Based on the steady-state seepage method, we used the Mechanical Testing and Simulation 815.02 System and a self-designed seepage instrument for over-broken stone to measure seepage properties of water flows in three ...Based on the steady-state seepage method, we used the Mechanical Testing and Simulation 815.02 System and a self-designed seepage instrument for over-broken stone to measure seepage properties of water flows in three types of crushed rock samples. Three methods of confidence interval in describing permeability coefficients are presented: the secure interval, the calculated interval and the systemic interval. The lower bound of the secure interval can be applied to water-inrush and the upper bound can solve the problem of connectivity. For the calculated interval, as the axial pressure increases, the length of confidence interval is shortened and the upper and lower bounds are reduced. For the systemic interval, the length of its confidence interval, as well as the upper and lower bounds, clearly vary under low axial pressure but are fairly similar under high axial pressure. These three methods provide useful information and references for analyzing the permeability coefficient of over-broken rock.展开更多
The composite time scale(CTS)provides a stable,accurate,and reliable time scale for modern society.The improvement of CTS’s real-time performance will improve its stability,which strengths related applications’perfo...The composite time scale(CTS)provides a stable,accurate,and reliable time scale for modern society.The improvement of CTS’s real-time performance will improve its stability,which strengths related applications’performance.Aiming at this goal,a method achieved by determining the optimal calculation interval and accelerating adjustment stage is proposed in this paper.The determinants of the CTS’s calculation interval(characteristics of the clock ensemble,the measurement noise,the time and frequency synchronization system’s noise and the auxiliary output generator noise floor)are studied and the optimal calculation interval is obtained.We also investigate the effect of ensemble algorithm’s initial parameters on the CTS’s adjustment stage.A strategy to get the reasonable initial parameters of ensemble algorithm is designed.The results show that the adjustment stage can be finished rapidly or even can be shorten to zero with reasonable initial parameters.On this basis,we experimentally generate a distributed CTS with a calculation interval of 500 s and its stability outperforms those of the member clocks when the averaging time is longer than1700 s.The experimental result proves that the CTS’s real-time performance is significantly improved.展开更多
The aim of the paper is to get an insight into the time interval of electron emission done between two neighbouring energy levels of the hydrogen atom. To this purpose, in the first step, the formulae of the special r...The aim of the paper is to get an insight into the time interval of electron emission done between two neighbouring energy levels of the hydrogen atom. To this purpose, in the first step, the formulae of the special relativity are applied to demonstrate the conditions which can annihilate the electrostatic force acting between the nucleus and electron in the atom. This result is obtained when a suitable electron speed entering the Lorentz transformation is combined with the strength of the magnetic field acting normally to the electron orbit in the atom. In the next step, the Maxwell equation characterizing the electromotive force is applied to calculate the time interval connected with the change of the magnetic field necessary to produce the force. It is shown that the time interval obtained from the Maxwell equation, multiplied by the energy change of two neighbouring energy levels considered in the atom, does satisfy the Joule-Lenz formula associated with the quantum electron energy emission rate between the levels.展开更多
基金Financial support for this work, provided by the National Natural Science Foundation of China (Nos. 50774083 and 41074040)the Program for New Century Excellent Talents in University (No. NCET-07-0803)the National Key Basic Research Program (No. 2009CB219605)
文摘Based on the steady-state seepage method, we used the Mechanical Testing and Simulation 815.02 System and a self-designed seepage instrument for over-broken stone to measure seepage properties of water flows in three types of crushed rock samples. Three methods of confidence interval in describing permeability coefficients are presented: the secure interval, the calculated interval and the systemic interval. The lower bound of the secure interval can be applied to water-inrush and the upper bound can solve the problem of connectivity. For the calculated interval, as the axial pressure increases, the length of confidence interval is shortened and the upper and lower bounds are reduced. For the systemic interval, the length of its confidence interval, as well as the upper and lower bounds, clearly vary under low axial pressure but are fairly similar under high axial pressure. These three methods provide useful information and references for analyzing the permeability coefficient of over-broken rock.
基金the National Key Research and Development Program of China(Grant No.2021YFA1402102)the National Natural Science Foundation of China(Grant No.62171249)the Fund by Tsinghua University Initiative Scientific Research Program.
文摘The composite time scale(CTS)provides a stable,accurate,and reliable time scale for modern society.The improvement of CTS’s real-time performance will improve its stability,which strengths related applications’performance.Aiming at this goal,a method achieved by determining the optimal calculation interval and accelerating adjustment stage is proposed in this paper.The determinants of the CTS’s calculation interval(characteristics of the clock ensemble,the measurement noise,the time and frequency synchronization system’s noise and the auxiliary output generator noise floor)are studied and the optimal calculation interval is obtained.We also investigate the effect of ensemble algorithm’s initial parameters on the CTS’s adjustment stage.A strategy to get the reasonable initial parameters of ensemble algorithm is designed.The results show that the adjustment stage can be finished rapidly or even can be shorten to zero with reasonable initial parameters.On this basis,we experimentally generate a distributed CTS with a calculation interval of 500 s and its stability outperforms those of the member clocks when the averaging time is longer than1700 s.The experimental result proves that the CTS’s real-time performance is significantly improved.
文摘The aim of the paper is to get an insight into the time interval of electron emission done between two neighbouring energy levels of the hydrogen atom. To this purpose, in the first step, the formulae of the special relativity are applied to demonstrate the conditions which can annihilate the electrostatic force acting between the nucleus and electron in the atom. This result is obtained when a suitable electron speed entering the Lorentz transformation is combined with the strength of the magnetic field acting normally to the electron orbit in the atom. In the next step, the Maxwell equation characterizing the electromotive force is applied to calculate the time interval connected with the change of the magnetic field necessary to produce the force. It is shown that the time interval obtained from the Maxwell equation, multiplied by the energy change of two neighbouring energy levels considered in the atom, does satisfy the Joule-Lenz formula associated with the quantum electron energy emission rate between the levels.