期刊文献+
共找到888篇文章
< 1 2 45 >
每页显示 20 50 100
DATA PREPROCESSING AND RE KERNEL CLUSTERING FOR LETTER
1
作者 Zhu Changming Gao Daqi 《Journal of Electronics(China)》 2014年第6期552-564,共13页
Many classifiers and methods are proposed to deal with letter recognition problem. Among them, clustering is a widely used method. But only one time for clustering is not adequately. Here, we adopt data preprocessing ... Many classifiers and methods are proposed to deal with letter recognition problem. Among them, clustering is a widely used method. But only one time for clustering is not adequately. Here, we adopt data preprocessing and a re kernel clustering method to tackle the letter recognition problem. In order to validate effectiveness and efficiency of proposed method, we introduce re kernel clustering into Kernel Nearest Neighbor classification(KNN), Radial Basis Function Neural Network(RBFNN), and Support Vector Machine(SVM). Furthermore, we compare the difference between re kernel clustering and one time kernel clustering which is denoted as kernel clustering for short. Experimental results validate that re kernel clustering forms fewer and more feasible kernels and attain higher classification accuracy. 展开更多
关键词 Data preprocessing kernel clustering kernel Nearest Neighbor(KNN) Re kernel clustering
在线阅读 下载PDF
A Fast and Effective Multiple Kernel Clustering Method on Incomplete Data 被引量:1
2
作者 Lingyun Xiang Guohan Zhao +3 位作者 Qian Li Gwang-Jun Kim Osama Alfarraj Amr Tolba 《Computers, Materials & Continua》 SCIE EI 2021年第4期267-284,共18页
Multiple kernel clustering is an unsupervised data analysis method that has been used in various scenarios where data is easy to be collected but hard to be labeled.However,multiple kernel clustering for incomplete da... Multiple kernel clustering is an unsupervised data analysis method that has been used in various scenarios where data is easy to be collected but hard to be labeled.However,multiple kernel clustering for incomplete data is a critical yet challenging task.Although the existing absent multiple kernel clustering methods have achieved remarkable performance on this task,they may fail when data has a high value-missing rate,and they may easily fall into a local optimum.To address these problems,in this paper,we propose an absent multiple kernel clustering(AMKC)method on incomplete data.The AMKC method rst clusters the initialized incomplete data.Then,it constructs a new multiple-kernel-based data space,referred to as K-space,from multiple sources to learn kernel combination coefcients.Finally,it seamlessly integrates an incomplete-kernel-imputation objective,a multiple-kernel-learning objective,and a kernel-clustering objective in order to achieve absent multiple kernel clustering.The three stages in this process are carried out simultaneously until the convergence condition is met.Experiments on six datasets with various characteristics demonstrate that the kernel imputation and clustering performance of the proposed method is signicantly better than state-of-the-art competitors.Meanwhile,the proposed method gains fast convergence speed. 展开更多
关键词 Multiple kernel clustering absent-kernel imputation incomplete data kernel k-means clustering
在线阅读 下载PDF
Multiple Kernel Clustering Based on Self-Weighted Local Kernel Alignment
3
作者 Chuanli Wang En Zhu +3 位作者 Xinwang Liu Jiaohua Qin Jianping Yin Kaikai Zhao 《Computers, Materials & Continua》 SCIE EI 2019年第7期409-421,共13页
