期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Numerical simulation of slurry jets using mixture model 被引量:1
1
作者 Wen-xin HUAI Wan-yun XUE Zhong-dong QIAN 《Water Science and Engineering》 EI CAS CSCD 2013年第1期78-90,共13页
Slurry jets in a static uniform environment were simulated with a two-phase mixture model in which flow-particle interactions were considered. A standard k-e turbulence model was chosen to close the governing equation... Slurry jets in a static uniform environment were simulated with a two-phase mixture model in which flow-particle interactions were considered. A standard k-e turbulence model was chosen to close the governing equations. The computational results were in agreement with previous laboratory measurements. The characteristics of the two-phase flow field and the influences of hydraulic and geometric parameters on the distribution of the slurry jets were analyzed on the basis of the computational results. The calculated results reveal that if the initial velocity of the slurry jet is high, the jet spreads less in the radial direction. When the slurry jet is less influenced by the ambient fluid (when the Stokes number St is relatively large), the turbulent kinetic energy k and turbulent dissipation rate e, which are relatively concentrated around the jet axis, decrease more rapidly after the slurry jet passes through the nozzle. For different values of St, the radial distributions of streamwise velocity and particle volume fraction are both self-similar and fit a Gaussian profile after the slurry jet fully develops. The decay rate of the particle velocity is lower than that of water velocity along the jet axis, and the axial distributions of the centerline particle streamwise velocity are self-similar along the jet axis. The pattern of particle dispersion depends on the Stokes number St. When St = 0.39, the panicle dispersion along the radial direction is considerable, and the relative velocity is very low due to the low dynamic response time. When St = 3.08, the dispersion of particles along the radial direction is very little, and most of the particles have high relative velocities along the streamwise direction. 展开更多
关键词 slurry jet numerical simulation two-phase mixture model Stokes number "flow-particle interaction
在线阅读 下载PDF
Effect of methane-hydrogen mixtures on flow and combustion of coherent jets 被引量:2
2
作者 Ting Cheng Rong Zhu Kai Dong 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2017年第11期1143-1151,共9页
Coherent jets are widely used in electric are furnace (EAF) steelmaking to increase the oxygen utilization and chemical reaction rates. However, the influence of fuel gas combustion on jet behavior is not fully unde... Coherent jets are widely used in electric are furnace (EAF) steelmaking to increase the oxygen utilization and chemical reaction rates. However, the influence of fuel gas combustion on jet behavior is not fully understood yet. The flow and combustion characteristics of a coherent jet were thus investigated at steelmaking temperature using Fluent software, and a detailed chemical kinetic reaction mecha- nism was used in the combustion reaction model. The axial velocity and total temperature of the supersonic jet were measured via hot state experiments. The simulation results were compared with the experimental data and the empirical jet model proposed by Ito and Muchi and good consistency was obtained. The research results indicated that the potential core length of the coherent jet can be prolonged by optimizing the combustion effect of the fuel gas. Besides, the behavior of the supersonic jet in the subsonic section was also investigated, as it is an important factor for controlling the position of the oxygen lance. The investigation indicated that the attenuation of the coherent jet is more notable than that of the conventional jet in the subsonic section. 展开更多
关键词 Supersonic jet Numerical simulation Mixed fuel gas Flow field Combustion characteristic
原文传递
NUMERICAL STUDY OF FLOW IN CONICAL DIFFUSER WITH VORTEX GENERATOR JETS 被引量:1
3
作者 LIU Xiaomin NISHI Michihiro 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第1期5-9,共5页
To develop vortex generator jet (VGJ) method for flow control, the turbulence flow in a 14° conical diffuser with and without vortex generator jets are simulated by solving Navier-Stokes equations with k-ε tur... To develop vortex generator jet (VGJ) method for flow control, the turbulence flow in a 14° conical diffuser with and without vortex generator jets are simulated by solving Navier-Stokes equations with k-ε turbulence model. The diffuser performance, based on different velocity ratio (ratio of the jet speed to the mainstream velocity), is investigated and compared with the experimental study. On the basis of the flow characteristics using computation fluid dynamics (CFD) method observed in the conical diffuser and the downstream development of the longitudinal vortices, attempt is made to correlate the pressure recovery coefficient with the behavior of vortices produced by vortex generator jets. 展开更多
关键词 Vortex generator jet (VGJ) Flow control Longitudinal vortex Numerical simulation
在线阅读 下载PDF
Large eddy simulation of turbulent flow structure and characteristics in an annular jet pump 被引量:6
4
作者 徐茂森 杨雪龙 +1 位作者 龙新平 吕桥 《Journal of Hydrodynamics》 SCIE EI CSCD 2017年第4期702-715,共14页
The large eddy simulation(LES) of the flow characteristics in an annular jet pump(AJP) is conducted, and the flow characteristics are systematically analyzed from both time-averaged and instantaneous aspects. The ... The large eddy simulation(LES) of the flow characteristics in an annular jet pump(AJP) is conducted, and the flow characteristics are systematically analyzed from both time-averaged and instantaneous aspects. The jet expansion, the velocity distribution and the energy are considered to analyze the time-averaged evolution of the flow field in the AJP. The transient flow characteristics can also be acquired from the analysis of the turbulence intensity and the Reynolds stress. The simulation demonstrates that in the time-averaged characteristics, the potential cores increase linearly with the increase of the flow ratio. With the flow development, the jet half-width gradually increases and the residual energy coefficient decreases. Compared with the distribution of the time-averaged axial velocity, that of the instantaneous velocity is more complex and disorderly. The high intensity of the axial turbulence mainly occurs in the mixing layer and the near-wall regions of the diffuser. The annular distribution of the Reynolds stress is mainly in the mixing layer and the recirculation region. There is a low-stress zone between the mixing layer and the high-stress region in the wall-boundary layer. The intensity of the spanwise vortexes is larger than that of the streamwise vortexes, and therefore, the former make greater contribution to the total vorticity. This research provides a better understanding of the flow characteristics in the AJP. 展开更多
