If the degree distribution is chosen carefully, the irregular low-density parity-check (LDPC) codes can outperform the regular ones. An image transmission system is proposed by combining regular and irregular LDPC cod...If the degree distribution is chosen carefully, the irregular low-density parity-check (LDPC) codes can outperform the regular ones. An image transmission system is proposed by combining regular and irregular LDPC codes with 16QAM/64QAM modulation to improve both efficiency and reliability. Simulaton results show that LDPC codes are good coding schemes over fading channel in image communication with lower system complexity. More over, irregular codes can obtain a code gain of about 0.7 dB compared with regular ones when BER is 10 -4. So the irregular LDPC codes are more suitable for image transmission than the regular codes.展开更多
In this paper, we focus on the design of irregular QC-LDPC code based multi-level coded modulation(MLCM) scheme by jointly optimizing the component code rate and the degree distribution of the irregular QC-LDPC compon...In this paper, we focus on the design of irregular QC-LDPC code based multi-level coded modulation(MLCM) scheme by jointly optimizing the component code rate and the degree distribution of the irregular QC-LDPC component code. Firstly, the sub-channel capacities of MLCM systems is analyzed and discussed, based on which the optimal component code rate can be obtained. Secondly, an extrinsic information transfer chart based two-stage searching algorithm is proposed to find the good irregular QC-LDPC code ensembles with optimal component code rates for their corresponding sub-channels. Finally, by constructing the irregular QC-LDPC component codes from the designed ensembles with the aim of possibly enlarging the girth and reducing the number of the shortest cycles, the designed irregular QC-LDPC code based 16QAM and 64QAM MLCM systems can achieve 0.4 dB and 1.2 dB net coding gain, respectively, compared with the recently proposed regular QC-LDPC code based 16QAM and 64QAM MLCM systems.展开更多
A low-complexity algorithm is proposed in this paper in order to optimize irregular low-density parity-check (LDPC) codes.The algorithm proposed can calculate the noise threshold by means of a one-dimensional densit...A low-complexity algorithm is proposed in this paper in order to optimize irregular low-density parity-check (LDPC) codes.The algorithm proposed can calculate the noise threshold by means of a one-dimensional density evolution and search the optimal degree profiles with fast-convergence differential evolution,so that it has a lower complexity and a faster convergence speed.Simulation resuits show that the irregular LDPC codes optimized by the presented algorithm can also perform better than Turbo codes at moderate block length even with less computation cost.展开更多
Based on the property that high degree variable nodes within an irregular LowDensity Parity-Check (LDPC) code have more powerful error-correcting capability than that of low degree variable nodes, a group of irregular...Based on the property that high degree variable nodes within an irregular LowDensity Parity-Check (LDPC) code have more powerful error-correcting capability than that of low degree variable nodes, a group of irregular LDPC codes with Unequal Error Protection (UEP)property is designed in this letter. Simulation results show that the transmission quality of the image may be effectively improved with this class of irregular LDPC code.展开更多
Two new design approaches for constructing Low-Density Parity-Check(LDPC) codes are proposed.One is used to design regular Quasi-Cyclic LDPC(QC-LDPC) codes with girth at least 8.The other is used to design irregular L...Two new design approaches for constructing Low-Density Parity-Check(LDPC) codes are proposed.One is used to design regular Quasi-Cyclic LDPC(QC-LDPC) codes with girth at least 8.The other is used to design irregular LDPC codes.Both of their parity-check matrices are composed of Circulant Permutation Matrices(CPMs).When iteratively decoded with the Sum-Product Algorithm(SPA),these proposed codes exhibit good performances over the AWGN channel.展开更多
