Due to not requiring channel state information (CSI) at both the transmitter and the receiver, noncoherent ultra-wideband (UWB) incurs a performance penalty of approximately 3 dB in the required signal to noise ra...Due to not requiring channel state information (CSI) at both the transmitter and the receiver, noncoherent ultra-wideband (UWB) incurs a performance penalty of approximately 3 dB in the required signal to noise ratio (SNR) compared to the coherent case. To overcome the gap, an effective differential encoding and decoding scheme for multiband UWB systems is proposed. The proposed scheme employs the parallel concatenation of two recursive differential unitary space-frequency encoders at the transmitter. At the receiver, two component decoders iteratively decode information bits by interchanging soft metric values between each other. To reduce the computation complexity, a decoding algorithm which only uses transition probability to calculate the log likelihood ratios (LLRs) for the decoded bits is given. Simulation results show that the proposed scheme can dramatically outperform the conventional differential and even coherent detection at high SNR with a few iterations.展开更多
Low-density parity-check(LDPC)codes are widely used due to their significant errorcorrection capability and linear decoding complexity.However,it is not sufficient for LDPC codes to satisfy the ultra low bit error rat...Low-density parity-check(LDPC)codes are widely used due to their significant errorcorrection capability and linear decoding complexity.However,it is not sufficient for LDPC codes to satisfy the ultra low bit error rate(BER)requirement of next-generation ultra-high-speed communications due to the error floor phenomenon.According to the residual error characteristics of LDPC codes,we consider using the high rate Reed-Solomon(RS)codes as the outer codes to construct LDPC-RS product codes to eliminate the error floor and propose the hybrid error-erasure-correction decoding algorithm for the outer code to exploit erasure-correction capability effectively.Furthermore,the overall performance of product codes is improved using iteration between outer and inner codes.Simulation results validate that BER of the product code with the proposed hybrid algorithm is lower than that of the product code with no erasure correction.Compared with other product codes using LDPC codes,the proposed LDPC-RS product code with the same code rate has much better performance and smaller rate loss attributed to the maximum distance separable(MDS)property and significant erasure-correction capability of RS codes.展开更多
In the Davey-MacKay(DM) construction,the inner decoder treats unknown transmitted bits as random independent substitution errors. It limits the synchronization capability of the inner decoder, and thus weakens the err...In the Davey-MacKay(DM) construction,the inner decoder treats unknown transmitted bits as random independent substitution errors. It limits the synchronization capability of the inner decoder, and thus weakens the error-correcting capability of the DM construction.In order to improve the performance of the DM construction, an iterative decoding scheme is proposed, which iteratively utilizes the more accurate estimates of transmitted codewords. In the proposed scheme, the estimated average bit error rates and the estimated low-density parity-check(LDPC) codewords from the outer decoder are fed back into the inner decoder to update the synchronization process. Simulation results show that the proposed iterative decoding scheme significantly outperforms the traditional DM construction.展开更多
In this paper, a new kind of simple-encoding irregular systematic LDPC codes suitable for one-relay coded cooperation is designed, where the proposed joint iterative decoding is effectively performed in the destinatio...In this paper, a new kind of simple-encoding irregular systematic LDPC codes suitable for one-relay coded cooperation is designed, where the proposed joint iterative decoding is effectively performed in the destination which is in accordance with the corresponding joint Tanner graph characterizing two different component LDPC codes used by the source and relay in ideal and non-ideal relay cooperations. The theoretical analysis and simulations show that the coded cooperation scheme obviously outperforms the coded non-cooperation one under the same code rate and decoding complex. The significant performance improvement can be virtually credited to the additional mutual exchange of the extrinsic information resulted by the LDPC code employed by the source and its counterpart used by the relay in both ideal and non-ideal cooperations.展开更多
Non-uniform quantization for messages in Low-Density Parity-Check(LDPC)decoding canreduce implementation complexity and mitigate performance loss.But the distribution of messagesvaries in the iterative decoding.This l...Non-uniform quantization for messages in Low-Density Parity-Check(LDPC)decoding canreduce implementation complexity and mitigate performance loss.But the distribution of messagesvaries in the iterative decoding.This letter proposes a variable non-uniform quantized Belief Propaga-tion(BP)algorithm.The BP decoding is analyzed by density evolution with Gaussian approximation.Since the probability density of messages can be well approximated by Gaussian distribution,by theunbiased estimation of variance,the distribution of messages can be tracked during the iteration.Thusthe non-uniform quantization scheme can be optimized to minimize the distortion.Simulation resultsshow that the variable non-uniform quantization scheme can achieve better error rate performance andfaster decoding convergence than the conventional non-uniform quantization and uniform quantizationschemes.展开更多