Multiple kernel clustering based on local kernel alignment has achieved outstanding clustering performance by applying local kernel alignment on each sample.However,we observe that most of existing works usually assum... Multiple kernel clustering based on local kernel alignment has achieved outstanding clustering performance by applying local kernel alignment on each sample.However,we observe that most of existing works usually assume that each local kernel alignment has the equal contribution to clustering performance,while local kernel alignment on different sample actually has different contribution to clustering performance.Therefore this assumption could have a negative effective on clustering performance.To solve this issue,we design a multiple kernel clustering algorithm based on self-weighted local kernel alignment,which can learn a proper weight to clustering performance for each local kernel alignment.Specifically,we introduce a new optimization variable-weight-to denote the contribution of each local kernel alignment to clustering performance,and then,weight,kernel combination coefficients and cluster membership are alternately optimized under kernel alignment frame.In addition,we develop a three-step alternate iterative optimization algorithm to address the resultant optimization problem.Broad experiments on five benchmark data sets have been put into effect to evaluate the clustering performance of the proposed algorithm.The experimental results distinctly demonstrate that the proposed algorithm outperforms the typical multiple kernel clustering algorithms,which illustrates the effectiveness of the proposed algorithm. 展开更多
关键词 Multiple kernel clustering kernel alignment local kernel alignment self-weighted
在线阅读 下载PDF
A Kernel Clustering Algorithm for Fast Training of Support Vector Machines
4
作者 刘笑嶂 冯国灿 《Journal of Donghua University(English Edition)》 EI CAS 2011年第1期53-56,共4页
A new algorithm named kernel bisecting k-means and sample removal(KBK-SR) is proposed as sampling preprocessing for support vector machine(SVM) training to improve the efficiency.The proposed algorithm tends to quickl... A new algorithm named kernel bisecting k-means and sample removal(KBK-SR) is proposed as sampling preprocessing for support vector machine(SVM) training to improve the efficiency.The proposed algorithm tends to quickly produce balanced clusters of similar sizes in the kernel feature space,which makes it efficient and effective for reducing training samples.Theoretical analysis and experimental results on three UCI real data benchmarks both show that,with very short sampling time,the proposed algorithm dramatically accelerates SVM sampling and training while maintaining high test accuracy. 展开更多
关键词 support vector machines(SVMs) sample reduction topdown hierarchical clustering kernel bisecting k-means
在线阅读 下载PDF
Scaling up Kernel Grower Clustering Method for Large Data Sets via Core-sets 被引量:2
5
作者 CHANG Liang DENG Xiao-Ming +1 位作者 ZHENG Sui-Wu WANG Yong-Qing 《自动化学报》 EI CSCD 北大核心 2008年第3期376-382,共7页
核栽培者是聚类最近 Camastra 和 Verri 建议的方法的一个新奇的核。它证明为各种各样的数据的好性能关于流行聚类的算法有利地设定并且比较。然而,方法的主要缺点是在处理大数据集合的弱可伸缩能力,它极大地限制它的应用程序。在这... 核栽培者是聚类最近 Camastra 和 Verri 建议的方法的一个新奇的核。它证明为各种各样的数据的好性能关于流行聚类的算法有利地设定并且比较。然而,方法的主要缺点是在处理大数据集合的弱可伸缩能力,它极大地限制它的应用程序。在这份报纸,我们用核心集合建议一个可伸缩起来的核栽培者方法,它是比为聚类的大数据的原来的方法显著地快的。同时,它能处理很大的数据集合。象合成数据集合一样的基准数据集合的数字实验显示出建议方法的效率。方法也被用于真实图象分割说明它的性能。 展开更多
关键词 大型数据集 图象分割 模式识别 磁心配置 核聚类
在线阅读 下载PDF
Kernel method-based fuzzy clustering algorithm 被引量:2
6
作者 WuZhongdong GaoXinbo +1 位作者 XieWeixin YuJianping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第1期160-166,共7页
The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, d... The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, data with noise, data with mixture of heterogeneous cluster prototypes, asymmetric data, etc. Based on the Mercer kernel, FKCM clustering algorithm is derived from FCM algorithm united with kernel method. The results of experiments with the synthetic and real data show that the FKCM clustering algorithm is universality and can effectively unsupervised analyze datasets with variform structures in contrast to FCM algorithm. It is can be imagined that kernel-based clustering algorithm is one of important research direction of fuzzy clustering analysis. 展开更多
关键词 fuzzy clustering analysis kernel method fuzzy C-means clustering.