The disclosure of many secrets of the genetic code was facilitated by the fact that it was carried out on the basis of mathematical analysis of experimental data: the diversity of genes, their structures and genetic c...The disclosure of many secrets of the genetic code was facilitated by the fact that it was carried out on the basis of mathematical analysis of experimental data: the diversity of genes, their structures and genetic codes. New properties of the genetic code are presented and its most important integral characteristics are established. Two groups of such characteristics were distinguished. The first group refers to the integral characteristics for the areas of DNA, where genes are broken down in pairs and all 5 cases of overlap, allowed by the structure of DNA, were investigated. The second group of characteristics refers to the most extended areas of DNA in which there is no genetic overlap. The interrelation of the established integral characteristics in these groups is shown. As a result, a number of previously unknown effects were discovered. It was possible to establish two functions in which all the over-understood codons in mitochondrial genetic codes (human and other organizations) participate, as well as a significant difference in the integral characteristics of such codes compared to the standard code. Other properties of the structure of the genetic code following from the obtained results are also established. The obtained results allowed us to set and solve one of the new breakthrough problems—the calculation of the genetic code. The full version of the solution to this problem was published in this journal in August 2017.展开更多
A novel lower-complexity construction scheme of quasi-cyclic low-density parity-check(QC-LDPC) codes for optical transmission systems is proposed based on the structure of the parity-check matrix for the Richardson-Ur...A novel lower-complexity construction scheme of quasi-cyclic low-density parity-check(QC-LDPC) codes for optical transmission systems is proposed based on the structure of the parity-check matrix for the Richardson-Urbanke(RU) algorithm. Furthermore, a novel irregular QC-LDPC(4 288, 4 020) code with high code-rate of 0.937 is constructed by this novel construction scheme. The simulation analyses show that the net coding gain(NCG) of the novel irregular QC-LDPC(4 288,4 020) code is respectively 2.08 d B, 1.25 d B and 0.29 d B more than those of the classic RS(255, 239) code, the LDPC(32 640, 30 592) code and the irregular QC-LDPC(3 843, 3 603) code at the bit error rate(BER) of 10^(-6). The irregular QC-LDPC(4 288, 4 020) code has the lower encoding/decoding complexity compared with the LDPC(32 640, 30 592) code and the irregular QC-LDPC(3 843, 3 603) code. The proposed novel QC-LDPC(4 288, 4 020) code can be more suitable for the increasing development requirements of high-speed optical transmission systems.展开更多
文摘If the degree distribution is chosen carefully, the irregular low-density parity-check (LDPC) codes can outperform the regular ones. An image transmission system is proposed by combining regular and irregular LDPC codes with 16QAM/64QAM modulation to improve both efficiency and reliability. Simulaton results show that LDPC codes are good coding schemes over fading channel in image communication with lower system complexity. More over, irregular codes can obtain a code gain of about 0.7 dB compared with regular ones when BER is 10 -4. So the irregular LDPC codes are more suitable for image transmission than the regular codes.
基金supported by National Natural Science Foundation of China(No.61571061)
文摘In this paper, we focus on the design of irregular QC-LDPC code based multi-level coded modulation(MLCM) scheme by jointly optimizing the component code rate and the degree distribution of the irregular QC-LDPC component code. Firstly, the sub-channel capacities of MLCM systems is analyzed and discussed, based on which the optimal component code rate can be obtained. Secondly, an extrinsic information transfer chart based two-stage searching algorithm is proposed to find the good irregular QC-LDPC code ensembles with optimal component code rates for their corresponding sub-channels. Finally, by constructing the irregular QC-LDPC component codes from the designed ensembles with the aim of possibly enlarging the girth and reducing the number of the shortest cycles, the designed irregular QC-LDPC code based 16QAM and 64QAM MLCM systems can achieve 0.4 dB and 1.2 dB net coding gain, respectively, compared with the recently proposed regular QC-LDPC code based 16QAM and 64QAM MLCM systems.
