Equation Combined with Kernel Density Estimation 被引量:2
7
作者 薛云峰 王宇嘉 杨杰 《Journal of Shanghai Jiaotong university(Science)》 EI 2009年第2期204-209,共6页
A new algorithm for linear instantaneous independent component analysis is proposed based on maximizing the log-likelihood contrast function which can be changed into a gradient equation.An iterative method is introdu... A new algorithm for linear instantaneous independent component analysis is proposed based on maximizing the log-likelihood contrast function which can be changed into a gradient equation.An iterative method is introduced to solve this equation efficiently.The unknown probability density functions as well as their first and second derivatives in the gradient equation are estimated by kernel density method.Computer simulations on artificially generated signals and gray scale natural scene images confirm the efficiency and accuracy of the proposed algorithm. 展开更多
关键词 independent component analysis blind source separation gradient method kernel density estimation
原文传递
Static Frame Model Validation with Small Samples Solution Using Improved Kernel Density Estimation and Confidence Level Method 被引量:7
8
作者 ZHANG Baoqiang CHEN Guoping GUO Qintao 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2012年第6期879-886,共8页
An improved method using kernel density estimation (KDE) and confidence level is presented for model validation with small samples. Decision making is a challenging problem because of input uncertainty and only smal... An improved method using kernel density estimation (KDE) and confidence level is presented for model validation with small samples. Decision making is a challenging problem because of input uncertainty and only small samples can be used due to the high costs of experimental measurements. However, model validation provides more confidence for decision makers when improving prediction accuracy at the same time. The confidence level method is introduced and the optimum sample variance is determined using a new method in kernel density estimation to increase the credibility of model validation. As a numerical example, the static frame model validation challenge problem presented by Sandia National Laboratories has been chosen. The optimum bandwidth is selected in kernel density estimation in order to build the probability model based on the calibration data. The model assessment is achieved using validation and accreditation experimental data respectively based on the probability model. Finally, the target structure prediction is performed using validated model, which are consistent with the results obtained by other researchers. The results demonstrate that the method using the improved confidence level and kernel density estimation is an effective approach to solve the model validation problem with small samples. 展开更多
关键词 model validation small samples uncertainty analysis kernel density estimation confidence level prediction
原文传递
Kernel density estimation and marginalized-particle based probability hypothesis density filter for multi-target tracking 被引量:3
9
作者 张路平 王鲁平 +1 位作者 李飚 赵明 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期956-965,共10页
In order to improve the performance of the probability hypothesis density(PHD) algorithm based particle filter(PF) in terms of number estimation and states extraction of multiple targets, a new probability hypothesis ... In order to improve the performance of the probability hypothesis density(PHD) algorithm based particle filter(PF) in terms of number estimation and states extraction of multiple targets, a new probability hypothesis density filter algorithm based on marginalized particle and kernel density estimation is proposed, which utilizes the idea of marginalized particle filter to enhance the estimating performance of the PHD. The state variables are decomposed into linear and non-linear parts. The particle filter is adopted to predict and estimate the nonlinear states of multi-target after dimensionality reduction, while the Kalman filter is applied to estimate the linear parts under linear Gaussian condition. Embedding the information of the linear states into the estimated nonlinear states helps to reduce the estimating variance and improve the accuracy of target number estimation. The meanshift kernel density estimation, being of the inherent nature of searching peak value via an adaptive gradient ascent iteration, is introduced to cluster particles and extract target states, which is independent of the target number and can converge to the local peak position of the PHD distribution while avoiding the errors due to the inaccuracy in modeling and parameters estimation. Experiments show that the proposed algorithm can obtain higher tracking accuracy when using fewer sampling particles and is of lower computational complexity compared with the PF-PHD. 展开更多
关键词 particle filter with probability hypothesis density marginalized particle filter meanshift kernel density estimation multi-target tracking
在线阅读 下载PDF
AN EFFECTIVE IMAGE RETRIEVAL METHOD BASED ON KERNEL DENSITY ESTIMATION OF COLLAGE ERROR AND MOMENT INVARIANTS 被引量:1
10
作者 Zhang Qin Huang Xiaoqing +2 位作者 Liu Wenbo Zhu Yongjun Le Jun 《Journal of Electronics(China)》 2013年第4期391-400,共10页
