期刊文献+
共找到45,579篇文章
< 1 2 250 >
每页显示 20 50 100
Synergistic promotion of charge dynamics,H_(2)O activation,and dehydrogenation for enhanced visible-light H_(2)production on modified TiO_(2)
1
作者 Hao Gao Xiaoxiao He +8 位作者 Shuting Zhi Songjie Sun Yang Yang Wenwen Zhan Haobo Zhang Lei Yang Xiguang Han Jianwei Zhao Liming Sun 《Nano Research》 2026年第1期387-398,共12页
To simultaneously improve the critical factors in photocatalytic H_(2)production,the population of active photogenerated electrons,the adsorption and activation of H_(2)O molecules,and the surface dehydrogenation effi... To simultaneously improve the critical factors in photocatalytic H_(2)production,the population of active photogenerated electrons,the adsorption and activation of H_(2)O molecules,and the surface dehydrogenation efficiency,we propose a synergistic strategy for TiO_(2)modification by combining transition metal(TM)doping and N-doped carbon(N-C)coating.The targeted Cr-TiO_(2)@N-C heterojunction exhibits dramatically enhanced H_(2)production under blue light irradiation,contrasting sharply with a negligible production by pristine TiO_(2).Comprehensive structural characterization and theoretical calculations confirm the uniform substitution of Cr into the TiO_(2)lattice,promoting the formation of adjacent oxygen vacancies(VO).The synergistic effect of Cr doping and VO extends the light absorption range into the visible region.The coated N-C layer facilitates the efficient separation of photogenerated charge carriers,boosting the population of active electrons.Critically,the combined action of VO and N-C layer enhances the adsorption and activation of H_(2)O molecules while effectively improving the subsequent surface dehydrogenation efficiency.Significantly,this strategy demonstrates broad universality:Analogous TM-TiO_(2)@N-C heterojunctions(TM=Mn,Co,Ni,Cu,and Zn)synthesized via the same approach all show substantially improved H_(2)production performance over pristine TiO_(2). 展开更多
关键词 visible-light photocatalysis TiO_(2) substitutional doping charge separation hydrogen production
原文传递
Efficient control and removal of laser‑generated aerosol particles by combining water spray with pre‑injection of electrical charged mist for nuclear reactor decommissioning
2
作者 Ruicong Xu Avadhesh Kumar Sharma +6 位作者 Zeeshan Ahmed Ravinder Kumar Laffolley Hugo Ryo Yokoyama Shuichiro Miwa Shunichi Suzuki Atsushi Kosuge 《Nuclear Science and Techniques》 2026年第1期244-262,共19页
Laser-induced aerosols,predominantly submicron in size,pose significant environmental and health risks during the decommissioning of nuclear reactors.This study experimentally investigated the removal of laser-generat... Laser-induced aerosols,predominantly submicron in size,pose significant environmental and health risks during the decommissioning of nuclear reactors.This study experimentally investigated the removal of laser-generated aerosol particles using a water spray system integrated with an innovative system for pre-injecting electrically charged mist in our facility.To simulate aerosol generation in reactor decommissioning,a high-power laser was used to irradiate various materials(including stainless steel,carbon steel,and concrete),generating aerosol particles that were agglomerated with injected water mist and subsequently scavenged by water spray.Experimental results demonstrate enhanced aerosol removal via aerosol-mist agglomeration,with charged mist significantly improving particle capture by increasing wettability and size.The average improvements for the stainless steel,carbon steel,and concrete were 40%,44%,and 21%,respectively.The results of experiments using charged mist with different polarities(both positive and negative)and different surface coatings reveal that the dominant polarity of aerosols varies with the irradiated materials,influenced by their crystal structure and electron emission properties.Notably,surface coatings such as ZrO_(2)and CeO_(2)were found to possibly alter aerosol charging characteristics,thereby affecting aerosol removal efficiency with charged mist configurations.The innovative aerosol-mist agglomeration approach shows promise in mitigating radiation exposure,ensuring environmental safety,and reducing contaminated water during reactor dismantling.This study contributes critical knowledge for the development of advanced aerosol management strategies for nuclear reactor decommissioning.The understanding obtained in this work is also expected to be useful for various environmental and chemical engineering applications such as gas decontamination,air purification,and pollution control. 展开更多
