期刊文献+
共找到916,578篇文章
< 1 2 250 >
每页显示 20 50 100
Pricing Study on Two Kinds of Power Options in Jump-Diffusion Models with Fractional Brownian Motion and Stochastic Rate
1
作者 Jin Li Kaili Xiang Chuanyi Luo 《Applied Mathematics》 2014年第16期2426-2441,共16页
In this paper, under the assumption that the exchange rate follows the extended Vasicek model, the pricing of the reset option in FBM model is investigated. Some interesting themes such as closed-form formulas for the... In this paper, under the assumption that the exchange rate follows the extended Vasicek model, the pricing of the reset option in FBM model is investigated. Some interesting themes such as closed-form formulas for the reset option with a single reset date and the phenomena of delta of the reset jumps existing in the reset option during the reset date are discussed. The closed-form formulae of pricing for two kinds of power options are derived in the end. 展开更多
关键词 STOCHASTIC RATE FRACTIONAL jump-diffusion Process FRACTIONAL BROWN Motion Power OPTION
在线阅读 下载PDF
Do Higher Horizontal Resolution Models Perform Better?
2
作者 Shoji KUSUNOKI 《Advances in Atmospheric Sciences》 2026年第1期259-262,共4页
Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(... Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(2025)].In relation to seasonal forecasting and climate projection in the East Asian summer monsoon season,proper simulation of the seasonal migration of rain bands by models is a challenging and limiting factor[section 7.1 in Wang et al.(2025)]. 展开更多
关键词 enhancing model resolution refinement data assimilation systems section climate model climate projection higher horizontal resolution seasonal forecasting simulation seasonal migration rain bands model resolution
在线阅读 下载PDF
Reweighted Nadaraya-Watson estimation of jump-diffusion models 被引量:4
3
作者 HANIF Muhammad WANG HanChao LIN ZhengYan 《Science China Mathematics》 SCIE 2012年第5期1005-1016,共12页
In this paper,we study the nonparametric estimation of the second infinitesimal moment by using the reweighted Nadaraya-Watson (RNW) approach of the underlying jump diffusion model.We establish strong consistency and ... In this paper,we study the nonparametric estimation of the second infinitesimal moment by using the reweighted Nadaraya-Watson (RNW) approach of the underlying jump diffusion model.We establish strong consistency and asymptotic normality for the estimate of the second infinitesimal moment of continuous time models using the reweighted Nadaraya-Watson estimator to the true function. 展开更多
关键词 continuous time model Harris recurrence jump-diffusion model local time nonparametric estimation RNW estimator
原文传递
When Large Language Models and Machine Learning Meet Multi-Criteria Decision Making: Fully Integrated Approach for Social Media Moderation
4
作者 Noreen Fuentes Janeth Ugang +4 位作者 Narcisan Galamiton Suzette Bacus Samantha Shane Evangelista Fatima Maturan Lanndon Ocampo 《Computers, Materials & Continua》 2026年第1期2137-2162,共26页
This study demonstrates a novel integration of large language models,machine learning,and multicriteria decision-making to investigate self-moderation in small online communities,a topic under-explored compared to use... This study demonstrates a novel integration of large language models,machine learning,and multicriteria decision-making to investigate self-moderation in small online communities,a topic under-explored compared to user behavior and platform-driven moderation on social media.The proposed methodological framework(1)utilizes large language models for social media post analysis and categorization,(2)employs k-means clustering for content characterization,and(3)incorporates the TODIM(Tomada de Decisão Interativa Multicritério)method to determine moderation strategies based on expert judgments.In general,the fully integrated framework leverages the strengths of these intelligent systems in a more systematic evaluation of large-scale decision problems.When applied in social media moderation,this approach promotes nuanced and context-sensitive self-moderation by taking into account factors such as cultural background and geographic location.The application of this framework is demonstrated within Facebook groups.Eight distinct content clusters encompassing safety,harassment,diversity,and misinformation are identified.Analysis revealed a preference for content removal across all clusters,suggesting a cautious approach towards potentially harmful content.However,the framework also highlights the use of other moderation actions,like account suspension,depending on the content category.These findings contribute to the growing body of research on self-moderation and offer valuable insights for creating safer and more inclusive online spaces within smaller communities. 展开更多