Two modified BP algorithms related to vertical and horizontal processes are proposed to accelerate iterative low-density parity- check (LDPC) decoding over an additive white Gaussian noise (AWGN) channel, where th...Two modified BP algorithms related to vertical and horizontal processes are proposed to accelerate iterative low-density parity- check (LDPC) decoding over an additive white Gaussian noise (AWGN) channel, where the newly updated extrinsic information is immediately used in the current decoding round. Theoretical analysis and simulation results demonstrate that both the modified approaches provide significant performance improvements over the traditional BP algorithm with almost no additional decoding complexity. The proposed algorithm with modified horizontal process offers even better performance than another algorithm with the modified horizontal process. The two modified BP algorithms are very promising in practical communications since both can achieve an excellent trade-off between the performance and decoding complexity.展开更多
For quantum sparse graph codes with stabilizer formalism, the unavoidable girth-four cycles in their Tanner graphs greatly degrade the iterative decoding performance with standard belief-propagation (BP) algorithm. ...For quantum sparse graph codes with stabilizer formalism, the unavoidable girth-four cycles in their Tanner graphs greatly degrade the iterative decoding performance with standard belief-propagation (BP) algorithm. In this paper, we present a jointly-check iterative algorithm suitable for decoding quantum sparse graph codes efficiently. Numerical simulations show that this modified method outperforms standard BP algorithm with an obvious performance improvement.展开更多
A multi dimensional concatenation scheme for block codes is introduced, in which information symbols are interleaved and re encoded for more than once. It provides a convenient platform to design high performance co...A multi dimensional concatenation scheme for block codes is introduced, in which information symbols are interleaved and re encoded for more than once. It provides a convenient platform to design high performance codes with flexible interleaver size. Coset based MAP soft in/soft out decoding algorithms are presented for the F24 code. Simulation results show that the proposed coding scheme can achieve high coding gain with flexible interleaver length and very low decoding complexity.展开更多
With the development of manufacture technology, the multi-level cell(MLC)technique dramatically increases the storage density of NAND flash memory. As the result,cell-to-cell interference(CCI) becomes more serious and...With the development of manufacture technology, the multi-level cell(MLC)technique dramatically increases the storage density of NAND flash memory. As the result,cell-to-cell interference(CCI) becomes more serious and hence causes an increase in the raw bit error rate of data stored in the cells.Recently, low-density parity-check(LDPC)codes have appeared to be a promising solution to combat the interference of MLC NAND flash memory. However, the decoding complexity of the sum-product algorithm(SPA) is extremely high. In this paper, to improve the accuracy of the log likelihood ratio(LLR) information of each bit in each NAND flash memory cell, we adopt a non-uniform detection(N-UD) which uses the average maximum mutual information to determine the value of the soft-decision reference voltages.Furthermore, with an aim to reduce the decoding complexity and improve the decoding performance, we propose a modified soft reliabilitybased iterative majority-logic decoding(MSRBI-MLGD) algorithm, which uses a non-uniform quantizer based on power function to decode LDPC codes. Simulation results show that our design can offer a desirable trade-off between the performance and complexity for high-column-weight LDPC-coded MLC NAND flash memory.展开更多
A method of coherent detection and channel estimation for punctured convolutional coded binary Quadrature Amplitude Modulation (QAM) signals transmitted over a frequency-flat Rayleigh fading channels used for a digita...A method of coherent detection and channel estimation for punctured convolutional coded binary Quadrature Amplitude Modulation (QAM) signals transmitted over a frequency-flat Rayleigh fading channels used for a digital radio broadcasting transmission is presented. Some known symbols are inserted in the encoded data stream to enhance the channel estimation process.The pilot symbols are used to replace the existing parity symbols so no bandwidth expansion is required. An iterative algorithm that uses decoding information as well as the information contained in the known symbols is used to improve the channel parameter estimate. The scheme complexity grows exponentially with the channel estimation filter length. The performance of the system is compared for a normalized fading rate with both perfect coherent detection (corresponding to a perfect knowledge of the fading process and noise variance) and differential detection of Differential Amplitude Phase Shift Keying (DAPSK). The tradeoff between simplicity of implementation and bit-error-rate performance of different techniques is also compared.展开更多