关键词 Laser-induced aerosol generation Aerosol removal Electrically charging mist AGGLOMERATION Water spray scavenging Reactor decommissioning
在线阅读 下载PDF
Correction: Optimizing Exciton and Charge-Carrier Behavior in Thick-Film Organic Photovoltaics: A Comprehensive Review
3
作者 Lu Wei Yaxin Yang +2 位作者 Lingling Zhan Shouchun Yin Hongzheng Chen 《Nano-Micro Letters》 2026年第1期608-608,共1页
Correction to:Nano-Micro Letters(2026)18:10.https://doi.org/10.1007/s40820-025-01852-8 Following publication of the original article[1],the authors reported that the last author’s name was inadvertently misspelled.Th... Correction to:Nano-Micro Letters(2026)18:10.https://doi.org/10.1007/s40820-025-01852-8 Following publication of the original article[1],the authors reported that the last author’s name was inadvertently misspelled.The published version showed“Hongzhen Chen”,whereas the correct spelling should be“Hongzheng Chen”.The correct author name has been provided in this Correction,and the original article[1]has been corrected. 展开更多
关键词 charge carrier behavior exciton behavior comprehensive review thick film organic photovoltaics nano micro letters
在线阅读 下载PDF
Lithium-Ion Dynamic Interface Engineering of Nano-Charged Composite Polymer Electrolytes for Solid-State Lithium-Metal Batteries
4
作者 Shanshan Lv Jingwen Wang +7 位作者 Yuanming Zhai Yu Chen Jiarui Yang Zhiwei Zhu Rui Peng Xuewei Fu Wei Yang Yu Wang 《Nano-Micro Letters》 2026年第2期288-305,共18页
Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving... Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving the overall performance of CPEs due to their difficulty in achieving robust electrochemical and mechanical interfaces simultaneously.Here,by regulating the surface charge characteristics of halloysite nanotube(HNT),we propose a concept of lithium-ion dynamic interface(Li^(+)-DI)engineering in nano-charged CPE(NCCPE).Results show that the surface charge characteristics of HNTs fundamentally change the Li^(+)-DI,and thereof the mechanical and ion-conduction behaviors of the NCCPEs.Particularly,the HNTs with positively charged surface(HNTs+)lead to a higher Li^(+)transference number(0.86)than that of HNTs-(0.73),but a lower toughness(102.13 MJ m^(-3)for HNTs+and 159.69 MJ m^(-3)for HNTs-).Meanwhile,a strong interface compatibilization effect by Li^(+)is observed for especially the HNTs+-involved Li^(+)-DI,which improves the toughness by 2000%compared with the control.Moreover,HNTs+are more effective to weaken the Li^(+)-solvation strength and facilitate the formation of Li F-rich solid-electrolyte interphase of Li metal compared to HNTs-.The resultant Li|NCCPE|LiFePO4cell delivers a capacity of 144.9 m Ah g^(-1)after 400 cycles at 0.5 C and a capacity retention of 78.6%.This study provides deep insights into understanding the roles of surface charges of nanofillers in regulating the mechanical and electrochemical interfaces in ASSLMBs. 展开更多
关键词 charged nanofillers Nanocomposite polymer electrolyte Dynamic lithium ion interface Solid ion-conductors Solidstate lithium-metal battery
在线阅读 下载PDF
Ultra-fast and high-responsivity self-powered vis-NIR photodetector via surface charge transfer doping in MoTe_(2)/ReS_(2)heterostructures
5
作者 Haozhe Ruan Yongkang Liu +5 位作者 Jianyu Wang Linjiang Xie Yixuan Wang Mengting Dong Zhangting Wu Liang Zheng 《Journal of Semiconductors》 2026年第1期99-106,共8页
The development of optoelectronic technologies demands photodetectors with miniaturization,broadband operation,high sensitivity,and low power consumption.Although 2D van der Waals(vd W)heterostructures are promising c... The development of optoelectronic technologies demands photodetectors with miniaturization,broadband operation,high sensitivity,and low power consumption.Although 2D van der Waals(vd W)heterostructures are promising candidates due to their built-in electric fields,ultrafast photocarrier separation,and tunable bandgaps,defect states limit their performance.Therefore,the modulation of the optoelectronic properties in such heterostructures is imperative.Surface charge transfer doping(SCTD)has emerged as a promising strategy for non-destructive modulation of electronic and optoelectronic characteristics in two-dimensional materials.In this work,we demonstrate the construction of high-performance p-i-n vertical heterojunction photodetectors through SCTD of MoTe_(2)/ReS_(2)heterostructure