关键词 Self-moderation user-generated content k-means clustering TODIM large language models
在线阅读 下载PDF
A decision framework for rural domestic sewage treatment models and process:Evidence from Inner Mongolia Autonomous Region,China
5
作者 Ying Yan Pengyu Li +5 位作者 Zixuan Wang Yubo Tan Tianlong Zheng Jianguo Liu Xiaoxia Yang Junxin Liu 《Journal of Environmental Sciences》 2026年第1期302-311,共10页
Rural domestic sewage treatment is critical for environmental protection.This study defines the spatial pattern of villages from the perspective of rural sewage treatment and develops an integrated decision-making sys... Rural domestic sewage treatment is critical for environmental protection.This study defines the spatial pattern of villages from the perspective of rural sewage treatment and develops an integrated decision-making system to propose a sewage treatment mode and scheme suitable for local conditions.By considering the village spatial layout and terrain factors,a decision tree model of residential density and terrain type was constructed with accuracies of 76.47%and 96.00%,respectively.Combined with binary classification probability unit regression,an appropriate sewage treatment mode for the village was determined with 87.00%accuracy.The Analytic Hierarchy Process(AHP),combined with the Technique for Order Preference(TOPSIS)by Similarity to an Ideal Solution model,formed the basis for optimal treatment process selection under different emission standards.Verification was conducted in 542 villages across three counties of the Inner Mongolia Autonomous Region,focusing on the standard effluent effect(0.3773),low investment cost(0.3196),and high standard effluent effect(0.5115)to determine the best treatment process for the same emission standard under different needs.The annual environmental and carbon emission benefits of sewage treatment in these villages were estimated.This model matches village density,geographic feature,and social development level,and provides scientific support and a theoretical basis for rural sewage treatment decision-making. 展开更多
关键词 Rural domestic sewage Sewage treatment model DECISION-MAKING Environmental-economic benefits Inner Mongolia
原文传递
Tail clamping induces anxiety-like behaviors and visceral hypersensitivity in rat models of non-erosive reflux disease
6
作者 Mi Lv Xin Liu +6 位作者 Kai-Yue Huang Yu-Xi Wang Zheng Wang Li-Li Han Hui Che Lin Lv Feng-Yun Wang 《World Journal of Psychiatry》 2026年第1期356-368,共13页
BACKGROUND Non-erosive reflux disease(NERD),the main gastroesophageal reflux subtype,features reflux symptoms without mucosal damage.Anxiety links to visceral hypersensitivity in NERD,yet mechanisms and animal models ... BACKGROUND Non-erosive reflux disease(NERD),the main gastroesophageal reflux subtype,features reflux symptoms without mucosal damage.Anxiety links to visceral hypersensitivity in NERD,yet mechanisms and animal models are unclear.AIM To establish a translational NERD rat model with anxiety comorbidity via tail clamping and study corticotropin-releasing hormone(CRH)-mediated neuroimmune pathways in visceral hypersensitivity and esophageal injury.METHODS Sprague-Dawley(SD)and Wistar rats were grouped into sham,model,and modified groups(n=10 each).The treatments for the modified groups were as follows:SD rats received ovalbumin/aluminum hydroxide suspension+acid perfusion±tail clamping(40 minutes/day for 7 days),while Wistar rats received fructose water+tail clamping.Esophageal pathology,visceral sensitivity,and behavior were assessed.Serum CRH,calcitonin gene-related peptide(CGRP),5-hydroxytryptamine(5-HT),and mast cell tryptase(MCT)and central amygdala(CeA)CRH mRNA were measured via ELISA and qRT-PCR.RESULTS Tail clamping induced anxiety,worsening visceral hypersensitivity(lower abdominal withdrawal reflex thresholds,P<0.05)and esophageal injury(dilated intercellular spaces and mitochondrial edema).Both models showed raised serum CRH,CGRP,5-HT,and MCT(P<0.01)and CeA CRH mRNA expression(P<0.01).Behavioral tests confirmed anxiety-like phenotypes.NERD-anxiety rats showed clinical-like symptom severity without erosion.CONCLUSION Tail clamping induces anxiety in NERD models,worsening visceral hypersensitivity via CRH neuroimmune dysregulation,offering a translational model and highlighting CRH as a treatment target. 展开更多