基金Leading Academic Discipline Project of Shanghai Municipal Education Commission,China(No.J51801)Shanghai Second Polytechnic University Foundation,China(No.QD209008)Leading Academic Discipline Project of Shanghai Second Polytechnic University,China(No.XXKZD1302)
文摘A low-complexity algorithm is proposed in this paper in order to optimize irregular low-density parity-check (LDPC) codes.The algorithm proposed can calculate the noise threshold by means of a one-dimensional density evolution and search the optimal degree profiles with fast-convergence differential evolution,so that it has a lower complexity and a faster convergence speed.Simulation resuits show that the irregular LDPC codes optimized by the presented algorithm can also perform better than Turbo codes at moderate block length even with less computation cost.
文摘Based on the property that high degree variable nodes within an irregular LowDensity Parity-Check (LDPC) code have more powerful error-correcting capability than that of low degree variable nodes, a group of irregular LDPC codes with Unequal Error Protection (UEP)property is designed in this letter. Simulation results show that the transmission quality of the image may be effectively improved with this class of irregular LDPC code.
基金Supported by the National Natural Science Foundation of China(Nos.61271199,61172022)
文摘Two new design approaches for constructing Low-Density Parity-Check(LDPC) codes are proposed.One is used to design regular Quasi-Cyclic LDPC(QC-LDPC) codes with girth at least 8.The other is used to design irregular LDPC codes.Both of their parity-check matrices are composed of Circulant Permutation Matrices(CPMs).When iteratively decoded with the Sum-Product Algorithm(SPA),these proposed codes exhibit good performances over the AWGN channel.
文摘The disclosure of many secrets of the genetic code was facilitated by the fact that it was carried out on the basis of mathematical analysis of experimental data: the diversity of genes, their structures and genetic codes. New properties of the genetic code are presented and its most important integral characteristics are established. Two groups of such characteristics were distinguished. The first group refers to the integral characteristics for the areas of DNA, where genes are broken down in pairs and all 5 cases of overlap, allowed by the structure of DNA, were investigated. The second group of characteristics refers to the most extended areas of DNA in which there is no genetic overlap. The interrelation of the established integral characteristics in these groups is shown. As a result, a number of previously unknown effects were discovered. It was possible to establish two functions in which all the over-understood codons in mitochondrial genetic codes (human and other organizations) participate, as well as a significant difference in the integral characteristics of such codes compared to the standard code. Other properties of the structure of the genetic code following from the obtained results are also established. The obtained results allowed us to set and solve one of the new breakthrough problems—the calculation of the genetic code. The full version of the solution to this problem was published in this journal in August 2017.
基金supported by the National Natural Science Foundation of China(Nos.61472464 and 61471075)the Program for Innovation Team Building at Institutions of Higher Education in Chongqing(No.J2013-46)+1 种基金the Natural Science Foundation of Chongqing Science and Technology Commission(Nos.cstc2015jcyjA 0554 and cstc2013jcyjA 40017)the Program for Postgraduate Science Research and Innovation of Chongqing University of Posts and Telecommunications(Chongqing Municipal Education Commission)(No.CYS14144)
文摘A novel lower-complexity construction scheme of quasi-cyclic low-density parity-check(QC-LDPC) codes for optical transmission systems is proposed based on the structure of the parity-check matrix for the Richardson-Urbanke(RU) algorithm. Furthermore, a novel irregular QC-LDPC(4 288, 4 020) code with high code-rate of 0.937 is constructed by this novel construction scheme. The simulation analyses show that the net coding gain(NCG) of the novel irregular QC-LDPC(4 288,4 020) code is respectively 2.08 d B, 1.25 d B and 0.29 d B more than those of the classic RS(255, 239) code, the LDPC(32 640, 30 592) code and the irregular QC-LDPC(3 843, 3 603) code at the bit error rate(BER) of 10^(-6). The irregular QC-LDPC(4 288, 4 020) code has the lower encoding/decoding complexity compared with the LDPC(32 640, 30 592) code and the irregular QC-LDPC(3 843, 3 603) code. The proposed novel QC-LDPC(4 288, 4 020) code can be more suitable for the increasing development requirements of high-speed optical transmission systems.