using p-type F_(4)-TCNQ.Systematic characterization reveals that the interfacial doping process effectively amplifies the built-in electric field,enhancing photogenerated carrier separation efficiency.Compared to the pristine heterojunction device,the doped photodetector exhibits remarkable visible to nearinfrared(635-1064 nm)performance.Particularly under 1064 nm illumination at zero bias,the device achieves a responsivity of 2.86 A/W and specific detectivity of 1.41×10^(12)Jones.Notably,the external quantum efficiency reaches an exceptional value of 334%compared to the initial 11.5%,while maintaining ultrafast response characteristics with rise/fall times of 11.6/15.6μs.This work provides new insights into interface engineering through molecular doping for developing high-performance vd W optoelectronic devices. 展开更多
关键词 MoTe_(2)/ReS_(2)heterostructure broadband photodetector surface charge transfer doping P-I-N
在线阅读 下载PDF
Real-space observation of low-temperature charge density wave in layered itinerant ferromagnet Fe_(5)GeTe_(2)
6
作者 Peng Chen Xi Deng +4 位作者 Zeya Li Zhongyuan Liu Kun Zhai Yanfeng Lyu Hongtao Yuan 《Nano Research》 2026年第1期1034-1040,共7页
Charge density wave,a periodic modulation of electronic charge density often accompanied by a periodic lattice distortion,plays a vital role to induce exotic phenomena in condensed matter physics.In non-magnetic quant... Charge density wave,a periodic modulation of electronic charge density often accompanied by a periodic lattice distortion,plays a vital role to induce exotic phenomena in condensed matter physics.In non-magnetic quantum materials,contrast inversion in scanning tunneling microscopy images,observed between opposite bias polarity,serves as a hallmark of the charge density wave.However,in itinerant ferromagnetic systems,charge density wave formation competes with magnetism:A charge density wave order typically reduces the density of states at the Fermi level,while the Stoner criterion for spontaneous spin polarization requires a high density of states at Fermi level.Therefore,direct real-space observation of such polarity-dependent contrast inversion in ferromagnetic materials remains elusive and experimentally challenging.Here,we demonstrate the observation of a charge density wave in itinerant ferromagnet Fe_(5)GeTe_(2) associated with √3×√3 superlattice,revealed through polarity-dependent scanning tunneling microscopy imaging.Importantly,we observe a gap-like dip at the Fermi level in tunneling spectra,serving additional evidence for the emergence of charge density wave in Fe_(5)GeTe_(2).Interestingly,the strength of charge modulation can be systematically tuned by Fe1 vacancies and impurities,while the spectroscopic intensity shows a high sensitivity to surface degradation.Our finding provides an inspiring insight to charge density wave on the van der Waals ferromagnetic materials. 展开更多
关键词 charge density wave FERROMAGNET Fe_(5)GeTe_(2) scanning tunneling microscopy/spectroscopy
原文传递
Dual alkali metal modulation of g-C_(3)N_(4)for enhanced inter-/intralayer charge transfer and O_(2)activation toward efficient photocatalytic H_(2)O_(2)production
7
作者 Baofei Hao Tianhao Zhang +3 位作者 Xinshuang Fan Haobin Zhang Lan Zhang Huizhong Ma 《Nano Research》 2026年第1期429-442,共14页
Photocatalytic oxygen reduction provides a sustainable method for on-site hydrogen peroxide(H_(2)O_(2))synthesis.However,most photocatalysts suffer from moderate kinetics due to sluggish electron transfer and ineffici... Photocatalytic oxygen reduction provides a sustainable method for on-site hydrogen peroxide(H_(2)O_(2))synthesis.However,most photocatalysts suffer from moderate kinetics due to sluggish electron transfer and inefficient oxygen adsorption and activation.Herein,sodium(Na)and potassium(K)are co-incorporated into graphitic carbon nitride(g-C_(3)N_(4))via a stepwise co-doping strategy combining sodium chloride-induced and molten salt-assisted polymerization.Experimental results and density functional theory calculations demonstrate that the synergistic interaction between intralayer Na+ions and interlayer K^(+)ions facilitates charge carrier separation and migration both within and between g-C_(3)N_(4)layers.Additionally,multiple heteroatom sites enhance surface charge polarization and introduce cyano groups,which synergistically promote oxygen molecule(O_(2))adsorption and elevate local proton coverage.Simultaneously,the energy barrier for H_(2)O_(2)desorption on the optimal