在线阅读 下载PDF
An Improved Kernel K-Mean Cluster Method and Its Application in Fault Diagnosis of Roller Bearing 被引量:2
7
作者 Ling-Li Jiang Yu-Xiang Cao +1 位作者 Hua-Kui Yin Kong-Shu Deng 《Engineering(科研)》 2013年第1期44-49,共6页
For the kernel K-mean cluster method is run in an implicit feature space, the initial and iterative cluster centers cannot be defined explicitly. Against the deficiency of the initial cluster centers selected in the o... For the kernel K-mean cluster method is run in an implicit feature space, the initial and iterative cluster centers cannot be defined explicitly. Against the deficiency of the initial cluster centers selected in the original space discretionarily in the existing methods, this paper proposes a new method for ensuring the clustering center that virtual clustering centers are defined in the feature space by the original classification as the initial cluster centers and the iteration clustering centers are ensured by the further virtual classification. The improved method is used for fault diagnosis of roller bearing that achieves a good cluster and diagnosis result, which demonstrates the effectiveness of the proposed method. 展开更多
关键词 IMPROVED kernel K-Mean cluster FAULT Diagnosis ROLLER BEARING
暂未订购
Kernel Generalized Noise Clustering Algorithm
8
作者 武小红 周建江 《Journal of Southwest Jiaotong University(English Edition)》 2007年第2期96-101,共6页
To deal with the nonlinear separable problem, the generalized noise clustering (GNC) algorithm is extended to a kernel generalized noise clustering (KGNC) model. Different from the fuzzy c-means (FCM) model and ... To deal with the nonlinear separable problem, the generalized noise clustering (GNC) algorithm is extended to a kernel generalized noise clustering (KGNC) model. Different from the fuzzy c-means (FCM) model and the GNC model which are based on Euclidean distance, the presented model is based on kernel-induced distance by using kernel method. By kernel method the input data are nonlinearly and implicitly mapped into a high-dimensional feature space, where the nonlinear pattern appears linear and the GNC algorithm is performed. It is unnecessary to calculate in high-dimensional feature space because the kernel function can do it just in input space. The effectiveness of the proposed algorithm is verified by experiments on three data sets. It is concluded that the KGNC algorithm has better clustering accuracy than FCM and GNC in clustering data sets containing noisy data. 展开更多
关键词 Fuzzy clustering Pattern recognition kernel methods Noise clustering kernel generalized noise clustering
在线阅读 下载PDF
Face Recognition Using Fuzzy Clustering and Kernel Least Square
9
作者 Essam Al Daoud 《Journal of Computer and Communications》 2015年第3期1-7,共7页
Over the last fifteen years, face recognition has become a popular area of research in image analysis and one of the most successful applications of machine learning and understanding. To enhance the classification ra... Over the last fifteen years, face recognition has become a popular area of research in image analysis and one of the most successful applications of machine learning and understanding. To enhance the classification rate of the image recognition, several techniques are introduced, modified and combined. The suggested model extracts the features using Fourier-Gabor filter, selects the best features using signal to noise ratio, deletes or modifies anomalous images using fuzzy c-mean clustering, uses kernel least square and optimizes it by using wild dog pack optimization. To compare the suggested method with the previous methods, four datasets are used. The results indicate that the suggested methods without fuzzy clustering and with fuzzy clustering outperform state- of-art methods for all datasets. 展开更多
关键词 FACE Recognition Fuzzy clustering kernel Least SQUARE GABOR FILTERS
在线阅读 下载PDF
Modified possibilistic clustering model based on kernel methods
10
作者 武小红 周建江 《Journal of Shanghai University(English Edition)》 CAS 2008年第2期136-140,共5页
A novel model of fuzzy clustering using kernel methods is proposed. This model is called kernel modified possibilistic c-means (KMPCM) model. The proposed model is an extension of the modified possibilistic c-means ... A novel model of fuzzy clustering using kernel methods is proposed. This model is called kernel modified possibilistic c-means (KMPCM) model. The proposed model is an extension of the modified possibilistic c-means (MPCM) algorithm by using kernel methods. Different from MPCM and fuzzy c-means (FCM) model which are based on Euclidean distance, the proposed model is based on kernel-induced distance. Furthermore, with kernel methods the input data can be mapped implicitly into a high-dimensional feature space where the nonlinear pattern now appears linear. It is unnecessary to do calculation in the high-dimensional feature space because the kernel function can do it. Numerical experiments show that KMPCM outperforms FCM and MPCM. 展开更多
关键词 fuzzy clustering kernel methods possibilistic c-means (PCM) kernel modified possibilistic c-means (KMPCM).