关键词 Non-erosive reflux disease Anxiety and depression Animal model Tail-clamping Corticotropin hormones
暂未订购
Development of Patient-Derived Conditionally Reprogrammed 3D Breast Cancer Culture Models for Drug Sensitivity Evaluation
7
作者 Jing Cai Haoyun Zhu +4 位作者 Weiling Guo Ting Huang Pangzhou Chen Wen Zhou Ziyun Guan 《Oncology Research》 2026年第1期500-520,共21页
Background:Therapeutic responses of breast cancer vary among patients and lead to drug resistance and recurrence due to the heterogeneity.Current preclinical models,however,are inadequate for predicting individual pat... Background:Therapeutic responses of breast cancer vary among patients and lead to drug resistance and recurrence due to the heterogeneity.Current preclinical models,however,are inadequate for predicting individual patient responses towards different drugs.This study aimed to investigate the patient-derived breast cancer culture models for drug sensitivity evaluations.Methods:Tumor and adjacent tissues from female breast cancer patients were collected during surgery.Patient-derived breast cancer cells were cultured using the conditional reprogramming technique to establish 2D models.The obtained patient-derived conditional reprogramming breast cancer(CRBC)cells were subsequently embedded in alginate-gelatin methacryloyl hydrogel microspheres to form 3D culture models.Comparisons between 2D and 3D models were made using immunohistochemistry(tumor markers),MTS assays(cell viability),flow cytometry(apoptosis),transwell assays(migration),and Western blotting(protein expression).Drug sensitivity tests were conducted to evaluate patient-specific responses to anti-cancer agents.Results:2D and 3D culture models were successfully established using samples from eight patients.The 3D models retained histological and marker characteristics of the original tumors.Compared to 2D cultures,3D models exhibited increased apoptosis,enhanced drug resistance,elevated stem cell marker expression,and greater migration ability—features more reflective of in vivo tumor behavior.Conclusion:Patient-derived 3D CRBC models effectively mimic the in vivo tumor microenvironment and demonstrate stronger resistance to anti-cancer drugs than 2D models.These hydrogel-based models offer a cost-effective and clinically relevant platform for drug screening and personalized breast cancer treatment. 展开更多
关键词 Patient-derived breast cancer cells conditional reprogramming hydrogel microsphere 3D culture model drug screening
暂未订购
Effects of noninvasive brain stimulation on motor functions in animal models of ischemia and trauma in the central nervous system
8
作者 Seda Demir Gereon R.Fink +1 位作者 Maria A.Rueger Stefan J.Blaschke 《Neural Regeneration Research》 2026年第4期1264-1276,共13页
Noninvasive brain stimulation techniques offer promising therapeutic and regenerative prospects in neurological diseases by modulating brain activity and improving cognitive and motor functions.Given the paucity of kn... Noninvasive brain stimulation techniques offer promising therapeutic and regenerative prospects in neurological diseases by modulating brain activity and improving cognitive and motor functions.Given the paucity of knowledge about the underlying modes of action and optimal treatment modalities,a thorough translational investigation of noninvasive brain stimulation in preclinical animal models is urgently needed.Thus,we reviewed the current literature on the mechanistic underpinnings of noninvasive brain stimulation in models of central nervous system impairment,with a particular emphasis on traumatic brain injury and stroke.Due to the lack of translational models in most noninvasive brain stimulation techniques proposed,we found this review to the most relevant techniques used in humans,i.e.,transcranial magnetic stimulation and transcranial direct current stimulation.We