photocatalyst(5Na/3.3K-CN)is lowered,thus improving H_(2)O_(2)production efficiency.Eventually,5Na/3.3K-CN exhibits an impressive H_(2)O_(2)yield of 2541.6μmol·g^(-1)·h^(-1) in an artificial reactor,which is 10.6 times higher than that of pure g-C_(3)N_(4)(240.2μmol·g^(-1)·h^(-1)).Under natural sunlight outdoors,5Na/3.3K-CN still maintains ultrahigh H_(2)O_(2)photosynthesis efficiency,achieving an H_(2)O_(2)photosynthesis rate of 2068.7μmol·g^(-1)·h^(-1).This work introduces a straightforward method to simultaneously optimize charge transfer and O_(2)activation for boosting H_(2)O_(2)photosynthesis,offering valuable insights toward the real-world deployment of g-C_(3)N_(4)-based photocatalysts in environmental protection and energy conversion. 展开更多
关键词 H_(2)O_(2)production charge migration O_(2)activation photocatalysis graphitic carbon nitride(g-C_(3)N_(4))
原文传递
CHARGE综合征1例病例报告
8
作者 周斯斯 阮雯聪 +2 位作者 陈曦 何瑾 李海峰 《中国循证儿科杂志》 北大核心 2025年第2期157-160,共4页
回顾性分析2022年11月浙江大学医学院附属儿童医院康复科收治的1例CHARGE综合征患儿的临床资料及遗传学特点,并检索相关文献进行复习。患儿,女,3日龄,因“足月低出生体重儿,纳差3 d”首次就诊,后期就诊过程中,突出症状为喂养困难、生长... 回顾性分析2022年11月浙江大学医学院附属儿童医院康复科收治的1例CHARGE综合征患儿的临床资料及遗传学特点,并检索相关文献进行复习。患儿,女,3日龄,因“足月低出生体重儿,纳差3 d”首次就诊,后期就诊过程中,突出症状为喂养困难、生长发育迟缓、心脏畸形、感音神经性听觉丧失、外耳廓畸形;并检出CHD7基因致病性杂合变异c.23812384del(p.S794Lfs*8),父母均未检出该变异。行动脉导管结扎术及长期康复治疗后,患儿心脏畸形改善,吞咽及运动能力好转。因此,对于存在以上类似症状的患儿,需警惕CHARGE综合征,及时完善基因检测,以达到早诊断、早干预,改善预后。 展开更多
关键词 charge综合征 CHD7基因 诊断 儿童
暂未订购
CHD7基因c.5122C>T无义突变致患儿CHARGE综合征的免疫特征分析
9
作者 李晨霖 陈欣 +7 位作者 刘勍 陈然 何文丽 童琳 李玉琳 潘征夏 安云飞 赵录 《免疫学杂志》 2025年第2期97-102,122,共7页
目的分析1例罕见CHARGE综合征患儿的临床与免疫特征,总结中国患者人群基因型与表型,探索免疫致病机制。方法收集1例CHARGE综合征患儿的临床资料,利用流式细胞术、深度测序、实时荧光定量多聚核苷酸链式反应(RTqPCR)等方法进行基因分析... 目的分析1例罕见CHARGE综合征患儿的临床与免疫特征,总结中国患者人群基因型与表型,探索免疫致病机制。方法收集1例CHARGE综合征患儿的临床资料,利用流式细胞术、深度测序、实时荧光定量多聚核苷酸链式反应(RTqPCR)等方法进行基因分析和免疫特征分析,并对中国患者人群进行汇总分析。结果先证者为1名早产女婴,主要临床表现为先天性心脏病、反复呼吸道感染、呼吸衰竭、气道发育不良、听力障碍与双眼脉络膜缺损。全外显子测序发现CHD7基因自发杂合无义突变c.5122C>T(p.Gln1708Ter),根据ACMG评级为致病性变异。免疫研究发现:患儿胸腺输出T细胞功能受损;CD8+T细胞亚群数量和比例显著改变、凋亡增加,且CD8+T细胞活化和产生关键IFN-γ效应细胞因子障碍;患儿外周淋巴细胞增殖功能无显著异常。结论CHARGE综合征是一种罕见的常染色体显性遗传疾病,主要由CHD7基因突变所致。临床主要表现为眼缺陷、心脏疾病、后鼻道闭锁/唇腭裂、生长发育迟缓、性腺发育不全、耳部畸形。通过本例CHD7机制研究初步发现CHARGE综合征患者免疫细胞发育、凋亡、效应功能均存在异常。 展开更多
关键词 charge综合征 CHD7基因 免疫出生缺陷 免疫特征
原文传递
刍议Floating Charge在国际工程承包中的应用
10
作者 朱晓迪 张琦 过涵 《江苏建材》 2025年第3期112-113,共2页
文章通过解释Floating Charge的概念,阐述Floating Charge使用条件及其优点和不足,探讨国际工程承包商使用Floating Charge的应用范围、应用优势、选择时的注意要点。
关键词 Floating charge 保函 国际工程 承包商
在线阅读 下载PDF
Thermal runaway and jet flame features of LIBs undergone high-rate charge/discharge:An investigation 被引量:1
11
作者 Junling Wang Junjie Yang +4 位作者 Wei Bai Zhirong Wang Konghao Yu Yawei Lu Chaoling Han 《Journal of Energy Chemistry》 2025年第4期826-837,共12页
In this work,a series of experiments are carried out to investigate the effect of charge/discharge rates(1,2,3 and 4 C)and state of charges(SOCs,namely 0%,50%,75%and 100%)on thermal runaway(TR)and fire behavior of lit... In this work,a series of experiments are carried out to investigate the effect of charge/discharge rates(1,2,3 and 4 C)and state of charges(SOCs,namely 0%,50%,75%and 100%)on thermal runaway(TR)and fire behavior of lithium iron phosphate(LFP)batteries.The TR process caused by overheating LFP batteries is usually divided into four stages,with high temperatures and fire risks.High-rate charge and discharge damage the internal morphology and structural stability of materials seriously.The TR behavior of battery is fully aggravated,which is further manifested by the advanced opening of the safety vent,release of gas and occurrence of TR.With the increase of charging rate,the deteriorated TR characteristics can be discerned,such as the lower TR temperature,the shorter TR time,and the more serious TR consequences.Such changes can be assigned to the decline of battery stability.In addition,the battery SOC greatly impacts safety,especially the flame temperature and the severity of consequences.As for the 100%SOC battery cycled at 4 C,there is still a high risk of thermal runaway propagation at the position 1 m far away from the battery.This work helps to realize the TR and fire features of battery in-depth,enlightening the safety protection of battery. 展开更多
关键词 Thermal runaway Lithium-ion batteries State of charge High charge–discharge rate
在线阅读 下载PDF
Study on the formation characteristics of underwater hemispherical shaped charge jet and its penetration performance into concrete 被引量:1
12
作者 Chao Cao Jinxiang Wang +5 位作者 Lingquan Kong Kui Tang Yujie Xiao Yangchen Gu Ming Yang Jian Wang 《Defence Technology(防务技术)》 2025年第5期180-196,共17页