In this paper, we propose a new method that combines collage error in fractal domain and Hu moment invariants for image retrieval with a statistical method - variable bandwidth Kernel Density Estimation (KDE). The pro... In this paper, we propose a new method that combines collage error in fractal domain and Hu moment invariants for image retrieval with a statistical method - variable bandwidth Kernel Density Estimation (KDE). The proposed method is called CHK (KDE of Collage error and Hu moment) and it is tested on the Vistex texture database with 640 natural images. Experimental results show that the Average Retrieval Rate (ARR) can reach into 78.18%, which demonstrates that the proposed method performs better than the one with parameters respectively as well as the commonly used histogram method both on retrieval rate and retrieval time. 展开更多
关键词 Fractal Coding (FC) Hu moment invariant kernel Density estimation (KDE) Variableoptimized bandwidth Image retrieval
在线阅读 下载PDF
Multi-view space object recognition and pose estimation based on kernel regression 被引量:3
11
作者 Zhang Haopeng Jiang Zhiguo 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第5期1233-1241,共9页
The application of high-performance imaging sensors in space-based space surveillance systems makes it possible to recognize space objects and estimate their poses using vision-based methods. In this paper, we propose... The application of high-performance imaging sensors in space-based space surveillance systems makes it possible to recognize space objects and estimate their poses using vision-based methods. In this paper, we proposed a kernel regression-based method for joint multi-view space object recognition and pose estimation. We built a new simulated satellite image dataset named BUAA-SID 1.5 to test our method using different image representations. We evaluated our method for recognition-only tasks, pose estimation-only tasks, and joint recognition and pose estimation tasks. Experimental results show that our method outperforms the state-of-the-arts in space object recognition, and can recognize space objects and estimate their poses effectively and robustly against noise and lighting conditions. 展开更多
关键词 kernel regression Object recognition Pose estimation Space objects Vision-based
原文传递
Diversity Sampling Based Kernel Density Estimation for Background Modeling
12
作者 毛燕芬 施鹏飞 《Journal of Shanghai University(English Edition)》 CAS 2005年第6期506-509,共4页
A novel diversity-sampling based nonparametric multi-modal background model is proposed. Using the samples having more popular and various intensity values in the training sequence, a nonparametric model is built for ... A novel diversity-sampling based nonparametric multi-modal background model is proposed. Using the samples having more popular and various intensity values in the training sequence, a nonparametric model is built for background subtraction. According to the related intensifies, different weights are given to the distinct samples in kernel density estimation. This avoids repeated computation using all samples, and makes computation more efficient in the evaluation phase. Experimental results show the validity of the diversity- sampling scheme and robustness of the proposed model in moving objects segmentation. The proposed algorithm can be used in outdoor surveillance systems. 展开更多
关键词 background subtraction diversity sampling kernel density estimation multi-modal background model
在线阅读 下载PDF
Density Estimation Using Gumbel Kernel Estimator
13
作者 Javaria Ahmad Khan Atif Akbar 《Open Journal of Statistics》 2021年第2期319-328,共10页
In this article, our proposed kernel estimator, named as Gumbel kernel, which broadened the class of non-negative, asymmetric kernel density estimators. Such kernel estimator can be used in nonparametric estimation of... In this article, our proposed kernel estimator, named as Gumbel kernel, which broadened the class of non-negative, asymmetric kernel density estimators. Such kernel estimator can be used in nonparametric estimation of the probability density function (</span><i><span style="font-family:Verdana;">pdf</span></i><span style="font-family:Verdana;">). When the density functions have limited bounded support on [0, ∞) and they are liberated of boundary bias, always non-negative and obtain the optimal rate of convergence for the mean integrated squared error (MISE). The bias, variance and the optimal bandwidth of the proposed estimators are investigated on theoretical grounds as well as on simulation basis. Further, the applicability of the proposed estimator is compared to Weibul</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">l</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> kernel estimator, where performance of newly proposed kernel is outstanding. 展开更多
关键词 Asymmetrical kernels Boundary Problems Density estimation Flood Data Gumbel kernel Estimator
在线阅读 下载PDF
ESSENTIAL RELATIONSHIP BETWEEN DOMAIN-BASED ONE-CLASS CLASSIFIERS AND DENSITY ESTIMATION 被引量:2
14
作者 陈斌 李斌 +1 位作者 冯爱民 潘志松 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第4期275-281,共7页
One-class support vector machine (OCSVM) and support vector data description (SVDD) are two main domain-based one-class (kernel) classifiers. To reveal their relationship with density estimation in the case of t... One-class support vector machine (OCSVM) and support vector data description (SVDD) are two main domain-based one-class (kernel) classifiers. To reveal their relationship with density estimation in the case of the Gaussian kernel, OCSVM and SVDD are firstly unified into the framework of kernel density estimation, and the essential relationship between them is explicitly revealed. Then the result proves that the density estimation induced by OCSVM or SVDD is in agreement with the true density. Meanwhile, it can also reduce the integrated squared error (ISE). Finally, experiments on several simulated datasets verify the revealed relationships. 展开更多