searched the literature in Pub Med,encompassing the MEDLINE and PMC databases,for studies published between January 1,2020 and September 30,2024.Thirty-five studies were eligible.Transcranial magnetic stimulation and transcranial direct current stimulation demonstrated distinct strengths in augmenting rehabilitation post-stroke and traumatic brain injury,with emerging mechanistic evidence.Overall,we identified neuronal,inflammatory,microvascular,and apoptotic pathways highlighted in the literature.This review also highlights a lack of translational surrogate parameters to bridge the gap between preclinical findings and their clinical translation. 展开更多
关键词 noninvasive brain stimulation preclinical modeling STROKE transcranial direct current stimulation transcranial magnetic stimulation traumatic brain injury
暂未订购
Novel therapies for myasthenia gravis:Translational research from animal models to clinical application
9
作者 Benedetta Sorrenti Christian Laurini +4 位作者 Luca Bosco Camilla Mirella Maria Strano Adele Ratti Yuri Matteo Falzone Stefano Carlo Previtali 《Neural Regeneration Research》 2026年第5期1834-1848,共15页
Myasthenia gravis is a chronic autoimmune disorder that affects the neuromuscular junction leading to fluctuating skeletal muscle fatigability. The majority of myasthenia gravis patients have detectable antibodies in ... Myasthenia gravis is a chronic autoimmune disorder that affects the neuromuscular junction leading to fluctuating skeletal muscle fatigability. The majority of myasthenia gravis patients have detectable antibodies in their serum, targeting acetylcholine receptor, muscle-specific kinase, or related proteins. Current treatment for myasthenia gravis involves symptomatic therapy, immunosuppressive drugs such as corticosteroids, azathioprine, and mycophenolate mofetil, and thymectomy, which is primarily indicated in patients with thymoma or thymic hyperplasia. However, this condition continues to pose significant challenges including an unpredictable and variable disease progression, differing response to individual therapies, and substantial longterm side effects associated with standard treatments(including an increased risk of infections, osteoporosis, and diabetes), underscoring the necessity for a more personalized approach to treatment. Furthermore, about fifteen percent of patients, called “refractory myasthenia gravis patients”, do not respond adequately to standard therapies. In this context, the introduction of molecular therapies has marked a significant advance in myasthenia gravis management. Advances in understanding myasthenia gravis pathogenesis, especially the role of pathogenic antibodies, have driven the development of these biological drugs, which offer more selective, rapid, and safer alternatives to traditional immunosuppressants. This review aims to provide a comprehensive overview of emerging therapeutic strategies targeting specific immune pathways in myasthenia gravis, with a particular focus on preclinical evidence, therapeutic rationale, and clinical translation of B-cell depletion therapies, neonatal Fc receptor inhibitors, and complement inhibitors. 展开更多
关键词 acetylcholine receptor(AChR) animal models B-cell depletion biological therapies COMPLEMENT IMMUNOTHERAPY muscle-specific kinase(Mu SK) neonatal Fc receptor
暂未订购
Human cerebral organoids:Complex,versatile,and human-relevant models of neural development and brain diseases
10
作者 Raquel Coronel Rosa González-Sastre +8 位作者 Patricia Mateos-Martínez Laura Maeso Elena Llorente-Beneyto Sabela Martín-Benito Viviana S.Costa Gagosian Leonardo Foti Ma Carmen González-Caballero Victoria López-Alonso Isabel Liste 《Neural Regeneration Research》 2026年第3期837-854,共18页