Shaped charge has been widely used for penetrating concrete.However,due to the obvious difference between the propagation of shock waves and explosion products in water and air,the theory governing the formation of sh... Shaped charge has been widely used for penetrating concrete.However,due to the obvious difference between the propagation of shock waves and explosion products in water and air,the theory governing the formation of shaped charge jets in water as well as the underwater penetration effect of concrete need to be studied.In this paper,we introduced a modified forming theory of an underwater hemispherical shaped charge,and investigated the behavior of jet formation and concrete penetration in both air and water experimentally and numerically.The results show that the modified jet forming theory predicts the jet velocity of the hemispherical liner with an error of less than 10%.The underwater jets exhibit at least 3%faster and 11%longer than those in air.Concrete shows different failure modes after penetration in air and water.The depth of penetration deepens at least 18.75%after underwater penetration,accompanied by deeper crater with 65%smaller radius.Moreover,cracks throughout the entire target are formed,whereas cracks exist only near the penetration hole in air.This comprehensive study provides guidance for optimizing the structure of shaped charge and improves the understanding of the permeability effect of concrete in water. 展开更多
关键词 Shaped charge jet Underwater penetration Formation characteristic Concrete failure
在线阅读 下载PDF
Experimental Study on the Coupling Dynamics of Metal Jet,Waves,and Bubble During Underwater Explosion of a Shaped Charge 被引量:1
13
作者 Yu Tian A-Man Zhang +1 位作者 Liu-Yi Xu Fu-Ren Ming 《Engineering》 2025年第7期168-187,共20页
Unlike conventional spherical charges,a shaped charge generates not only a strong shock wave and a pulsating bubble,but also a high strain rate metal jet and a ballistic wave during the underwater explosion.They show ... Unlike conventional spherical charges,a shaped charge generates not only a strong shock wave and a pulsating bubble,but also a high strain rate metal jet and a ballistic wave during the underwater explosion.They show significant characteristic differences and couple each other.This paper designs and conducts experiments with shaped charges to analyze the complicated process.The effects of liner angle and weight of shaped charge on the characteristics of metal jets,waves,and bubbles are discussed.It is found that in underwater explosions,the shaped charge generates the metal jet accompanied by the ballistic wave.Then,the shock wave propagates and superimposes with the ballistic wave,and the generated bubble pulsates periodically.It is revealed that the maximum head velocity of the metal jet versus the liner angle a and length-to-diameter ratio k of the shaped charge follows the laws of 1/(α/180°)^(0.55)andλ^(0.16),respectively.The head shape and velocity of the metal jet determine the curvature and propagation speed of the initial ballistic wave,thus impacting the superposition time and region with the shock wave.Our findings also reveal that the metal jet carries away some explosion products,which hinders the bubble development,causing an inward depression of the bubble wall near the metal jet.Therefore,the maximum bubble radius and pulsation period are 5.2%and 3.9%smaller than the spherical charge with the same weight.In addition,the uneven axial energy distribution of the shaped charge leads to an oblique bubble jet formation. 展开更多
关键词 Shaped charge Underwater explosion Metal jet WAVES BUBBLE Coupling dynamics
在线阅读 下载PDF
The detonation wave propagation and the calculation methods for shock wave overpressure distribution of composite charges 被引量:1
14
作者 Jiaxin Yu Weibing Li +2 位作者 Junbao Li Xiaoming Wang Wenbin Li 《Defence Technology(防务技术)》 2025年第6期204-220,共17页
