The durability performance of reinforced concrete(RC)building structures is significantly affected by the corrosion of the steel reinforcement due to chloride penetration,thus,the chloride ion diffusion coefficient sh...The durability performance of reinforced concrete(RC)building structures is significantly affected by the corrosion of the steel reinforcement due to chloride penetration,thus,the chloride ion diffusion coefficient should be investigated through experiments or theoretical equations to assess the durability of an RC structure.This study aims to predict the chloride ion diffusion coefficient of concrete,a heterogeneous material.A convolutional neural network(CNN)-based regression model that learns the condition of the concrete surface through deep learning,is developed to efficiently obtain the chloride ion diffusion coefficient.For the model implementation to determine the chloride ion diffusion coefficient,concrete mixes with w/c ratios of 0.33,0.40,0.46,0.50,0.62,and 0.68,are cured for 28 days;subsequently,the surface image data of the specimens are collected.Finally,the proposed model predicts the chloride ion diffusion coefficient using the concrete surface image data and exhibits an error of approximately 1.5E−12 m^(2)/s.The results suggest the applicability of proposed model to the field of facility maintenance for estimating the chloride ion diffusion coefficient of concrete using images.展开更多
In situ NMR measurements of the diffusion coefficients,including an estimate of signal strength,of lithium ion conductor using diffusion-weighting pulse sequence are performed in this study.A cascade bilinear model is...In situ NMR measurements of the diffusion coefficients,including an estimate of signal strength,of lithium ion conductor using diffusion-weighting pulse sequence are performed in this study.A cascade bilinear model is proposed to estimate the diffusion sensitivity factors of pulsed-field gradient using prior information of the electrochemical performance and Arrhenius constraint.The model postulates that the active lithium nuclei participating electrochemical reaction are relevant to the NMR signal intensity,when discharge rate or temperature condition is varying.The electrochemical data and the NMR signal strength show a highly fit with the proposed model according our simulation and experiments.Furthermore,the diffusion time is constrained by temperature based on Arrhenius equation of reaction rates dependence.An experimental calculation of Li_4Ti_5O_(12)(LTO)/carbon nanotubes(CNTs) with the electrolyte evaluating at 20 ℃ is presented,which the b factor is estimated by the discharge rate.展开更多
This paper describes an orthogonal experiment on the effect of water/cement ratio,water consumption per cubic meter,curing time,and type of sand on the response"resistance to chloride ion penetration".A sea-sand con...This paper describes an orthogonal experiment on the effect of water/cement ratio,water consumption per cubic meter,curing time,and type of sand on the response"resistance to chloride ion penetration".A sea-sand containing concrete was used for the trials.An analysis of chloride ion diffusion coefficients at different factor levels was performed.A predictive model of chloride ion diffusion in concrete is developed through regression analysis.The experimental results show that when the water/cement ratio varies from 0.45 to 0.60,and the water consumption per cubic meter varies from 185 to 215 kg,and the curing time varies from 30 to 180 d then the size of the effects fall in the order(most significant first): curing time,type of sand,water consumption per cubic meter,and water/cement ratio.Chloride ion penetration is reduced,and better durability of the concrete is observed,with longer curing times,less water consumption per cubic meter,and a smaller water/cement ratio.展开更多
Li Fe PO4/C was prepared via solid state reaction and characterized with X-ray powder diffraction and charge–discharge test. As-prepared Li Fe PO4/C has a triphylite structure and exhibits an excellent rate capabilit...Li Fe PO4/C was prepared via solid state reaction and characterized with X-ray powder diffraction and charge–discharge test. As-prepared Li Fe PO4/C has a triphylite structure and exhibits an excellent rate capability and capacity retention. Electrochemical impedance spectroscopy(EIS) was applied to investigate LixFe PO4/C(0<x<1) electrode on temperature variation. The valid equivalent circuit for EIS fitting was determined which contains an intercalation capacitance for Li+ ion accumulation and consumption in the electrode reaction. The surface layer impedance needs to be included in the equivalent circuit when Li Fe PO4/C is deeply delithiated at a relatively high temperature. EIS examination indicates that a temperature rise leads to a better reversibility, lower charge transfer resistance, higher exchange current density J0 and greater Li+ ion diffusion coefficient for the LixFe PO4/C electrode process. The Li+ ion concentration in LixFe PO4/C is potential to impact the Li+ ion diffusion coefficient, and a decrease in the former results in an increase in the latter.展开更多