The brain is the most complex human organ,and commonly used models,such as two-dimensional-cell cultures and animal brains,often lack the sophistication needed to accurately use in research.In this context,human cereb... The brain is the most complex human organ,and commonly used models,such as two-dimensional-cell cultures and animal brains,often lack the sophistication needed to accurately use in research.In this context,human cerebral organoids have emerged as valuable tools offering a more complex,versatile,and human-relevant system than traditional animal models,which are often unable to replicate the intricate architecture and functionality of the human brain.Since human cerebral organoids are a state-of-the-art model for the study of neurodevelopment and different pathologies affecting the brain,this field is currently under constant development,and work in this area is abundant.In this review,we give a complete overview of human cerebral organoids technology,starting from the different types of protocols that exist to generate different human cerebral organoids.We continue with the use of brain organoids for the study of brain pathologies,highlighting neurodevelopmental,psychiatric,neurodegenerative,brain tumor,and infectious diseases.Because of the potential value of human cerebral organoids,we describe their use in transplantation,drug screening,and toxicology assays.We also discuss the technologies available to study cell diversity and physiological characteristics of organoids.Finally,we summarize the limitations that currently exist in the field,such as the development of vasculature and microglia,and highlight some of the novel approaches being pursued through bioengineering. 展开更多
关键词 assembloids BIOENGINEERING challenges disease modeling drug screening and toxicology human brain organoids human pluripotent stem cells neurodegenerative diseases NEURODEVELOPMENT VASCULARIZATION
暂未订购
On the Convergence of a Crank-Nicolson Fitted Finite Volume Method for Pricing European Options under Regime-Switching Kou’s Jump-Diffusion Models
11
作者 Xiaoting Gan Junfeng Yin Rui Li 《Advances in Applied Mathematics and Mechanics》 SCIE 2023年第5期1290-1314,共25页
In this paper,we construct and analyze a Crank-Nicolson fitted finite volume scheme for pricing European options under regime-switching Kou’s jumpdiffusion model which is governed by a system of partial integro-diffe... In this paper,we construct and analyze a Crank-Nicolson fitted finite volume scheme for pricing European options under regime-switching Kou’s jumpdiffusion model which is governed by a system of partial integro-differential equations(PIDEs).We show that this scheme is consistent,stable and monotone as the mesh sizes in space and time approach zero,hence it ensures the convergence to the solution of continuous problem.Finally,numerical experiments are performed to demonstrate the efficiency,accuracy and robustness of the proposed method. 展开更多
关键词 European option pricing regime-switching Kou’s jump-diffusion model partial integro-differential equation fitted finite volume method Crank-Nicolson scheme
在线阅读 下载PDF
Threshold reweighted Nadaraya-Watson estimation of jump-diffusion models
12
作者 Kunyang Song Yuping Song Hanchao Wang 《Probability, Uncertainty and Quantitative Risk》 2022年第1期31-44,共14页
In this paper,we propose a new method to estimate the diffusion function in the jump-diffusion model.First,a threshold reweighted Nadaraya-Watson-type estimator is introduced.Then,we establish asymptotic normality for... In this paper,we propose a new method to estimate the diffusion function in the jump-diffusion model.First,a threshold reweighted Nadaraya-Watson-type estimator is introduced.Then,we establish asymptotic normality for the estimator and conduct Monte Carlo simulations through two examples to verify the better finite-sampling properties.Finally,our estimator is demonstrated through the actual data of the Shanghai Interbank Offered Rate in China. 展开更多
关键词 jump-diffusion model Threshold reweighted Nadaraya-Watson estimation Empirical likelihood
原文传递
PRICING EUROPEAN OPTION IN A DOUBLE EXPONENTIAL JUMP-DIFFUSION MODEL WITH TWO MARKET STRUCTURE RISKS AND ITS COMPARISONS 被引量:14
13
作者 Deng Guohe 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2007年第2期127-137,共11页
Using Fourier inversion transform, P.D.E. and Feynman-Kac formula, the closedform solution for price on European call option is given in a double exponential jump-diffusion model with two different market structure ri... Using Fourier inversion transform, P.D.E. and Feynman-Kac formula, the closedform solution for price on European call option is given in a double exponential jump-diffusion model with two different market structure risks that there exist CIR stochastic volatility of stock return and Vasicek or CIR stochastic interest rate in the market. In the end, the result of the model in the paper is compared with those in other models, including BS model with numerical experiment. These results show that the double exponential jump-diffusion model with CIR-market structure risks is suitable for modelling the real-market changes and very useful. 展开更多