在线阅读 下载PDF
Kernel- based Maximum Entropy Clustering
11
作者 JIANG Wei QU Jiao LI Benxi 《现代电子技术》 2007年第2期152-153,156,共3页
在线阅读 下载PDF
低秩张量和主动重构诱导的后期融合多核聚类
12
作者 张毅 田芷榕 +4 位作者 王方地 王思为 刘吉元 刘新旺 祝恩 《计算机学报》 北大核心 2025年第9期1991-2007,共17页
基于后期融合策略的多核聚类通过在聚类决策层面进行融合,将多核聚类的计算效率提高到了线性计算复杂度,取得了良好的聚类性能,但它们仍存在以下两个局限性:(1)用于融合的基划分矩阵无法在聚类过程中进行学习优化,因此它们的性能直接受... 基于后期融合策略的多核聚类通过在聚类决策层面进行融合,将多核聚类的计算效率提高到了线性计算复杂度,取得了良好的聚类性能,但它们仍存在以下两个局限性:(1)用于融合的基划分矩阵无法在聚类过程中进行学习优化,因此它们的性能直接受限于基划分矩阵的簇结构表示能力;(2)通过调整视图权重来研究视图间的一致性和互补性,却忽视了视图之间固有的高阶相关性,导致挖掘多核信息的能力欠缺。为了解决这些问题,本文提出了一种新颖的低秩张量与主动重构诱导的后期融合多核聚类算法(LTAR-LFMKC),突破了基划分矩阵表示能力的瓶颈,并学习到能凸显聚类结构的高阶跨视图信息。具体来说,该方法主动对决策层进行重建并在后期融合过程中进行校准和优化,通过将重建表示堆叠成张量使其在视图间凝练出更清晰的簇结构,并能直接学习到一致的聚类划分。本文提出的算法在大量基准数据集上提高了22.9%~53.4%的平均聚类性能,计算效率也提高了至多数百倍,充分验证了LTAR-LFMKC的有效性和高效性。 展开更多
关键词 多核聚类 后期融合 张量核范数 主动重构
在线阅读 下载PDF
Improved Kernel Possibilistic Fuzzy Clustering Algorithm Based on Invasive Weed Optimization 被引量:1
13
作者 赵小强 周金虎 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第2期164-170,共7页
Fuzzy c-means(FCM) clustering algorithm is sensitive to noise points and outlier data, and the possibilistic fuzzy c-means(PFCM) clustering algorithm overcomes the problem well, but PFCM clustering algorithm has some ... Fuzzy c-means(FCM) clustering algorithm is sensitive to noise points and outlier data, and the possibilistic fuzzy c-means(PFCM) clustering algorithm overcomes the problem well, but PFCM clustering algorithm has some problems: it is still sensitive to initial clustering centers and the clustering results are not good when the tested datasets with noise are very unequal. An improved kernel possibilistic fuzzy c-means algorithm based on invasive weed optimization(IWO-KPFCM) is proposed in this paper. This algorithm first uses invasive weed optimization(IWO) algorithm to seek the optimal solution as the initial clustering centers, and introduces