This paper addresses the problem of channel estimation in 5G-enabled vehicular-to-vehicular(V2V) channels with high-mobility environments and non-stationary feature. Considering orthogonal frequency division multiplex...This paper addresses the problem of channel estimation in 5G-enabled vehicular-to-vehicular(V2V) channels with high-mobility environments and non-stationary feature. Considering orthogonal frequency division multiplexing(OFDM) system, we perform extended Kalman filter(EKF) for channel estimation in conjunction with Iterative Detector & Decoder(IDD) at the receiver to improve the estimation accuracy. The EKF is proposed for jointly estimating the channel frequency response and the time-varying time correlation coefficients. And the IDD structure is adopted to reduce the estimation errors in EKF. The simulation results show that, compared with traditional methods, the proposed method effectively promotes the system performance.展开更多
The uplink of mobile satellite communication(MSC) system with hundreds of spot beams is essentially a multiple-input multiple-output(MIMO) channel. Dual-turbo iterative detection and decoding as a kind of MIMO receive...The uplink of mobile satellite communication(MSC) system with hundreds of spot beams is essentially a multiple-input multiple-output(MIMO) channel. Dual-turbo iterative detection and decoding as a kind of MIMO receiver, which exchanges soft extrinsic information between a soft-in soft-out(SISO) detector and an SISO decoder in an iterative fashion, is an efficient method to reduce the uplink inter-beam-interference(IBI),and so the receiving bit error rate(BER).We propose to replace the linear SISO detector of traditional dual-turbo iterative detection and decoding with the AMP detector for the low-density parity-check(LDPC) coded multibeam MSC uplink. This improvement can reduce the computational complexity and achieve much lower BER.展开更多
A network-coding-based multisource LDPC-coded cooperative MIMO scheme is proposed,where multiple sources transmit their messages to the destination with the assistance from a single relay.The relay cooperates with mul...A network-coding-based multisource LDPC-coded cooperative MIMO scheme is proposed,where multiple sources transmit their messages to the destination with the assistance from a single relay.The relay cooperates with multiple sources simultaneously via network-coding.It avoids the issues of imperfect frequency/timing synchronization and large transmission delay which may be introduced by frequency-division multiple access(FDMA)/code-division multiple access(CDMA)and time-division multiple access(TDMA)manners.The proposed joint″Min-Sum″iterative decoding is effectively carried out in the destination.Such a decoding algorithm agrees with the introduced equivalent joint Tanner graph which can be used to fully characterize LDPC codes employed by the sources and relay.Theoretical analysis and numerical simulation show that the proposed scheme with joint iterative decoding can achieve significant cooperation diversity gain.Furthermore,for the relay,compared with the cascade scheme,the proposed scheme has much lower complexity of LDPC-encoding and is easier to be implemented in the hardware with similar bit error rate(BER)performance.展开更多
It is well known that turbo decoding always begins from the first component decoder and supposes that the apriori information is '0' at the first iterative decoding. To alternatively start decoding at two comp...It is well known that turbo decoding always begins from the first component decoder and supposes that the apriori information is '0' at the first iterative decoding. To alternatively start decoding at two component decoders, we can gain two soft output values for the received observation of an input bit. It is obvious that two soft output values comprise more sufficient extrinsic information than only one output value obtained in the conventional scheme since different start points of decoding result in different combinations of the a priori information and the input codewords with different symbol orders due to the permutation of an interleaver. Summarizing two soft output values for erery bit before making hard decisions, we can correct more errors due to their complement. Consequently, turbo codes can achieve better error correcting performance than before in this way. Simulation results show that the performance of turbo codes using the novel proposed decoding scheme can get a growing improvement with the increment of SNR in general compared to the conventional scheme. When the bit error probability is 10-5 , the proposed scheme can achieve 0.5 dB asymptotic coding gain or so under the given simulation conditions.展开更多