关键词 double exponential distribution jump-diffusion model market structure risk
在线阅读 下载PDF
Critical Exercise Price for American Floating Strike Lookback Option in a Mixed Jump-Diffusion Model 被引量:4
14
作者 YANG Zhao-qiang 《Chinese Quarterly Journal of Mathematics》 2018年第3期240-259,共20页
This paper studies the critical exercise price of American floating strike lookback options under the mixed jump-diffusion model. By using It formula and Wick-It-Skorohod integral, a new market pricing model estab... This paper studies the critical exercise price of American floating strike lookback options under the mixed jump-diffusion model. By using It formula and Wick-It-Skorohod integral, a new market pricing model established under the environment of mixed jumpdiffusion fractional Brownian motion. The fundamental solutions of stochastic parabolic partial differential equations are estimated under the condition of Merton assumptions. The explicit integral representation of early exercise premium and the critical exercise price are also given, then the American floating strike lookback options factorization formula is obtained, the results is generalized the classical Black-Scholes market pricing model. 展开更多
关键词 MIXED jump-diffusion fractional BROWNIAN motion Wick-Ito-Skorohod integral market pricing model option factorization CRITICAL exercise price
在线阅读 下载PDF
Landslide Susceptibility Mapping Using RBFN-Based Ensemble Machine Learning Models 被引量:1
15
作者 Duc-Dam Nguyen Nguyen Viet Tiep +5 位作者 Quynh-Anh Thi Bui Hiep Van Le Indra Prakash Romulus Costache Manish Pandey Binh Thai Pham 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期467-500,共34页
This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble lear... This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble learning techniques:DAGGING(DG),MULTIBOOST(MB),and ADABOOST(AB).This combination resulted in three distinct ensemble models:DG-RBFN,MB-RBFN,and AB-RBFN.Additionally,a traditional weighted method,Information Value(IV),and a benchmark machine learning(ML)model,Multilayer Perceptron Neural Network(MLP),were employed for comparison and validation.The models were developed using ten landslide conditioning factors,which included slope,aspect,elevation,curvature,land cover,geomorphology,overburden depth,lithology,distance to rivers and distance to roads.These factors were instrumental in predicting the output variable,which was the probability of landslide occurrence.Statistical analysis of the models’performance indicated that the DG-RBFN model,with an Area Under ROC Curve(AUC)of 0.931,outperformed the other models.The AB-RBFN model achieved an AUC of 0.929,the MB-RBFN model had an AUC of 0.913,and the MLP model recorded an AUC of 0.926.These results suggest that the advanced ensemble ML model DG-RBFN was more accurate than traditional statistical model,single MLP model,and other ensemble models in preparing trustworthy landslide susceptibility maps,thereby enhancing land use planning and decision-making. 展开更多
关键词 Landslide susceptibility map spatial analysis ensemble modelling information values(IV)
在线阅读 下载PDF
Predictability Study of Weather and Climate Events Related to Artificial Intelligence Models 被引量:4
16
作者 Mu MU Bo QIN Guokun DAI 《Advances in Atmospheric Sciences》 2025年第1期1-8,共8页
Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather an... Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather and climate phenomena.In the past few decades,dynamical numerical models have been the primary tools for predictability studies,achieving significant progress.Nowadays,with the advances in artificial intelligence(AI)techniques and accumulations of vast meteorological data,modeling weather and climate events using modern data-driven approaches is becoming trendy,where FourCastNet,Pangu-Weather,and GraphCast are successful pioneers.In this perspective article,we suggest AI models should not be limited to forecasting but be expanded to predictability studies,leveraging AI's advantages of high efficiency and self-contained optimization modules.To this end,we first remark that