kernel method to make the input data from the sample space map into the high-dimensional feature space. Then, the sample variance is introduced in the objection function to measure the compact degree of data. Finally, the improved algorithm is used to cluster data. The simulation results of the University of California-Irvine(UCI) data sets and artificial data sets show that the proposed algorithm has stronger ability to resist noise, higher cluster accuracy and faster convergence speed than the PFCM algorithm. 展开更多
关键词 data mining clustering algorithm possibilistic fuzzy c-means(PFCM) kernel possibilistic fuzzy c-means algorithm based on invasiv
原文传递
基于核函数的自适应谱聚类与聚类个数确定方法
14
作者 王丙参 魏艳华 李旭 《统计与决策》 北大核心 2025年第11期49-54,共6页
文章先比较了不同核函数对谱聚类(SC)的影响,根据k近邻思想构建三种自适应SC,并根据拉普拉斯矩阵特征值构建聚类个数k^(*)的差分确定法;然后构建聚类-KNN算法,利用它的不稳定性确定k^(*)。数值模拟结果显示:核函数SC适应范围广,在合适... 文章先比较了不同核函数对谱聚类(SC)的影响,根据k近邻思想构建三种自适应SC,并根据拉普拉斯矩阵特征值构建聚类个数k^(*)的差分确定法;然后构建聚类-KNN算法,利用它的不稳定性确定k^(*)。数值模拟结果显示:核函数SC适应范围广,在合适的核函数下,对非凸数据集有效,且推荐使用高斯核;高斯核受全局参数影响显著,三类自适应SC对近邻参数稳健;基于聚类-KNN算法的不稳定性确定k^(*)比统计量方法适应范围更广,对于非凸数据集,基础聚类算法建议选取核函数谱聚类;随机抽样方法对抽样个数m稳健,当m占比较高时,它近似于自助抽样方法。 展开更多
关键词 核函数 谱聚类 聚类个数 不稳定性
在线阅读 下载PDF
基于多尺度核构造的深度特征融合网络及其在机翼应力场数据填补中的应用
15
作者 林琳 索世伟 +5 位作者 刘丹 张音旋 岳凌宇 张思豪 刘奕坤 付松 《航空学报》 北大核心 2025年第19期272-284,共13页
飞机机翼的应力监测对于保障飞行安全具有重要意义。由于实际工程中传感器必须采用稀疏固定位置的布置方式,传感器无法覆盖整个机翼结构,获得的机翼应力数据不能覆盖整个机翼。为此,针对飞机机翼传感器的空间位置布置不完备问题,提出了... 飞机机翼的应力监测对于保障飞行安全具有重要意义。由于实际工程中传感器必须采用稀疏固定位置的布置方式,传感器无法覆盖整个机翼结构,获得的机翼应力数据不能覆盖整个机翼。为此,针对飞机机翼传感器的空间位置布置不完备问题,提出了一种基于多尺度核构造的深度特征融合网络。首先,按照机翼应力场的相似程度将其归为不同的应力场簇,遴选出距离各应力场簇中心最近的应力场作为基准应力场集;其次,通过从各基准应力场中抽取不同规格分量构造多尺度卷积核,对应力场中的缺失点进行多方位特征感知,从而捕获有利于信息填充的多尺度特征;最后,采用并行通道注意力模块自适应选择构造卷积核所捕获的重要特征,并将其映射到统一的特征空间中进行特征融合,进而获取应力场中缺失点的填补值。此外,为了验证所提出方法的准确性和泛化性,利用仿真获得的应力场数据随机生成不同缺失比例的缺失应力场数据集,进行机翼应力场的数据填补,与主流的方法相比,所提出的方法在MAE、RMSE以及MAPE等评价指标上均取得了最佳的填补效果。 展开更多
关键词 数字孪生 应力场 缺失数据填补 中心聚类 特征卷积核
原文传递