Iterative demodulation and decoding scheme is analyzed and modulation labeling is considered to be one of the crucial factors to this scheme. By analyzing the existent mapping design criterion, four aspects are found ...Iterative demodulation and decoding scheme is analyzed and modulation labeling is considered to be one of the crucial factors to this scheme. By analyzing the existent mapping design criterion, four aspects are found as the key techniques for choosing a label mapping. Based on this discovery, a novel mapping design criteflon is proposed and two label mappings are searched according to it. Simulation results show that the performance of BICM-ID using the novel mappings is better than the former ones. The extrinsic information transfer (EXIT) chart is introduced and it is used to evaluate the proposed mapping design criteria.展开更多
Applications on iterative control and multiple input multiple output (MIMO) system were developed. Two new charts derived from extrinsic information transfer (EXIT) chart were employed as the designing tools, which ar...Applications on iterative control and multiple input multiple output (MIMO) system were developed. Two new charts derived from extrinsic information transfer (EXIT) chart were employed as the designing tools, which are called as output mutual information chart with defined iterative degree (DID) chart and near optimum output mutual information (NOMI) chart respectively. Different from the EXIT chart, they can show the iterative performance on the whole signal-to-noise ratio range with one single curve, whereas computation complexity is greatly reduced compared with conventional bit error ratio (BER) performance curve. The iterative control was implemented according to a near-optimum iterative degree vector determined by NOMI chart, the reasonability of uncertain parameters was analyzed in one MIMO system. The concepts were illustrated based on bit-interleaved coded modulation with iterative decoding (BICM-ID).展开更多
The soft cancellation decoding of polar codes achieves a better performance than the belief propagation decoding with lower computational time and space complexities.However,because the soft cancellation decoding is b...The soft cancellation decoding of polar codes achieves a better performance than the belief propagation decoding with lower computational time and space complexities.However,because the soft cancellation decoding is based on the successive cancellation decoding,the decoding efficiency and performance with finite-length blocks can be further improved.Exploiting the idea of the successive cancellation list decoding,the soft cancellation decoding can be improved in two aspects:one is by adding branch decoding to the error-prone information bits to increase the accuracy of the soft information,and the other is through using partial iterative decoding to reduce the time and computational complexities.Compared with the original method,the improved soft cancellation decoding makes progress in the error correction performance,increasing the decoding efficiency and reducing the computational complexity,at the cost of a small increase of space complexity.展开更多
A novel product code iterative decoding algorithm and its high speed implementation scheme are proposed in this paper. Based on partial combination of selected columns of check matrix, the reduced-complexity syndrome ...A novel product code iterative decoding algorithm and its high speed implementation scheme are proposed in this paper. Based on partial combination of selected columns of check matrix, the reduced-complexity syndrome decoding method is proposed to decode sub-codes of product code and deliver soft output information. So iterative decoding of product codes is possible. The fast sorting algorithm and a look-up method are proposed for high speed implementation of this algorithm. Compared to the conventional weighing iterative algorithm, the proposed algorithm has lower complexity while offering better performance, which is demonstrated by simulations and implementation analysis. The implementation scheme and verilog HDL simulation show that it is feasible to achieve high speed decoding with the proposed algorithm.展开更多
This paper proposes a novel mapping scheme for bit-interleaved coded modulation with iterative decoding(BICM-ID).The symbol mapping is composed of two QPSK with different radiuses and phases,called cross equalization-...This paper proposes a novel mapping scheme for bit-interleaved coded modulation with iterative decoding(BICM-ID).The symbol mapping is composed of two QPSK with different radiuses and phases,called cross equalization-8PSK-quasi-semi set partitioning(CE-8PSK-Quasi-SSP).Providing the same average power,the proposed scheme can increase the minimum squared Euclidean distance(MSED)and then improve the receiving performance of BICM-ID compared with conventional symbol mapping schemes.Simultaneously,a modified iteration decoding algorithm is proposed in this paper.In the process of iteration decoding,different proportion of the extrinsic information to the systematic observations results in distinct decoding performance.At high SNR(4~9dB),the observation information plays a more important role than the extrinsic information.Simulation results show that the proportion set at 1.2 is more suitable for the novel mapping in BICM-ID.When the BER is 10^(-4),more than 0.9dB coding gain over Rayleigh channels can be achieved for the improved mapping and decoding scheme.展开更多