关键词 one-class support vector machine(OCSVM) support vector data description(SVDD) kernel density estimation
在线阅读 下载PDF
Explainable machine learning for predicting mechanical properties of hot-rolled steel pipe 被引量:1
15
作者 Jing-dong Li You-zhao Sun +4 位作者 Xiao-chen Wang Quan Yang Guo-dong Liu Hao-tang Qie Feng-xia Li 《Journal of Iron and Steel Research International》 2025年第8期2475-2490,共16页
Mechanical properties are critical to the quality of hot-rolled steel pipe products.Accurately understanding the relationship between rolling parameters and mechanical properties is crucial for effective prediction an... Mechanical properties are critical to the quality of hot-rolled steel pipe products.Accurately understanding the relationship between rolling parameters and mechanical properties is crucial for effective prediction and control.To address this,an industrial big data platform was developed to collect and process multi-source heterogeneous data from the entire production process,providing a complete dataset for mechanical property prediction.The adaptive bandwidth kernel density estimation(ABKDE)method was proposed to adjust bandwidth dynamically based on data density.Combining long short-term memory neural networks with ABKDE offers robust prediction interval capabilities for mechanical properties.The proposed method was deployed in a large-scale steel plant,which demonstrated superior prediction interval performance compared to lower upper bound estimation,mean variance estimation,and extreme learning machine-adaptive bandwidth kernel density estimation,achieving a prediction interval normalized average width of 0.37,a prediction interval coverage probability of 0.94,and the lowest coverage width-based criterion of 1.35.Notably,shapley additive explanations-based explanations significantly improved the proposed model’s credibility by providing a clear analysis of feature impacts. 展开更多
关键词 Mechanical property Hot-rolled steel pipe Machine learning Adaptive bandwidth kernel density estimation Shapley additive explanations-based explanation
原文传递
Heating load interval forecasting approach based on support vector regression and error estimation
16
作者 张永明 于德亮 齐维贵 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第4期94-98,共5页
As the existing heating load forecasting methods are almostly point forecasting,an interval forecasting approach based on Support Vector Regression (SVR) and interval estimation of relative error is proposed in this p... As the existing heating load forecasting methods are almostly point forecasting,an interval forecasting approach based on Support Vector Regression (SVR) and interval estimation of relative error is proposed in this paper.The forecasting output can be defined as energy saving control setting value of heating supply substation;meanwhile,it can also provide a practical basis for heating dispatching and peak load regulating operation.By means of the proposed approach,SVR model is used to point forecasting and the error interval can be gained by using nonparametric kernel estimation to the forecast error,which avoid the distributional assumptions.Combining the point forecasting results and error interval,the forecast confidence interval is obtained.Finally,the proposed model is performed through simulations by applying it to the data from a heating supply network in Harbin,and the results show that the method can meet the demands of energy saving control and heating dispatching. 展开更多
关键词 heating supply energy-saving load forecasting support vector regression nonparametric kernel estimation confidence interval
在线阅读 下载PDF
Robust estimation of time-dependent precision matrix with application to the cryptocurrency market
17
作者 Paola Stolfi Mauro Bernardi Davide Vergni 《Financial Innovation》 2022年第1期1313-1337,共25页
Most financial signals show time dependency that,combined with noisy and extreme events,poses serious problems in the parameter estimations of statistical models.Moreover,when addressing asset pricing,portfolio select... Most financial signals show time dependency that,combined with noisy and extreme events,poses serious problems in the parameter estimations of statistical models.Moreover,when addressing asset pricing,portfolio selection,and investment strategies,accurate estimates of the relationship among assets are as necessary as are delicate in a time-dependent context.In this regard,fundamental tools that increasingly attract research interests are precision matrix and graphical models,which are able to obtain insights into the joint evolution of financial quantities.In this paper,we present a robust divergence estimator for a time-varying precision matrix that can manage both the extreme events and time-dependency that affect financial time series.Furthermore,we provide an algorithm to handle parameter estimations that uses the“maximization–minimization”approach.We apply the methodology to synthetic data to test its performances.Then,we consider the cryptocurrency market as a real data application,given its remarkable suitability for the proposed method because of its volatile and unregulated nature. 展开更多
关键词 Time-varying models Robust methods kernel estimation Precision matrix DIVERGENCE
在线阅读 下载PDF