区域和邻域级信息相结合的加强型PFCM含噪图像分割算法
16
作者 王小鹏 王海洲 陈浩然 《电子学报》 北大核心 2025年第5期1584-1595,共12页
针对可能性模糊C均值聚类(Possibilistic Fuzzy C-Means,PFCM)算法存在重合聚类,未考虑图像空间信息,对噪声鲁棒性差的问题,提出一种区域和邻域级信息相结合的加强型可能性模糊C均值算法.首先,设计了一种新的函数结构抑制重合聚类,该方... 针对可能性模糊C均值聚类(Possibilistic Fuzzy C-Means,PFCM)算法存在重合聚类,未考虑图像空间信息,对噪声鲁棒性差的问题,提出一种区域和邻域级信息相结合的加强型可能性模糊C均值算法.首先,设计了一种新的函数结构抑制重合聚类,该方法通过引入非线性衰减特性,更有效地调节不同隶属度点对不同簇的贡献,降低了簇之间的重合度;其次,通过局部方差约束,将图像区域级信息和其邻域级信息结合,充分利用图像的空间信息,提高对噪声的鲁棒性;最后,将核度量应用于聚类不相似度量,根据图像自有信息自适应地确定核函数带宽参数,进一步提高算法的灵活性.含噪合成图像、脑MRI(Magnetic Resonance Imaging)图像和含噪彩色图像分割实验表明,本文算法在分割结果视觉效果和性能评价指标均优于其他几种比较算法. 展开更多
关键词 图像分割 聚类算法 重合聚类 空间信息 核度量
在线阅读 下载PDF
基于EVMD-Informer的网络安全态势预测方法
17
作者 王娜 常娅明 张鑫海 《信息与控制》 北大核心 2025年第5期772-786,800,共16页
针对网络安全态势数据具有较强非平稳与非线性特性,而易导致传统数据驱动预测模型精度降低的问题,提出一种基于EVMD-Informer(Enhanced Variational Mode Decomposition-Informer)的网络安全态势预测方法。首先,提出改进变分模态分解法... 针对网络安全态势数据具有较强非平稳与非线性特性,而易导致传统数据驱动预测模型精度降低的问题,提出一种基于EVMD-Informer(Enhanced Variational Mode Decomposition-Informer)的网络安全态势预测方法。首先,提出改进变分模态分解法,来获得原始数据的分解子集,降低数据的非平稳性,提高预测的准确性;其次,利用凝聚层次聚类来重构子集,以精简冗余的分量,并作为Informer模型的输入;再引入高斯核函数以改进Informer预测模型的精度。最后,采用标准网络安全数据集NSL-KDD(Network Security Lab-Knowledge Discovery Dataset)进行仿真验证,表明所提方法与传统方法相比具有较高的预测精度,预测误差MSE(Mean Square Error)可达0.00513%。 展开更多
关键词 态势预测 改进变分模态分解 凝聚层次聚类 Informer神经网络 核函数
原文传递
基于数据增强和优化DHKELM的短期光伏功率预测
18
作者 郭利进 马粽阳 胡晓岩 《太阳能学报》 北大核心 2025年第8期463-471,共9页
针对不同气象条件数据质量差异较大且光伏功率呈高波动性难以预测等问题,提出添加随机噪声的数据增强方法(DA)和改进的神经网络组合模型。首先利用谱聚类算法将光伏数据按不同气象条件进行分类,随后通过添加与输入同形状的随机噪声方法... 针对不同气象条件数据质量差异较大且光伏功率呈高波动性难以预测等问题,提出添加随机噪声的数据增强方法(DA)和改进的神经网络组合模型。首先利用谱聚类算法将光伏数据按不同气象条件进行分类,随后通过添加与输入同形状的随机噪声方法提升数据集的规模与质量。针对深度混合核极限学习机(DHKELM)超参数多等问题,提出融合佳点集初始化、黄金正弦更新策略、非线性扰动和最优个体自适应扰动的改进鹈鹕优化算法(IPOA)对其超参数寻优。最后以青海共和县光伏园内某电站数据为例,结果表明基于数据增强的改进鹈鹕算法优化深度混合核极限学习机(DA-IPOA-DHKELM)模型在不同天气、季节条件下预测误差最小,拟合度均能达到90%以上,改进模型预测精度高、算法适用性强。 展开更多
关键词 光伏功率 预测 聚类分析 数据增强 深度混合核极限学习机 改进算法
原文传递
基于改进DBSCAN算法的道路障碍物点云聚类