Bit-Interleaved Coded Modulation with Iterative Decoding (BICM-ID) is a bandwidth ef- ficient transmission, where the bit error rate is reduced through the iterative information exchange between the inner demapper and...Bit-Interleaved Coded Modulation with Iterative Decoding (BICM-ID) is a bandwidth ef- ficient transmission, where the bit error rate is reduced through the iterative information exchange between the inner demapper and the outer decoder. The choice of the symbol mapping is the crucial design parameter. This paper indicates that the Harmonic Mean of the Minimum Squared Euclidean (HMMSE) distance is the best criterion for the mapping design. Based on the design criterion of the HMMSE distance, a new search algorithm to find the optimized labeling maps for BICM-ID system is proposed. Numerical results and performance comparison show that the new labeling search method has a low complexity and outperforms other labeling schemes using other design criterion in BICM-ID system, therefore it is an optimized labeling method.展开更多
基金The Higher Education Technology Foundation of Huawei Technologies Co, Ltd (NoYJCB2005016WL)
文摘Due to not requiring channel state information (CSI) at both the transmitter and the receiver, noncoherent ultra-wideband (UWB) incurs a performance penalty of approximately 3 dB in the required signal to noise ratio (SNR) compared to the coherent case. To overcome the gap, an effective differential encoding and decoding scheme for multiband UWB systems is proposed. The proposed scheme employs the parallel concatenation of two recursive differential unitary space-frequency encoders at the transmitter. At the receiver, two component decoders iteratively decode information bits by interchanging soft metric values between each other. To reduce the computation complexity, a decoding algorithm which only uses transition probability to calculate the log likelihood ratios (LLRs) for the decoded bits is given. Simulation results show that the proposed scheme can dramatically outperform the conventional differential and even coherent detection at high SNR with a few iterations.
基金This work was supported in part by National Natural Science Foundation of China(No.61671324)the Director’s Funding from Pilot National Laboratory for Marine Science and Technology(Qingdao)(QNLM201712).
文摘Low-density parity-check(LDPC)codes are widely used due to their significant errorcorrection capability and linear decoding complexity.However,it is not sufficient for LDPC codes to satisfy the ultra low bit error rate(BER)requirement of next-generation ultra-high-speed communications due to the error floor phenomenon.According to the residual error characteristics of LDPC codes,we consider using the high rate Reed-Solomon(RS)codes as the outer codes to construct LDPC-RS product codes to eliminate the error floor and propose the hybrid error-erasure-correction decoding algorithm for the outer code to exploit erasure-correction capability effectively.Furthermore,the overall performance of product codes is improved using iteration between outer and inner codes.Simulation results validate that BER of the product code with the proposed hybrid algorithm is lower than that of the product code with no erasure correction.Compared with other product codes using LDPC codes,the proposed LDPC-RS product code with the same code rate has much better performance and smaller rate loss attributed to the maximum distance separable(MDS)property and significant erasure-correction capability of RS codes.
基金supported in part by National Natural Science Foundation of China(61671324)the Director’s Funding from Qingdao National Laboratory for Marine Science and Technology
文摘In the Davey-MacKay(DM) construction,the inner decoder treats unknown transmitted bits as random independent substitution errors. It limits the synchronization capability of the inner decoder, and thus weakens the error-correcting capability of the DM construction.In order to improve the performance of the DM construction, an iterative decoding scheme is proposed, which iteratively utilizes the more accurate estimates of transmitted codewords. In the proposed scheme, the estimated average bit error rates and the estimated low-density parity-check(LDPC) codewords from the outer decoder are fed back into the inner decoder to update the synchronization process. Simulation results show that the proposed iterative decoding scheme significantly outperforms the traditional DM construction.
基金Supported by the Open Research Fund of National Moblie Communications Research Laboratory of Southeast Uni-versity (No. W200704)
文摘In this paper, a new kind of simple-encoding irregular systematic LDPC codes suitable for one-relay coded cooperation is designed, where the proposed joint iterative decoding is effectively performed in the destination which is in accordance with the corresponding joint Tanner graph characterizing two different component LDPC codes used by the source and relay in ideal and non-ideal relay cooperations. The theoretical analysis and simulations show that the coded cooperation scheme obviously outperforms the coded non-cooperation one under the same code rate and decoding complex. The significant performance improvement can be virtually credited to the additional mutual exchange of the extrinsic information resulted by the LDPC code employed by the source and its counterpart used by the relay in both ideal and non-ideal cooperations.
基金the Aerospace Technology Support Foun-dation of China(No.J04-2005040).
