Slodkowski joint spectrum is similar to Taylor joint spectrum, but it has more important meaning in theory and application. In this paper we characterize Slodkowski joint spectrum and generalize some results about ten...Slodkowski joint spectrum is similar to Taylor joint spectrum, but it has more important meaning in theory and application. In this paper we characterize Slodkowski joint spectrum and generalize some results about tensor product.展开更多
In this paper we characterize the left joint spectrum of an n-tuple T = (T1,… ,Tn) of dominant bounded linear operators on a complex Hilbert space H and the unital C-algebra C(T) generated by T1, …,Tn and Ⅰ; moreov...In this paper we characterize the left joint spectrum of an n-tuple T = (T1,… ,Tn) of dominant bounded linear operators on a complex Hilbert space H and the unital C-algebra C(T) generated by T1, …,Tn and Ⅰ; moreover, we give an application of this characterization.展开更多
In this paper,a distributed compressive spectrum sensing scheme in wideband cognitive radio networks is investigated.An analog-to-information converters(AIC) RF front-end sampling structure is proposed which use par...In this paper,a distributed compressive spectrum sensing scheme in wideband cognitive radio networks is investigated.An analog-to-information converters(AIC) RF front-end sampling structure is proposed which use parallel low rate analog to digital conversions(ADCs) and fewer storage units for wideband spectrum signal sampling.The proposed scheme uses multiple low rate congitive radios(CRs) collecting compressed samples through AICs distritbutedly and recover the signal spectrum jointly.A general joint sparsity model is defined in this scenario,along with a universal recovery algorithm based on simultaneous orthogonal matching pursuit(S-OMP).Numerical simulations show this algorithm outperforms current existing algorithms under this model and works competently under other existing models.展开更多
Spectrum sensing is the fundamental task for Cognitive Radio (CR). To overcome the challenge of high sampling rate in traditional spectral estimation methods, Compressed Sensing (CS) theory is developed. A sparsity an...Spectrum sensing is the fundamental task for Cognitive Radio (CR). To overcome the challenge of high sampling rate in traditional spectral estimation methods, Compressed Sensing (CS) theory is developed. A sparsity and compression ratio joint adjustment algorithm for compressed spectrum sensing in CR network is investigated, with the hypothesis that the sparsity level is unknown as priori knowledge at CR terminals. As perfect spectrum reconstruction is not necessarily required during spectrum detection process, the proposed algorithm only performs a rough estimate of sparsity level. Meanwhile, in order to further reduce the sensing measurement, different compression ratios for CR terminals with varying Signal-to-Noise Ratio (SNR) are considered. The proposed algorithm, which optimizes the compression ratio as well as the estimated sparsity level, can greatly reduce the sensing measurement without degrading the detection performance. It also requires less steps of iteration for convergence. Corroborating simulation results are presented to testify the effectiveness of the proposed algorithm for collaborative spectrum sensing.展开更多
In vivo fluorescence has a wide application in analyzing microalgae, including assessing phytoplankton biomass, rates of primary production and physiological status. This study describes a preliminary investigation on...In vivo fluorescence has a wide application in analyzing microalgae, including assessing phytoplankton biomass, rates of primary production and physiological status. This study describes a preliminary investigation on the joint application of the three kinds of fluorescence analysis in the physiological study of microalgae. Flow cytometry and fluorescence spectrometry were used to obtain the in vivo static fluorescence information of pigments, and a Pulsed-Amplitude-Modulation chlorophyll fluorometer was used to detect the dynamic fluorescence of chlorophyll. The validity of the joint application was proved by analyzing two labora- tory cultured Arctic microalgae, Pseudo-nitzschia delicatissima (Bacillariophyceae) and Thalassiosira sp. The higher value of minimum fluorescence yield in dark-adapted state (Fo), actual photochemical efficiency of PSll (ФPSII), and electron transport rate (ETR) exhibited positive results in a higher cell abundance and chlorophyll a content of P. delicatissima; whereas higher fl-carotene content of Thalassiosira sp. played an important role in the protection of photosynthesis.展开更多
文摘Slodkowski joint spectrum is similar to Taylor joint spectrum, but it has more important meaning in theory and application. In this paper we characterize Slodkowski joint spectrum and generalize some results about tensor product.