19
作者 吴超凡 黄鹤 +3 位作者 贾睿 杨澜 王会峰 高涛 《南京大学学报(自然科学版)》 北大核心 2025年第5期738-751,共14页
道路点云数据的障碍物检测技术在智能交通系统和自动驾驶中至关重要.传统的基于密度的空间聚类(DensityBased Spatial Clustering of Applications with Noise,DBSCAN)算法在处理高维或不同密度区域数据时,由于距离度量低效、参数组合... 道路点云数据的障碍物检测技术在智能交通系统和自动驾驶中至关重要.传统的基于密度的空间聚类(DensityBased Spatial Clustering of Applications with Noise,DBSCAN)算法在处理高维或不同密度区域数据时,由于距离度量低效、参数组合确定困难导致聚类效果欠佳,因此,提出了一种基于改进DBSCAN的道路障碍物点云聚类方法 .首先,在确定Eps领域时利用孤立核函数来改进传统的距离度量方式,提高了DBSCAN聚类对不同密度区域的适应性和准确性.其次,针对猎豹优化算法(Cheetah Optimizer,CO)在信息共享和迭代更新方面的不足,提出了一种基于及时更新机制与兼容度量策略的CO优化算法(Timely Updating Mechanisms and Compatible Metric Strategies for CO Algorithms,TCCO),通过实时更新操作确保每次迭代的优秀信息得到及时沟通共享,并在全局更新时基于非支配排序与拥挤距离优化淘汰机制,平衡全局搜索和局部开发能力,提高了收敛速度和收敛精度.最后,利用孤立度量改进Eps领域,并利用TCCO优化DBSCAN聚类,自适应确定参数,提高了聚类精度和效率.在八个UCI数据集上进行测试,仿真结果表明,提出的TCCO-DBSCAN算法与CO-DBSCAN,SSA-DBSCAN,DBSCAN,KMC方法相比,F-Measure,ARI,NMI指标均有明显提升,且聚类精度更优.通过激光雷达点云数据障碍物聚类的实验验证,证明TCCO-DBSCAN能够有效地适应点云数据密度变化,获得更好的道路障碍物聚类效果,为辅助驾驶中障碍物检测提供支持. 展开更多
关键词 DBSCAN聚类 孤立核函数 改进猎豹优化算法 障碍物点云聚类
在线阅读 下载PDF
闽双色6号籽粒发育中叶酸合成代谢基因挖掘与分析
20
作者 詹鹏麟 张扬 +5 位作者 林建新 许静 庄炜 卢和顶 陈山虎 廖长见 《中国细胞生物学学报》 2025年第2期165-176,共12页
叶酸是人体必需的维生素之一,甜玉米作为一种兼具果、蔬、粮3种特性的作物,其籽粒中叶酸含量变化及基因调控研究尚不清晰。以超甜玉米闽双色6号籽粒作为研究材料,测定籽粒发育不同阶段的叶酸含量及基因表达,进行Mfuzz基因时间聚类分析... 叶酸是人体必需的维生素之一,甜玉米作为一种兼具果、蔬、粮3种特性的作物,其籽粒中叶酸含量变化及基因调控研究尚不清晰。以超甜玉米闽双色6号籽粒作为研究材料,测定籽粒发育不同阶段的叶酸含量及基因表达,进行Mfuzz基因时间聚类分析、基因集GO和KEGG富集分析,挖掘潜在的叶酸合成基因及分子调控通路。结果显示,甜玉米中叶酸含量随籽粒发育期的增长而逐渐下降,授粉后10天至20天叶酸含量在50μg/100 g以上,20天后呈现迅速下降的特点。基因时间序列表达模式分析获得6个类型基因集,其中Cluster 3基因集表达趋势与叶酸含量变化相似;GO和KEGG富集分析也发现叶酸生物合成和代谢通路被Cluster 3基因集富集。19个参与甜玉米籽粒叶酸生物合成的基因被挖掘,其中7个基因涉及以鸟苷三磷酸(guanosine triphosphate,GTP)为底物进行新化合物加工的生化反应通路;此外,发现Zm00001d031995(DHNA)、Zm00001d018733、Zm00001d023817(DHFS)和Zm00001d026549表达模式与叶酸含量变化趋势一致,Zm00001d039264和Zm00001d016866表达与叶酸含量变化趋势相反,这表明了这6个基因可能在叶酸分子调控中起着关键作用,该研究结果为未来高叶酸玉米育种提供潜在的基因资源。 展开更多
关键词 甜玉米 叶酸 籽粒发育 Mfuzz聚类
原文传递
上一页 1 2 45 下一页 到第
使用帮助 返回顶部