文摘Non-uniform quantization for messages in Low-Density Parity-Check(LDPC)decoding canreduce implementation complexity and mitigate performance loss.But the distribution of messagesvaries in the iterative decoding.This letter proposes a variable non-uniform quantized Belief Propaga-tion(BP)algorithm.The BP decoding is analyzed by density evolution with Gaussian approximation.Since the probability density of messages can be well approximated by Gaussian distribution,by theunbiased estimation of variance,the distribution of messages can be tracked during the iteration.Thusthe non-uniform quantization scheme can be optimized to minimize the distortion.Simulation resultsshow that the variable non-uniform quantization scheme can achieve better error rate performance andfaster decoding convergence than the conventional non-uniform quantization and uniform quantizationschemes.
基金National Mobile Communication Research Laboratory,Southeast University(No.W200704),ChinaNatural Science foundation of Jiangsu Province (No.BK2006188),ChinaQuebec-China Joint Research Foundation by McGill University,Montreal,Quebec,Canada
文摘Two modified BP algorithms related to vertical and horizontal processes are proposed to accelerate iterative low-density parity- check (LDPC) decoding over an additive white Gaussian noise (AWGN) channel, where the newly updated extrinsic information is immediately used in the current decoding round. Theoretical analysis and simulation results demonstrate that both the modified approaches provide significant performance improvements over the traditional BP algorithm with almost no additional decoding complexity. The proposed algorithm with modified horizontal process offers even better performance than another algorithm with the modified horizontal process. The two modified BP algorithms are very promising in practical communications since both can achieve an excellent trade-off between the performance and decoding complexity.
基金Project supported by the National Natural Science Foundation of China(Grant No.60972046)Grant from the National Defense Pre-Research Foundation of China
文摘For quantum sparse graph codes with stabilizer formalism, the unavoidable girth-four cycles in their Tanner graphs greatly degrade the iterative decoding performance with standard belief-propagation (BP) algorithm. In this paper, we present a jointly-check iterative algorithm suitable for decoding quantum sparse graph codes efficiently. Numerical simulations show that this modified method outperforms standard BP algorithm with an obvious performance improvement.
文摘A multi dimensional concatenation scheme for block codes is introduced, in which information symbols are interleaved and re encoded for more than once. It provides a convenient platform to design high performance codes with flexible interleaver size. Coset based MAP soft in/soft out decoding algorithms are presented for the F24 code. Simulation results show that the proposed coding scheme can achieve high coding gain with flexible interleaver length and very low decoding complexity.
基金supported in part by the NSF of China (61471131, 61771149, 61501126)NSF of Guangdong Province 2016A030310337+1 种基金the open research fund of National Mobile Communications Research Laboratory, Southeast University (No. 2018D02)the Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2017-ZJ022)
文摘With the development of manufacture technology, the multi-level cell(MLC)technique dramatically increases the storage density of NAND flash memory. As the result,cell-to-cell interference(CCI) becomes more serious and hence causes an increase in the raw bit error rate of data stored in the cells.Recently, low-density parity-check(LDPC)codes have appeared to be a promising solution to combat the interference of MLC NAND flash memory. However, the decoding complexity of the sum-product algorithm(SPA) is extremely high. In this paper, to improve the accuracy of the log likelihood ratio(LLR) information of each bit in each NAND flash memory cell, we adopt a non-uniform detection(N-UD) which uses the average maximum mutual information to determine the value of the soft-decision reference voltages.Furthermore, with an aim to reduce the decoding complexity and improve the decoding performance, we propose a modified soft reliabilitybased iterative majority-logic decoding(MSRBI-MLGD) algorithm, which uses a non-uniform quantizer based on power function to decode LDPC codes. Simulation results show that our design can offer a desirable trade-off between the performance and complexity for high-column-weight LDPC-coded MLC NAND flash memory.
基金Supported by the National Natural Science Foundation of China under Grant 60072013
文摘A method of coherent detection and channel estimation for punctured convolutional coded binary Quadrature Amplitude Modulation (QAM) signals transmitted over a frequency-flat Rayleigh fading channels used for a digital radio broadcasting transmission is presented. Some known symbols are inserted in the encoded data stream to enhance the channel estimation process.The pilot symbols are used to replace the existing parity symbols so no bandwidth expansion is required. An iterative algorithm that uses decoding information as well as the information contained in the known symbols is used to improve the channel parameter estimate. The scheme complexity grows exponentially with the channel estimation filter length. The performance of the system is compared for a normalized fading rate with both perfect coherent detection (corresponding to a perfect knowledge of the fading process and noise variance) and differential detection of Differential Amplitude Phase Shift Keying (DAPSK). The tradeoff between simplicity of implementation and bit-error-rate performance of different techniques is also compared.