To explore the design criteria for composite charges and reveal the intrinsic relationship between the detonation wave propagation in composite charges and the overall energy distribution of shock waves,this study ana... To explore the design criteria for composite charges and reveal the intrinsic relationship between the detonation wave propagation in composite charges and the overall energy distribution of shock waves,this study analyzes the propagation and interaction processes of detonation waves in composite charges with different structural dimensions and explosive combinations. It also investigates the spatial distribution characteristics of the resulting shock wave loads. Based on dimensional analysis theory, a theoretical analysis of the shock wave overpressure distribution in free air fields is conducted. Utilizing the derived dimensionless function relationships, the hydrocode AUTODYN is employed to investigate the effects of charge structure parameters and explosive combinations on the internal overdriven detonation phenomena and the distribution of shock wave loads. It is found that the overdriven detonation phenomenon in the inner layer of composite charges increases the strength of the axial detonation wave,thereby enhancing the intensity of the primary end wave formed upon refraction into the air, which affects the distribution characteristics of the shock wave overpressure. Research has shown that increasing the thickness ratio and detonation velocity ratio of composite charges is beneficial for exacerbating the phenomenon of overdriven detonation, improving the primary end wave intensity and axial overpressure. This gain effect gradually weakens with the propagation of shock waves. When overdriven detonation occurs inside the composite charge, the detonation pressure first increases and then decreases. The Mach reflection pressure of the composite charge with a larger aspect ratio is attenuated to a greater extent. In addition, as the aspect ratio of the composite charge increases, the shock wave energy gradually flows from the axial direction to the radial direction. Therefore, as the aspect ratio of the composite charge increases, the primary end wave intensity and axial overpressure gradually decrease. 展开更多
关键词 Composite charge Overdriven detonation Shock wave overpressure Dimensional analysis Numerical simulation
在线阅读 下载PDF
Investigation of mixing performance and safety characteristics of polymer-based energetic materials simulant via screw-pressing blending extrusion charges 被引量:1
15
作者 Gaoming Lin Huzeng Zong +6 位作者 Suwei Wang Huang Chen Siyu Yu Xiaojie Hao Kang Wang Yuanyuan Li Guohui Zhang 《Defence Technology(防务技术)》 2025年第2期287-305,共19页
The present study introduces a screw-pressing charging method to tackle deficiencies in automation and charge uniformity during the melt-casting of polymer-based energetic materials.To ensure the safety of the experim... The present study introduces a screw-pressing charging method to tackle deficiencies in automation and charge uniformity during the melt-casting of polymer-based energetic materials.To ensure the safety of the experiments,this study used inert materials with similar physical properties to partially substitute for the actual energetic components in the preparation of simulant materials.By thoroughly analyzing slurry physical properties,a simulation framework and an extensive performance evaluation method were developed.Such tools guide the design of the structure and configuration of process parameters.Results demonstrate that employing the Pin element significantly enhances radial mixing within the screw,minimizes temperature variations in the slurry,and improves both efficiency and safety in the mixing process.Further,adjustments such as widening the cone angle of the barrel,modifying the solid content of the slurry,and varying the speed of the screw can optimize the mechanical and thermal coupling in the flow field.These adjustments promote higher-quality slurry and create a safer production environment for the extrusion process. 展开更多
关键词 Polymer-based energetic materials Screw-pressing charging process Structural design Process safety Mixing performance
在线阅读 下载PDF
Boron cluster-based TADF emitter via through-space charge transfer enabling efficient orange-red electroluminescence 被引量:1
16
作者 Xiao Yu Dongyue Cui +8 位作者 Mengmeng Wang Zhaojin Wang Mengzhu Wang Deshuang Tu Vladimir Bregadze Changsheng Lu Qiang Zhao Runfeng Chen Hong Yan 《Chinese Chemical Letters》 2025年第3期232-238,共7页