Kernel density estimation of egg attachment areas aids in revealing spatiotemporal changes in Chinese sturgeon spawning grounds
18
作者 Pengsheng Li Xuan Ban +5 位作者 Jinming Wu Hui Zhang Junyi Li Li Shen Zhigang Liu Hao Du 《Water Biology and Security》 2025年第1期24-30,共7页
Identifying precise egg attachment areas and tracking trends of spawning magnitude (total amount of spawned eggs) are critical for accurate habitat assessment and effective conservation efforts, especially for lithoph... Identifying precise egg attachment areas and tracking trends of spawning magnitude (total amount of spawned eggs) are critical for accurate habitat assessment and effective conservation efforts, especially for lithophilic spawning fishes. However, accurate measurement of spawning conditions across both spatial and temporal dimensions poses significant challenges. We conducted a fourteen-year field study below the Gezhouba Dam, the main spawning ground for the Chinese sturgeon, using Kernel Density Estimation (KDE) method and Catch per Unit of Effort (CPUE) to refine knowledge on egg attachment areas relative to previous assessments. In addition, our analysis documented shifts in spawning locations within these four areas over the past fourteen years, revealing a worrying trend of decreasing spawning magnitude. This approach not only enabled the incorporation of the density distribution of eggs into the assessment of spawning magnitude trends, but also underscored the potential of the KDE as a framework for identifying egg attachment areas and estimating spawning magnitude trends. Our results provide valuable insights into spawning degradation of Chinese sturgeon and inform conservation strategies to protect their fragile spawning grounds. 展开更多
关键词 Egg distribution Spawning magnitude kernel density estimation Chinese sturgeon Catch-per-unit-of-effort(CPUE) Spawning location
在线阅读 下载PDF
Development and Evolution of Digital Construction Management Adoption in China’s Construction Industry
19
作者 Shuwen Cao 《Journal of Architectural Research and Development》 2025年第3期15-22,共8页
The development of digital construction management is an important initiative to promote the digital transformation of the construction industry. But the attention to the regional differences in the development level ... The development of digital construction management is an important initiative to promote the digital transformation of the construction industry. But the attention to the regional differences in the development level of digital construction management in China from the industrial level is still relatively scarce. In this paper, the combination assignment method, Dagum’s Gini coefficient and Kernel density estimation method, are used to explore the regional differences and their dynamic evolution trends of China’s digital construction management development level. The study finds that the overall development level in China’s construction industry is on the rise, but it is still at a relatively low level. The overall Gini coefficient has increased, which is mainly due to uneven development between regions. There are large development differences between the eastern region and the other three regions. The interregional Gini coefficients for the Central-Northeastern and Central-Western regions are all growing at a higher rate. 展开更多
关键词 DIGITAL Construction management Regional differences Dagum’s Gini coefficient kernel density estimation
在线阅读 下载PDF
PM_(2.5) probabilistic forecasting system based on graph generative network with graph U-nets architecture
20
作者 LI Yan-fei YANG Rui +1 位作者 DUAN Zhu LIU Hui 《Journal of Central South University》 2025年第1期304-318,共15页
Urban air pollution has brought great troubles to physical and mental health,economic development,environmental protection,and other aspects.Predicting the changes and trends of air pollution can provide a scientific ... Urban air pollution has brought great troubles to physical and mental health,economic development,environmental protection,and other aspects.Predicting the changes and trends of air pollution can provide a scientific basis for governance and prevention efforts.In this paper,we propose an interval prediction method that considers the spatio-temporal characteristic information of PM_(2.5)signals from multiple stations.K-nearest neighbor(KNN)algorithm interpolates the lost signals in the process of collection,transmission,and storage to ensure the continuity of data.Graph generative network(GGN)is used to process time-series meteorological data with complex structures.The graph U-Nets framework is introduced into the GGN model to enhance its controllability to the graph generation process,which is beneficial to improve the efficiency and robustness of the model.In addition,sparse Bayesian regression is incorporated to improve the dimensional disaster defect of traditional kernel density estimation(KDE)interval prediction.With the support of sparse strategy,sparse Bayesian regression kernel density estimation(SBR-KDE)is very efficient in processing high-dimensional large-scale data.The PM_(2.5)data of spring,summer,autumn,and winter from 34 air quality monitoring sites in Beijing verified the accuracy,generalization,and superiority of the proposed model in interval prediction. 展开更多
关键词 PM_(2.5)interval forecasting graph generative network graph U-Nets sparse Bayesian regression kernel density estimation spatial-temporal characteristics
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部