基金supported by the National Natural Science Foundation of China (No.61501066,No.61572088,No.61701063)Chongqing Frontier and Applied Basic Research Project (No.cstc2015jcyjA40003,No.cstc2017jcyjAX0026,No.cstc2016jcyjA0209)+1 种基金the Open Fund of the State Key Laboratory of Integrated Services Networks (No.ISN16-03)the Fundamental Research Funds for the Central Universities (No.106112017CDJXY 500001)
文摘This paper addresses the problem of channel estimation in 5G-enabled vehicular-to-vehicular(V2V) channels with high-mobility environments and non-stationary feature. Considering orthogonal frequency division multiplexing(OFDM) system, we perform extended Kalman filter(EKF) for channel estimation in conjunction with Iterative Detector & Decoder(IDD) at the receiver to improve the estimation accuracy. The EKF is proposed for jointly estimating the channel frequency response and the time-varying time correlation coefficients. And the IDD structure is adopted to reduce the estimation errors in EKF. The simulation results show that, compared with traditional methods, the proposed method effectively promotes the system performance.
基金supported by the National Natural Science Foundation of China under Grants 61320106003 and 61401095the Civil Aerospace Technologies Research Project under Grant D010109The Fundamental Research Funds for the Central Universities under Grant YZZ17009
文摘The uplink of mobile satellite communication(MSC) system with hundreds of spot beams is essentially a multiple-input multiple-output(MIMO) channel. Dual-turbo iterative detection and decoding as a kind of MIMO receiver, which exchanges soft extrinsic information between a soft-in soft-out(SISO) detector and an SISO decoder in an iterative fashion, is an efficient method to reduce the uplink inter-beam-interference(IBI),and so the receiving bit error rate(BER).We propose to replace the linear SISO detector of traditional dual-turbo iterative detection and decoding with the AMP detector for the low-density parity-check(LDPC) coded multibeam MSC uplink. This improvement can reduce the computational complexity and achieve much lower BER.
基金Supported by the Postdoctoral Science Foundation of China(2014M561694)the Science and Technology on Avionics Integration Laboratory and National Aeronautical Science Foundation of China(20105552)
文摘A network-coding-based multisource LDPC-coded cooperative MIMO scheme is proposed,where multiple sources transmit their messages to the destination with the assistance from a single relay.The relay cooperates with multiple sources simultaneously via network-coding.It avoids the issues of imperfect frequency/timing synchronization and large transmission delay which may be introduced by frequency-division multiple access(FDMA)/code-division multiple access(CDMA)and time-division multiple access(TDMA)manners.The proposed joint″Min-Sum″iterative decoding is effectively carried out in the destination.Such a decoding algorithm agrees with the introduced equivalent joint Tanner graph which can be used to fully characterize LDPC codes employed by the sources and relay.Theoretical analysis and numerical simulation show that the proposed scheme with joint iterative decoding can achieve significant cooperation diversity gain.Furthermore,for the relay,compared with the cascade scheme,the proposed scheme has much lower complexity of LDPC-encoding and is easier to be implemented in the hardware with similar bit error rate(BER)performance.
文摘It is well known that turbo decoding always begins from the first component decoder and supposes that the apriori information is '0' at the first iterative decoding. To alternatively start decoding at two component decoders, we can gain two soft output values for the received observation of an input bit. It is obvious that two soft output values comprise more sufficient extrinsic information than only one output value obtained in the conventional scheme since different start points of decoding result in different combinations of the a priori information and the input codewords with different symbol orders due to the permutation of an interleaver. Summarizing two soft output values for erery bit before making hard decisions, we can correct more errors due to their complement. Consequently, turbo codes can achieve better error correcting performance than before in this way. Simulation results show that the performance of turbo codes using the novel proposed decoding scheme can get a growing improvement with the increment of SNR in general compared to the conventional scheme. When the bit error probability is 10-5 , the proposed scheme can achieve 0.5 dB asymptotic coding gain or so under the given simulation conditions.