Thermally activated delayed fluorescence(TADF)materials driven by a through-space charge transfer(TSCT)mechanism have garnered wide interest.However,access of TSCT-TADF molecules with longwavelength emission remains a... Thermally activated delayed fluorescence(TADF)materials driven by a through-space charge transfer(TSCT)mechanism have garnered wide interest.However,access of TSCT-TADF molecules with longwavelength emission remains a formidable challenge.In this study,we introduce a novel V-type DA-D-A’emitter,Trz-mCzCbCz,by using a carborane scaffold.This design strategically incorporates carbazole(Cz)and 2,4,6-triphenyl-1,3,5-triazine(Trz)as donor and acceptor moieties,respectively.Theoretical calculations alongside experimental validations affirm the typical TSCT-TADF characteristics of this luminogen.Owing to the unique structural and electronic attributes of carboranes,Trz-mCzCbCz exhibits an orange-red emission,markedly diverging from the traditional blue-to-green emissions observed in classical Cz and Trz-based TADF molecules.Moreover,bright emission in aggregates was observed for Trz-mCzCbCz with absolute photoluminescence quantum yield(PLQY)of up to 88.8%.As such,we have successfully fabricated five organic light-emitting diodes(OLEDs)by utilizing Trz-mCzCbCz as the emitting layer.It is important to note that both the reverse intersystem crossing process and the TADF properties are profoundly influenced by host materials.The fabricated OLED devices reached a maximum external quantum efficiency(EQE)of 12.7%,with an emission peak at 592 nm.This represents the highest recorded efficiency for TSCT-TADF OLEDs employing carborane derivatives as emitting layers. 展开更多
关键词 Thermally activated delayed fluorescence Through-space charge transfer CARBORANE Boron clusters Organic light-emitting diodes
原文传递
Droplet-Enabled Controllable Manipulation of Tribo-Charges from Liquid-Solid Interface 被引量:1
17
作者 Xunjia Li Jianjun Luo +1 位作者 Jianfeng Ping Zhong Lin Wang 《Engineering》 2025年第2期132-142,共11页
Efficient utilization of electrostatic charges is paramount for numerous applications,from printing to kinetic energy harvesting.However,existing technologies predominantly focus on the static qualities of these charg... Efficient utilization of electrostatic charges is paramount for numerous applications,from printing to kinetic energy harvesting.However,existing technologies predominantly focus on the static qualities of these charges,neglecting their dynamic capabilities as carriers for energy conversion.Herein,we report a paradigm-shifting strategy that orchestrates the swift transit of surface charges,generated through contact electrification,via a freely moving droplet.This technique ingeniously creates a bespoke charged surface which,in tandem with a droplet acting as a transfer medium to the ground,facilitates targeted charge displacement and amplifies electrical energy collection.The spontaneously generated electric field between the charged surface and needle tip,along with the enhanced water ionization under the electric field,proves pivotal in facilitating controlled charge transfer.By coupling the effects of charge self-transfer,contact electrification,and electrostatic induction,a dual-electrode droplet-driven(DD)triboelectric nanogenerator(TENG)is designed to harvest the water-related energy,exhibiting a two-orderof-magnitude improvement in electrical output compared to traditional single-electrode systems.Our strategy establishes a fundamental groundwork for efficient water drop energy acquisition,offering deep insights and substantial utility for future interdisciplinary research and applications in energy science. 展开更多
关键词 Solid-liquid interface engineering Energy harvesting device Triboelectric nanogenertor Interface charge utilization Water energy
在线阅读 下载PDF
Highly effective charge transfer on ultrathin CuInS_(2) nanosheets for photocatalytic hydrogen evolution 被引量:1
18
作者 ZHAO Min JIANG Zishi +1 位作者 WANG Qiang SUN Jianhui 《黑龙江大学工程学报(中英俄文)》 2025年第1期10-18,共9页
Photocatalytic hydrogen production technology is an ideal approach to addressing energy and environmental issues,with efficient charge transfer being the key to achieving high-performance hydrogen production.Ultra-thi... Photocatalytic hydrogen production technology is an ideal approach to addressing energy and environmental issues,with efficient charge transfer being the key to achieving high-performance hydrogen production.Ultra-thin CuInS_(2)nanosheets were prepared through a solvothermal method.Subsequently,metallic Ni was surface-modified onto CuInS_(2)through photo-deposition to serve as a co-catalyst.The optimized photocatalyst exhibited a hydrogen production rate of 15.5 mmol·g^(-1)·h^(-1)in water when used an ascorbic acid as hole scavenger,which is 9 times that of the original CuInS_(2).Transient absorption spectra(TAS)analysis demonstrates that the hole transfer from CuInS_(2)nanosheets to ascorbic acid,yielding a long-lived electron with a lifetime of 45.6μs.The electrons in CuInS_(2)are efficiently captured by Ni as active sites for driving hydrogen evolution.In situ TAS further indicates that ascorbic acid and Ni sites synergistically promote the electron transfer dynamics of CuInS_(2),achieving an electron transfer efficiency of 48.4%.This work provides a viable strategy for designing highly efficient photocatalysts with enhanced charge transfer. 展开更多
