In this paper, we present a theoretical codebook design method for VQ-based fast face recognition algorithm to im-prove recognition accuracy. Based on the systematic analysis and classification of code patterns, first...In this paper, we present a theoretical codebook design method for VQ-based fast face recognition algorithm to im-prove recognition accuracy. Based on the systematic analysis and classification of code patterns, firstly we theoretically create a systematically organized codebook. Combined with another codebook created by Kohonen’s Self-Organizing Maps (SOM) method, an optimized codebook consisted of 2×2 codevectors for facial images is generated. Experimental results show face recognition using such a codebook is more efficient than the codebook consisted of 4×4 codevector used in conventional algorithm. The highest average recognition rate of 98.6% is obtained for 40 persons’ 400 images of publicly available face database of AT&T Laboratories Cambridge containing variations in lighting, posing, and expressions. A table look-up (TLU) method is also proposed for the speed up of the recognition processing. By applying this method in the quantization step, the total recognition processing time achieves only 28 msec, enabling real-time face recognition.展开更多
This paper presents a human detection system in a vision-based hospital surveillance environment. The system is composed of three subsystems, i.e. background segmentation subsystem (BSS), human feature extraction su...This paper presents a human detection system in a vision-based hospital surveillance environment. The system is composed of three subsystems, i.e. background segmentation subsystem (BSS), human feature extraction subsystem (HFES), and human recognition subsystem (HRS). The codebook background model is applied in the BSS, the histogram of oriented gradients (HOG) features are used in the HFES, and the support vector machine (SVM) classification is employed in the HRS. By means of the integration of these subsystems, the human detection in a vision-based hospital surveillance environment is performed. Experimental results show that the proposed system can effectively detect most of the people in hospital surveillance video sequences.展开更多
文摘In this paper, we present a theoretical codebook design method for VQ-based fast face recognition algorithm to im-prove recognition accuracy. Based on the systematic analysis and classification of code patterns, firstly we theoretically create a systematically organized codebook. Combined with another codebook created by Kohonen’s Self-Organizing Maps (SOM) method, an optimized codebook consisted of 2×2 codevectors for facial images is generated. Experimental results show face recognition using such a codebook is more efficient than the codebook consisted of 4×4 codevector used in conventional algorithm. The highest average recognition rate of 98.6% is obtained for 40 persons’ 400 images of publicly available face database of AT&T Laboratories Cambridge containing variations in lighting, posing, and expressions. A table look-up (TLU) method is also proposed for the speed up of the recognition processing. By applying this method in the quantization step, the total recognition processing time achieves only 28 msec, enabling real-time face recognition.
基金supported by the“MOST”under Grant No.103-2221-E-468-008-MY2
文摘This paper presents a human detection system in a vision-based hospital surveillance environment. The system is composed of three subsystems, i.e. background segmentation subsystem (BSS), human feature extraction subsystem (HFES), and human recognition subsystem (HRS). The codebook background model is applied in the BSS, the histogram of oriented gradients (HOG) features are used in the HFES, and the support vector machine (SVM) classification is employed in the HRS. By means of the integration of these subsystems, the human detection in a vision-based hospital surveillance environment is performed. Experimental results show that the proposed system can effectively detect most of the people in hospital surveillance video sequences.