文摘In this paper we characterize the left joint spectrum of an n-tuple T = (T1,… ,Tn) of dominant bounded linear operators on a complex Hilbert space H and the unital C-algebra C(T) generated by T1, …,Tn and Ⅰ; moreover, we give an application of this characterization.
基金Project supported by the National Fundamental Research (Grant Nos.2009CB3020402,2010CB731803)the National Natural Science Foundation of China (Grant Nos.60702046,60832005,60972050,60632040)the Natural High-Technology Research and Development Program of China (Grant Nos.2007AA01Z267,2009AA01Z248,2009AA011802)
文摘In this paper,a distributed compressive spectrum sensing scheme in wideband cognitive radio networks is investigated.An analog-to-information converters(AIC) RF front-end sampling structure is proposed which use parallel low rate analog to digital conversions(ADCs) and fewer storage units for wideband spectrum signal sampling.The proposed scheme uses multiple low rate congitive radios(CRs) collecting compressed samples through AICs distritbutedly and recover the signal spectrum jointly.A general joint sparsity model is defined in this scenario,along with a universal recovery algorithm based on simultaneous orthogonal matching pursuit(S-OMP).Numerical simulations show this algorithm outperforms current existing algorithms under this model and works competently under other existing models.
基金Supported by the National Natural Science Foundation of China (No. 61102066)China Postdoctoral Science Foundation (No. 2012M511365)the Scientific Research Project of Zhejiang Provincial Education Department (No.Y201119890)
文摘Spectrum sensing is the fundamental task for Cognitive Radio (CR). To overcome the challenge of high sampling rate in traditional spectral estimation methods, Compressed Sensing (CS) theory is developed. A sparsity and compression ratio joint adjustment algorithm for compressed spectrum sensing in CR network is investigated, with the hypothesis that the sparsity level is unknown as priori knowledge at CR terminals. As perfect spectrum reconstruction is not necessarily required during spectrum detection process, the proposed algorithm only performs a rough estimate of sparsity level. Meanwhile, in order to further reduce the sensing measurement, different compression ratios for CR terminals with varying Signal-to-Noise Ratio (SNR) are considered. The proposed algorithm, which optimizes the compression ratio as well as the estimated sparsity level, can greatly reduce the sensing measurement without degrading the detection performance. It also requires less steps of iteration for convergence. Corroborating simulation results are presented to testify the effectiveness of the proposed algorithm for collaborative spectrum sensing.
基金financially supported by the National Natural Science Foundation of China (Grant no.41076130)the SOA Youth Marine Science Foundation (Grant no.2010116)the Open Research Foundation of Laboratory of Marine Ecosystem and Biogeochemistry,SOA (Grant no.LMEB200902)
文摘In vivo fluorescence has a wide application in analyzing microalgae, including assessing phytoplankton biomass, rates of primary production and physiological status. This study describes a preliminary investigation on the joint application of the three kinds of fluorescence analysis in the physiological study of microalgae. Flow cytometry and fluorescence spectrometry were used to obtain the in vivo static fluorescence information of pigments, and a Pulsed-Amplitude-Modulation chlorophyll fluorometer was used to detect the dynamic fluorescence of chlorophyll. The validity of the joint application was proved by analyzing two labora- tory cultured Arctic microalgae, Pseudo-nitzschia delicatissima (Bacillariophyceae) and Thalassiosira sp. The higher value of minimum fluorescence yield in dark-adapted state (Fo), actual photochemical efficiency of PSll (ФPSII), and electron transport rate (ETR) exhibited positive results in a higher cell abundance and chlorophyll a content of P. delicatissima; whereas higher fl-carotene content of Thalassiosira sp. played an important role in the protection of photosynthesis.