关键词 semiconductor nanosheets CuInS_(2) photocatalytic hydrogen charge transfer dynamics transient absorption spectra
在线阅读 下载PDF
Experimental and numerical investigation of cavity characteristics in behind-armor liquid-filled containers under shaped charge jet impact 被引量:1
19
作者 Shixin Ma Xiangdong Li Lanwei Zhou 《Defence Technology(防务技术)》 2025年第5期242-259,共18页
The cavity characteristics in liquid-filled containers caused by high-velocity impacts represent an important area of research in hydrodynamic ram phenomena.The dynamic expansion of the cavity induces liquid pressure ... The cavity characteristics in liquid-filled containers caused by high-velocity impacts represent an important area of research in hydrodynamic ram phenomena.The dynamic expansion of the cavity induces liquid pressure variations,potentially causing catastrophic damage to the container.Current studies mainly focus on non-deforming projectiles,such as fragments,with limited exploration of shaped charge jets.In this paper,a uniquely experimental system was designed to record cavity profiles in behind-armor liquid-filled containers subjected to shaped charge jet impacts.The impact process was then numerically reproduced using the explicit simulation program ANSYS LS-DYNA with the Structured Arbitrary Lagrangian-Eulerian(S-ALE)solver.The formation mechanism,along with the dimensional and shape evolution of the cavity was investigated.Additionally,the influence of the impact kinetic energy of the jet on the cavity characteristics was analyzed.The findings reveal that the cavity profile exhibits a conical shape,primarily driven by direct jet impact and inertial effects.The expansion rates of both cavity length and maximum radius increase with jet impact kinetic energy.When the impact kinetic energy is reduced to 28.2 kJ or below,the length-to-diameter ratio of the cavity ultimately stabilizes at approximately 7. 展开更多
关键词 Cavity characteristics Shaped charge jet Behind-armor liquid-filled container Impact kinetic energy Hydrodynamic ram
在线阅读 下载PDF
An efficient and accurate numerical method for simulating close-range blast loads of cylindrical charges based on neural network 被引量:1
20
作者 Ting Liu Changhai Chen +2 位作者 Han Li Yaowen Yu Yuansheng Cheng 《Defence Technology(防务技术)》 2025年第2期257-271,共15页
To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based sim... To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based simulation(NNS)method with higher accuracy and better efficiency was proposed.The NNS method consisted of three main steps.First,the parameters of blast loads,including the peak pressures and impulses of cylindrical charges with different aspect ratios(L/D)at different stand-off distances and incident angles were obtained by two-dimensional numerical simulations.Subsequently,incident shape factors of cylindrical charges with arbitrary aspect ratios were predicted by a neural network.Finally,reflected shape factors were derived and implemented into the subroutine of the ABAQUS code to modify the CONWEP model,including modifications of impulse and overpressure.The reliability of the proposed NNS method was verified by related experimental results.Remarkable accuracy improvement was acquired by the proposed NNS method compared with the unmodified CONWEP model.Moreover,huge efficiency superiority was obtained by the proposed NNS method compared with the CEL method.The proposed NNS method showed good accuracy when the scaled distance was greater than 0.2 m/kg^(1/3).It should be noted that there is no need to generate a new dataset again since the blast loads satisfy the similarity law,and the proposed NNS method can be directly used to simulate the blast loads generated by different cylindrical charges.The proposed NNS method with high efficiency and accuracy can be used as an effective method to analyze the dynamic response of structures under blast loads,and it has significant application prospects in designing protective structures. 展开更多
关键词 Close-range air blast load Cylindrical charge Numerical method Neural network CEL method CONWEP model
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部