文摘Iterative demodulation and decoding scheme is analyzed and modulation labeling is considered to be one of the crucial factors to this scheme. By analyzing the existent mapping design criterion, four aspects are found as the key techniques for choosing a label mapping. Based on this discovery, a novel mapping design criteflon is proposed and two label mappings are searched according to it. Simulation results show that the performance of BICM-ID using the novel mappings is better than the former ones. The extrinsic information transfer (EXIT) chart is introduced and it is used to evaluate the proposed mapping design criteria.
基金The National Natural Science Foundation of China (No. 60496316) The National Hi-Tech Research and Development Program (863) of China (No. 2006AA01Z270)
文摘Applications on iterative control and multiple input multiple output (MIMO) system were developed. Two new charts derived from extrinsic information transfer (EXIT) chart were employed as the designing tools, which are called as output mutual information chart with defined iterative degree (DID) chart and near optimum output mutual information (NOMI) chart respectively. Different from the EXIT chart, they can show the iterative performance on the whole signal-to-noise ratio range with one single curve, whereas computation complexity is greatly reduced compared with conventional bit error ratio (BER) performance curve. The iterative control was implemented according to a near-optimum iterative degree vector determined by NOMI chart, the reasonability of uncertain parameters was analyzed in one MIMO system. The concepts were illustrated based on bit-interleaved coded modulation with iterative decoding (BICM-ID).
文摘The soft cancellation decoding of polar codes achieves a better performance than the belief propagation decoding with lower computational time and space complexities.However,because the soft cancellation decoding is based on the successive cancellation decoding,the decoding efficiency and performance with finite-length blocks can be further improved.Exploiting the idea of the successive cancellation list decoding,the soft cancellation decoding can be improved in two aspects:one is by adding branch decoding to the error-prone information bits to increase the accuracy of the soft information,and the other is through using partial iterative decoding to reduce the time and computational complexities.Compared with the original method,the improved soft cancellation decoding makes progress in the error correction performance,increasing the decoding efficiency and reducing the computational complexity,at the cost of a small increase of space complexity.
基金the National Natural Science Foundation of China.
文摘A novel product code iterative decoding algorithm and its high speed implementation scheme are proposed in this paper. Based on partial combination of selected columns of check matrix, the reduced-complexity syndrome decoding method is proposed to decode sub-codes of product code and deliver soft output information. So iterative decoding of product codes is possible. The fast sorting algorithm and a look-up method are proposed for high speed implementation of this algorithm. Compared to the conventional weighing iterative algorithm, the proposed algorithm has lower complexity while offering better performance, which is demonstrated by simulations and implementation analysis. The implementation scheme and verilog HDL simulation show that it is feasible to achieve high speed decoding with the proposed algorithm.
基金Supported by the Key Project of Chinese Ministry of Education(No.106042)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry(2007[24])
文摘This paper proposes a novel mapping scheme for bit-interleaved coded modulation with iterative decoding(BICM-ID).The symbol mapping is composed of two QPSK with different radiuses and phases,called cross equalization-8PSK-quasi-semi set partitioning(CE-8PSK-Quasi-SSP).Providing the same average power,the proposed scheme can increase the minimum squared Euclidean distance(MSED)and then improve the receiving performance of BICM-ID compared with conventional symbol mapping schemes.Simultaneously,a modified iteration decoding algorithm is proposed in this paper.In the process of iteration decoding,different proportion of the extrinsic information to the systematic observations results in distinct decoding performance.At high SNR(4~9dB),the observation information plays a more important role than the extrinsic information.Simulation results show that the proportion set at 1.2 is more suitable for the novel mapping in BICM-ID.When the BER is 10^(-4),more than 0.9dB coding gain over Rayleigh channels can be achieved for the improved mapping and decoding scheme.
基金Supported by the National Natural Science Foundation of China (No.60472104).
文摘Bit-Interleaved Coded Modulation with Iterative Decoding (BICM-ID) is a bandwidth ef- ficient transmission, where the bit error rate is reduced through the iterative information exchange between the inner demapper and the outer decoder. The choice of the symbol mapping is the crucial design parameter. This paper indicates that the Harmonic Mean of the Minimum Squared Euclidean (HMMSE) distance is the best criterion for the mapping design. Based on the design criterion of the HMMSE distance, a new search algorithm to find the optimized labeling maps for BICM-ID system is proposed. Numerical results and performance comparison show that the new labeling search method has a low complexity and outperforms other labeling schemes using other design criterion in BICM-ID system, therefore it is an optimized labeling method.