Corrosion of steel bars with chloride salt erosion is one of the main reasons for the deterioration of the performance of reinforced concrete structures.The key to the service life of concrete members is the transport...Corrosion of steel bars with chloride salt erosion is one of the main reasons for the deterioration of the performance of reinforced concrete structures.The key to the service life of concrete members is the transport rate of chloride ions and the time for rusting of steel bars.In this paper,the artificial reef concrete member is taken as the research object,and the diffusion coefficient of seawater chloride ion in C30,C35 and steel slag composite artificial reef concrete is analyzed.The critical chloride ion concentration of steel corrosion in concrete is used as the boundary condition for life prediction.The chloride ion diffusion model predicts the corrosion life of C30,C35 and steel slag composite artificial reefs in seawater.The results show that the diffusion law of chloride ions in concrete artificial reefs basically meets Fick's second law.The corrosion life of C30,C35 and steel slag composite concrete reefs was calculated by the model to be 51.6,54.8 and 56.8 years,respectively.展开更多
Aqueous Zn-ion batteries(AZIBs)are one of the promising battery technologies for the green energy storage and electric vehicles.As one attractive cathode material for AZIBs,α-MnO2 materials exhibit superior electroch...Aqueous Zn-ion batteries(AZIBs)are one of the promising battery technologies for the green energy storage and electric vehicles.As one attractive cathode material for AZIBs,α-MnO2 materials exhibit superior electrochemical properties.However,their long-term reversibility is still in great suspense.Considering the decisive effect of the structure and morphology on theα-MnO2 materials,hierarchicalα-MnO2 materials would be promising to improve the cycle performance of AZIB.Here,we synthesized theα-MnO2 urchin-like microspheres(AUM)via a self-assembled method.The porous microspheres composed of one-dimensionalα-MnO2 nanofibers with high crystallinity,which improved the surface area and active sites for Zn2+intercalation.The AUM-based AZIB realized a high initial capacity of 308.0 mA hg-1,and the highest energy density was 396.7 W hkg-1.The kinetics investigation confirmed the high capacitive contribution and fast ion diffusion of the AUM.Ex-situ XRD measurement further verified the synergistic insertion/extraction of H+and Zn2+ions during the charge/discharge process.The superiority of the AUM guaranteed good electrochemical performance and reversible phase evolution,and this application would promote the follow-up research on the advanced AZIB.展开更多
基金This work was supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(NRF-2021R1A2C2007904).
文摘The durability performance of reinforced concrete(RC)building structures is significantly affected by the corrosion of the steel reinforcement due to chloride penetration,thus,the chloride ion diffusion coefficient should be investigated through experiments or theoretical equations to assess the durability of an RC structure.This study aims to predict the chloride ion diffusion coefficient of concrete,a heterogeneous material.A convolutional neural network(CNN)-based regression model that learns the condition of the concrete surface through deep learning,is developed to efficiently obtain the chloride ion diffusion coefficient.For the model implementation to determine the chloride ion diffusion coefficient,concrete mixes with w/c ratios of 0.33,0.40,0.46,0.50,0.62,and 0.68,are cured for 28 days;subsequently,the surface image data of the specimens are collected.Finally,the proposed model predicts the chloride ion diffusion coefficient using the concrete surface image data and exhibits an error of approximately 1.5E−12 m^(2)/s.The results suggest the applicability of proposed model to the field of facility maintenance for estimating the chloride ion diffusion coefficient of concrete using images.
基金supported by the National Major Scientific Equipment R&D Project (No. ZDYZ2010-2)the National Natural Science Foundation of China (No. 51307165)
文摘In situ NMR measurements of the diffusion coefficients,including an estimate of signal strength,of lithium ion conductor using diffusion-weighting pulse sequence are performed in this study.A cascade bilinear model is proposed to estimate the diffusion sensitivity factors of pulsed-field gradient using prior information of the electrochemical performance and Arrhenius constraint.The model postulates that the active lithium nuclei participating electrochemical reaction are relevant to the NMR signal intensity,when discharge rate or temperature condition is varying.The electrochemical data and the NMR signal strength show a highly fit with the proposed model according our simulation and experiments.Furthermore,the diffusion time is constrained by temperature based on Arrhenius equation of reaction rates dependence.An experimental calculation of Li_4Ti_5O_(12)(LTO)/carbon nanotubes(CNTs) with the electrolyte evaluating at 20 ℃ is presented,which the b factor is estimated by the discharge rate.
基金This project owes gratitude to the Science and Technology Project (No.2008-K4-27) of Ministry of Housing and Urban-Rural Developmentthe"Tralented Personnel Nurturing in Six Fundamental Fields"Project of Jiangsu Province and"Qing-Lan Project"+2 种基金the Science and Technology Project of Jiangsu Bureau of Construction and Supervision (No.JG2007-13)the Science and Technology Planning Project of Xuzhou City(No.XJ08077)the Scientific Research Project of Xuzhou Institute of Technology(No.XKY2008225).