AI models should possess high simulation capability with fine spatiotemporal resolution for two kinds of predictability studies.AI models with high simulation capabilities comparable to numerical models can be considered to provide solutions to partial differential equations in a data-driven way.Then,we highlight several specific predictability issues with well-determined nonlinear optimization formulizations,which can be well-studied using AI models,holding significant scientific value.In addition,we advocate for the incorporation of AI models into the synergistic cycle of the cognition–observation–model paradigm.Comprehensive predictability studies have the potential to transform“big data”to“big and better data”and shift the focus from“AI for forecasts”to“AI for science”,ultimately advancing the development of the atmospheric and oceanic sciences. 展开更多
关键词 PREDICTABILITY artificial intelligence models simulation and forecasting nonlinear optimization cognition–observation–model paradigm
在线阅读 下载PDF
Knowledge-Empowered,Collaborative,and Co-Evolving AI Models:The Post-LLM Roadmap 被引量:1
17
作者 Fei Wu Tao Shen +17 位作者 Thomas Back Jingyuan Chen Gang Huang Yaochu Jin Kun Kuang Mengze Li Cewu Lu Jiaxu Miao Yongwei Wang Ying Wei Fan Wu Junchi Yan Hongxia Yang Yi Yang Shengyu Zhang Zhou Zhao Yueting Zhuang Yunhe Pan 《Engineering》 2025年第1期87-100,共14页
Large language models(LLMs)have significantly advanced artificial intelligence(AI)by excelling in tasks such as understanding,generation,and reasoning across multiple modalities.Despite these achievements,LLMs have in... Large language models(LLMs)have significantly advanced artificial intelligence(AI)by excelling in tasks such as understanding,generation,and reasoning across multiple modalities.Despite these achievements,LLMs have inherent limitations including outdated information,hallucinations,inefficiency,lack of interpretability,and challenges in domain-specific accuracy.To address these issues,this survey explores three promising directions in the post-LLM era:knowledge empowerment,model collaboration,and model co-evolution.First,we examine methods of integrating external knowledge into LLMs to enhance factual accuracy,reasoning capabilities,and interpretability,including incorporating knowledge into training objectives,instruction tuning,retrieval-augmented inference,and knowledge prompting.Second,we discuss model collaboration strategies that leverage the complementary strengths of LLMs and smaller models to improve efficiency and domain-specific performance through techniques such as model merging,functional model collaboration,and knowledge injection.Third,we delve into model co-evolution,in which multiple models collaboratively evolve by sharing knowledge,parameters,and learning strategies to adapt to dynamic environments and tasks,thereby enhancing their adaptability and continual learning.We illustrate how the integration of these techniques advances AI capabilities in science,engineering,and society—particularly in hypothesis development,problem formulation,problem-solving,and interpretability across various domains.We conclude by outlining future pathways for further advancement and applications. 展开更多
关键词 Artificial intelligence Large language models Knowledge empowerment model collaboration model co-evolution
在线阅读 下载PDF
Behavioral Animal Models and Neural-Circuit Framework of Depressive Disorder 被引量:3
18
作者 Xiangyun Tian Scott J.Russo Long Li 《Neuroscience Bulletin》 2025年第2期272-288,共17页
Depressive disorder is a chronic,recurring,and potentially life-endangering neuropsychiatric disease.According to a report by the World Health Organization,the global population suffering from depression is experienci... Depressive disorder is a chronic,recurring,and potentially life-endangering neuropsychiatric disease.According to a report by the World Health Organization,the global population suffering from depression is experiencing a significant annual increase.Despite its prevalence and considerable impact on people,little is known about its pathogenesis.One major reason is the scarcity of reliable animal models due to the absence of consensus on the pathology and etiology of depression.Furthermore,the neural circuit mechanism of depression induced by various factors is particularly complex.Considering the variability in depressive behavior patterns and neurobiological mechanisms among different animal models of depression,a comparison between the neural circuits of depression induced by various factors is essential for its treatment.In this review,we mainly summarize the most widely used behavioral animal models and neural circuits under different triggers of depression,aiming to provide a theoretical basis for depression prevention. 展开更多