关键词 Annular jet pump large eddy simulation(LES) flow characteristics vortex
原文传递
Simulations of vertical jet penetration using a filtered two-fluid model in a gas-solid fluidized bed 被引量:2
5
作者 Shuyan Wang Baoli Shao +5 位作者 Xiangyu Li Jian Zhao Lili Liu Yikun Liu gang Liu Qun Dong 《Particuology》 SCIE EI CAS CSCD 2017年第2期95-104,共10页
The influence of a vertical jet located at the distributor in a cylindrical fluidized bed on the flow behavior of gas and particles was predicted using a filtered two-fluid model proposed by Sundaresan and coworkers. ... The influence of a vertical jet located at the distributor in a cylindrical fluidized bed on the flow behavior of gas and particles was predicted using a filtered two-fluid model proposed by Sundaresan and coworkers. The distributions of volume fraction and the velocity of particles along the lateral direction were investigated for different jet velocities by analyzing the simulated results. The vertical jet penetration lengths at the different gas jet velocities have been obtained and compared with predictions derived from empirical correlations; the predicted air jet penetration length is discussed. Agreement between the numerical simulations and experimental results has been achieved. 展开更多
关键词 Fluidized bed Vertical jet penetration Filtered model Computational fluid dynamics Numerical simulation
原文传递
Suppression effect of jet flow on pulsating pressure of cavity using scale-adaptive simulation model
6
作者 YU Peixun BAI Junqiang +2 位作者 GUO Bozhi HAN Xiao HAN Shanshan 《Chinese Journal of Acoustics》 CSCD 2015年第1期67-83,共17页
The suppression of the aerodynamic noise in the cavity has a great significance to solve relevant puzzles of weapon bays. Acoustic field of the standard cavity model is simulated by using the computational fluid dynam... The suppression of the aerodynamic noise in the cavity has a great significance to solve relevant puzzles of weapon bays. Acoustic field of the standard cavity model is simulated by using the computational fluid dynamics technology based on scale-adaptive simulation (SAS) model. The results obtained by the proposed method in this paper show reasonable agreement with experiments. On the basis of this, effect of different jet flow rates on the time-averaged variables, turbulent kinetic energy, root mean square (RMS) of sound pressure, sound sources distribution and the pulsating pressure distribution in the cavity is studied. The analysis shows that the jet flow has great influence on the cavity flow field and the distribution of pulsating pressure RMS by changing the morphology of the shear layer. The most obvious of these measures is spout4 configuration, the influence mainly in the form of reducing the pulsating pressure of the whole cavity and changing the sound pressure level in the far field. The results show that different jet flow rates have different control effects on pulsating pressure in the cavity and sound pressure level in the far field. Furthermore, the jet flow rates and the suppression effect on the pulsating pressure have no linear relation. 展开更多
关键词 flow Suppression effect of jet flow on pulsating pressure of cavity using scale-adaptive simulation model
原文传递
新一代运载火箭发射燃气动力学数值模拟
7
作者 CHEN Jinsong HE Jianhua +2 位作者 JIA Yankui ZHANG Guodong TIAN Qingya 《Aerospace China》 2023年第2期21-31,共11页
By using the mesh resolution control method based on the nozzle scale,a paralleled super numerical simulation and high-quality mesh model of the launch jet dynamics for new-generation launch vehicles was developed.Bas... By using the mesh resolution control method based on the nozzle scale,a paralleled super numerical simulation and high-quality mesh model of the launch jet dynamics for new-generation launch vehicles was developed.Based upon this,a transient numerical simulation method,combining the pressure and velocity,tightly coupled algorithm and SST turbulence model,was used to complete the unsteady numerical simulation of the launch jet dynamics of the new-generation launch vehicles.The numerical simulation results of the launch jet dynamics,for the new-generation launch vehicles,demonstrated that despite the complex structure of the launch platform,the jet flows of the core stage and booster engines were generally smoothly channeled into the double deflecting trench through the launch platform’s diversion hole at the initial stage of ignition.After the lift off,the jet flows of the core stage and the booster engines began to affect and ablate the grillage-shaped beam and the adjoined surface of the launch platform adjacent to the booster engines.At a higher altitude after lift off,it could be seen for the new-generation launch vehicles the ablation range of high temperature and high-speed jet flows on the launch platform further expanded,which would have a severe ablation effect on the fuel filling tower near the booster engines and even all the support arms.The numerical simulation of launch jet dynamics also established that the jet flows embers at the bottom of the core stage rocket body continued to be affected for an extended period of time due to the large number of nozzles in the new-generation launch vehicles engine and the weak suction effect of the jet flows in the core-stage engines. 展开更多
关键词 numerical simulation of launch jet dynamics jet flows field mesh model dynamic distribution of jet flows field numerical simulation check new-generation launch vehicles
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部