文摘This paper describes an orthogonal experiment on the effect of water/cement ratio,water consumption per cubic meter,curing time,and type of sand on the response"resistance to chloride ion penetration".A sea-sand containing concrete was used for the trials.An analysis of chloride ion diffusion coefficients at different factor levels was performed.A predictive model of chloride ion diffusion in concrete is developed through regression analysis.The experimental results show that when the water/cement ratio varies from 0.45 to 0.60,and the water consumption per cubic meter varies from 185 to 215 kg,and the curing time varies from 30 to 180 d then the size of the effects fall in the order(most significant first): curing time,type of sand,water consumption per cubic meter,and water/cement ratio.Chloride ion penetration is reduced,and better durability of the concrete is observed,with longer curing times,less water consumption per cubic meter,and a smaller water/cement ratio.
基金Project(2010ZC051)supported by the Natural Science Foundation of Yunnan Province,ChinaProject(20140439)supported by Analysis and Testing Foundation from Kunming University of Science and Technology,ChinaProject(14118245)supported by Starting Research Fund from Kunming University of Science and Technology,China
文摘Li Fe PO4/C was prepared via solid state reaction and characterized with X-ray powder diffraction and charge–discharge test. As-prepared Li Fe PO4/C has a triphylite structure and exhibits an excellent rate capability and capacity retention. Electrochemical impedance spectroscopy(EIS) was applied to investigate LixFe PO4/C(0<x<1) electrode on temperature variation. The valid equivalent circuit for EIS fitting was determined which contains an intercalation capacitance for Li+ ion accumulation and consumption in the electrode reaction. The surface layer impedance needs to be included in the equivalent circuit when Li Fe PO4/C is deeply delithiated at a relatively high temperature. EIS examination indicates that a temperature rise leads to a better reversibility, lower charge transfer resistance, higher exchange current density J0 and greater Li+ ion diffusion coefficient for the LixFe PO4/C electrode process. The Li+ ion concentration in LixFe PO4/C is potential to impact the Li+ ion diffusion coefficient, and a decrease in the former results in an increase in the latter.
文摘Corrosion of steel bars with chloride salt erosion is one of the main reasons for the deterioration of the performance of reinforced concrete structures.The key to the service life of concrete members is the transport rate of chloride ions and the time for rusting of steel bars.In this paper,the artificial reef concrete member is taken as the research object,and the diffusion coefficient of seawater chloride ion in C30,C35 and steel slag composite artificial reef concrete is analyzed.The critical chloride ion concentration of steel corrosion in concrete is used as the boundary condition for life prediction.The chloride ion diffusion model predicts the corrosion life of C30,C35 and steel slag composite artificial reefs in seawater.The results show that the diffusion law of chloride ions in concrete artificial reefs basically meets Fick's second law.The corrosion life of C30,C35 and steel slag composite concrete reefs was calculated by the model to be 51.6,54.8 and 56.8 years,respectively.
基金supported by the National Key Research and Development Program of China(2016YFA0202400)the 111 Project(B16016)+1 种基金the National Natural Science Foundation of China(51702096,U1705256 and 51572080)the Fundamental Research Funds for the Central Universities(2018ZD07 and JB2019132)。
文摘Aqueous Zn-ion batteries(AZIBs)are one of the promising battery technologies for the green energy storage and electric vehicles.As one attractive cathode material for AZIBs,α-MnO2 materials exhibit superior electrochemical properties.However,their long-term reversibility is still in great suspense.Considering the decisive effect of the structure and morphology on theα-MnO2 materials,hierarchicalα-MnO2 materials would be promising to improve the cycle performance of AZIB.Here,we synthesized theα-MnO2 urchin-like microspheres(AUM)via a self-assembled method.The porous microspheres composed of one-dimensionalα-MnO2 nanofibers with high crystallinity,which improved the surface area and active sites for Zn2+intercalation.The AUM-based AZIB realized a high initial capacity of 308.0 mA hg-1,and the highest energy density was 396.7 W hkg-1.The kinetics investigation confirmed the high capacitive contribution and fast ion diffusion of the AUM.Ex-situ XRD measurement further verified the synergistic insertion/extraction of H+and Zn2+ions during the charge/discharge process.The superiority of the AUM guaranteed good electrochemical performance and reversible phase evolution,and this application would promote the follow-up research on the advanced AZIB.