关键词 DEPRESSION Animal models STRESS Neural circuits
原文传递
An integrated method of data-driven and mechanism models for formation evaluation with logs 被引量:1
19
作者 Meng-Lu Kang Jun Zhou +4 位作者 Juan Zhang Li-Zhi Xiao Guang-Zhi Liao Rong-Bo Shao Gang Luo 《Petroleum Science》 2025年第3期1110-1124,共15页
We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpr... We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpreting these parameters is crucial for effectively exploring and developing oil and gas.However,with the increasing complexity of geological conditions in this industry,there is a growing demand for improved accuracy in reservoir parameter prediction,leading to higher costs associated with manual interpretation.The conventional logging interpretation methods rely on empirical relationships between logging data and reservoir parameters,which suffer from low interpretation efficiency,intense subjectivity,and suitability for ideal conditions.The application of artificial intelligence in the interpretation of logging data provides a new solution to the problems existing in traditional methods.It is expected to improve the accuracy and efficiency of the interpretation.If large and high-quality datasets exist,data-driven models can reveal relationships of arbitrary complexity.Nevertheless,constructing sufficiently large logging datasets with reliable labels remains challenging,making it difficult to apply data-driven models effectively in logging data interpretation.Furthermore,data-driven models often act as“black boxes”without explaining their predictions or ensuring compliance with primary physical constraints.This paper proposes a machine learning method with strong physical constraints by integrating mechanism and data-driven models.Prior knowledge of logging data interpretation is embedded into machine learning regarding network structure,loss function,and optimization algorithm.We employ the Physically Informed Auto-Encoder(PIAE)to predict porosity and water saturation,which can be trained without labeled reservoir parameters using self-supervised learning techniques.This approach effectively achieves automated interpretation and facilitates generalization across diverse datasets. 展开更多
关键词 Well log Reservoir evaluation Label scarcity Mechanism model Data-driven model Physically informed model Self-supervised learning Machine learning
原文传递
Large language models for robotics:Opportunities,challenges,and perspectives 被引量:4
20
作者 Jiaqi Wang Enze Shi +7 位作者 Huawen Hu Chong Ma Yiheng Liu Xuhui Wang Yincheng Yao Xuan Liu Bao Ge Shu Zhang 《Journal of Automation and Intelligence》 2025年第1期52-64,共13页
Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and langua... Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and language comprehension capabilities to formulate precise and efficient action plans based on natural language instructions.However,for embodied tasks,where robots interact with complex environments,textonly LLMs often face challenges due to a lack of compatibility with robotic visual perception.This study provides a comprehensive overview of the emerging integration of LLMs and multimodal LLMs into various robotic tasks.Additionally,we propose a framework that utilizes multimodal GPT-4V to enhance embodied task planning through the combination of natural language instructions and robot visual perceptions.Our results,based on diverse datasets,indicate that GPT-4V effectively enhances robot performance in embodied tasks.This extensive survey and evaluation of LLMs and multimodal LLMs across a variety of robotic tasks enriches the understanding of LLM-centric embodied intelligence and provides forward-looking insights towards bridging the gap in Human-Robot-Environment interaction. 展开更多
关键词 Large language models ROBOTICS Generative AI Embodied intelligence
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部